Spectroscopic Analysis of Plasma Modified Polymer Surfaces

  • Chapter
  • First Online:
Plasma Modification of Polyolefins

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 394 Accesses

Abstract

The surface properties of polymers are essential for various industrial applications. Spectroscopy techniques like Fourier-transform infrared spectroscopy (FTIR), secondary mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance spectroscopy (NMR) are the most prominent for plasma modified polyolefin surface analysis. This book chapter provides a brief introduction to the principles of these spectroscopy methods, their uniqueness, usability, and limitations. The application of FTIR, SIMS, XPS, and NMR to the study of the surface physical and chemical properties of plasma modified polyolefins are described. Particular emphasis is devoted to the challenges arising from the chemical structure of polyolefins and handling the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liston, E.M., Martinu, L., Wertheimer, M.R.: Plasma surface modification of polymers for improved adhesion—a critical-review, (in English). J. Adhesion Science and Technology, Review 7(10), 1091–1127 (1993). https://doi.org/10.1163/156856193x00600

  2. Siow, K.S., Britcher, L., Kumar, S., Griesser, H.J.: “Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization - A review,” (in English). Plasma Processes and Polymers, Review 3(6–7), 392–418 (Aug 2006). https://doi.org/10.1002/ppap.200600021

    Article  CAS  Google Scholar 

  3. Chan, C.M., Ko, T.M., Hiraoka, H.: “Polymer surface modification by plasmas and photons,” (in English). Surface Science Reports, Review 24(1–2), 3–54 (1996)

    Google Scholar 

  4. A. Vesel and M. Mozetic, "New developments in surface functionalization of polymers using controlled plasma treatments," (in English), Journal of Physics D-Applied Physics, Review vol. 50, no. 29, p. 21, Jul 2017, Art no. 293001. https://doi.org/10.1088/1361-6463/aa748a.

  5. Forch, R., Zhang, Z.H., Knoll, W.: “Soft plasma treated surfaces: Tailoring of structure and properties for biomaterial applications,” (in English). Plasma Processes and Polymers, Review 2(5), 351–372 (Jun 2005). https://doi.org/10.1002/ppap.200400083

    Article  CAS  Google Scholar 

  6. Poncin-Epaillard, F., Legeay, G.: “Surface engineering of biomaterials with plasma techniques,” (in English). Journal of Biomaterials Science-Polymer Edition, Review 14(10), 1005–1028 (2003). https://doi.org/10.1163/156856203769231538

    Article  CAS  Google Scholar 

  7. Gillberg, G.: “Polymer surface characterization - an overview,” (in English). Journal of Adhesion, Article 21(2), 129–154 (1987). https://doi.org/10.1080/00218468708074963

    Article  CAS  Google Scholar 

  8. Lupton, J.M.: “Single-Molecule Spectroscopy for Plastic Electronics: Materials Analysis from the Bottom-Up,” (in English). Advanced Materials, Review 22(15), 1689–1721 (2010). https://doi.org/10.1002/adma.200902306

    Article  CAS  Google Scholar 

  9. Tanaka, M., Young, R.J.: “Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” (in English). Journal of Materials Science, Review 41(3), 963–991 (Feb 2006). https://doi.org/10.1007/s10853-006-6595-7

    Article  CAS  Google Scholar 

  10. Ogieglo, W., Wormeester, H., Eichhorn, K.J., Wessling, M., Benes, N.E.: “In situ ellipsometry studies on swelling of thin polymer films: A review,” (in English). Progress in Polymer Science, Review 42, 42–78 (Mar 2015). https://doi.org/10.1016/j.progpolymsci.2014.09.004

    Article  CAS  Google Scholar 

  11. Werner, C., Jacobasch, H.J.: “Surface characterization of polymers for medical devices,” (in English). International Journal of Artificial Organs, Review 22(3), 160–176 (Mar 1999)

    Article  CAS  Google Scholar 

  12. Garbassi, F., Occhiello, E.: “Spectroscopic techniques for the analysis of polymer surfaces and interfaces,” (in English). Analytica Chimica Acta, Review 197, 1–42 (Jun 1987). https://doi.org/10.1016/s0003-2670(00)84710-8

  13. Mitchell, M.B.: “Fundamentals and applications of diffuse-reflectance infrared fourier-transform (drift) spectroscopy,” (in English). Advances in Chemistry Series, Review 236, 351–375 (1993)

    Google Scholar 

  14. L. Sabbatini and P. G. Zambonin, Surface characterization of advanced polymers. VCH, 1993.

    Google Scholar 

  15. W. J. Vanooij and R. H. G. Brinkhuis, "Interpretation of the fragmentation patterns in static sims analysis of polymers .1. Simple aliphatic-hydrocarbons," (in English), Surface and Interface Analysis, Article vol. 11, no. 8, pp. 430–440, May 1988, https://doi.org/10.1002/sia.740110805.

  16. Min, H., Wettmarshausen, S., Friedrich, J.F., Unger, W.E.S.: “A ToF-SIMS study of the deuterium-hydrogen exchange induced by ammonia plasma treatment of polyolefins,” (in English). Journal of Analytical Atomic Spectrometry, Article 26(6), 1157–1165 (2011). https://doi.org/10.1039/c1ja10043b

    Article  CAS  Google Scholar 

  17. Briggs, D., Brewis, D.M., Dahm, R.H., Fletcher, I.W.: “Analysis of the surface chemistry of oxidized polyethylene: comparison of XPS and ToF-SIMS,” (in English). Surface and Interface Analysis, Article 35(2), 156–167 (2003). https://doi.org/10.1002/sia.1515

    Article  CAS  Google Scholar 

  18. Pasche, S., De Paul, S.M., Voros, J., Spencer, N.D., Textor, M.: “Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: A quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS,” (in English). Langmuir, Article 19(22), 9216–9225 (Oct 2003). https://doi.org/10.1021/la034111y

    Article  CAS  Google Scholar 

  19. Bardyn, A., et al.: “Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta,” (in English), Monthly Notices of the Royal Astronomical Society. Article; Proceedings Paper 469, S712–S722 (2017). https://doi.org/10.1093/mnras/stx2640

    Article  CAS  Google Scholar 

  20. Kissel, J., et al.: “COSIMA - High resolution time-of-flight secondary ion mass spectrometer for the analysis of cometary dust particles onboard Rosetta,” (in English). Space Science Reviews, Review 128(1–4), 823–867 (2007). https://doi.org/10.1007/s11214-006-9083-0

    Article  CAS  Google Scholar 

  21. Chu, Y.H., et al.: “Improvement of the gas cluster ion beam-(GCIB)-based molecular secondary ion mass spectroscopy (SIMS) depth profile with O-2(+) cosputtering,” (in English). Analyst, Article 141(8), 2523–2533 (2016). https://doi.org/10.1039/c5an02677f

    Article  CAS  Google Scholar 

  22. Erickson, N.C., Raman, S.N., Hammond, J.S., Holmes, R.J.: “Depth profiling organic light-emitting devices by gas-cluster ion beam sputtering and X-ray photoelectron spectroscopy,” (in English). Organic Electronics, Article 15(11), 2988–2992 (Nov 2014). https://doi.org/10.1016/j.orgel.2014.08.039

    Article  CAS  Google Scholar 

  23. Briggs, D.: Analysis of polymer surfaces by sims.2. fingerprint spectra from simple polymer-films. Surf. Interface Anal. 4(4), 151–155 (1982). https://doi.org/10.1002/sia.740040405

  24. J. Nunez, R. Renslow, J. B. Cliff, and C. R. Anderton, "NanoSIMS for biological applications: Current practices and analyses," (in English), Biointerphases, Article vol. 13, no. 3, p. 26, May-Jun 2018, Art no. 03b301. https://doi.org/10.1116/1.4993628.

  25. Yardley, S.S., et al.: “An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS,” (in English). Journal of Nuclear Materials, Article 443(1–3), 436–443 (Nov 2013). https://doi.org/10.1016/j.jnucmat.2013.07.053

    Article  CAS  Google Scholar 

  26. Kailas, L., Audinot, J.N., Migeon, H.N., Bertrand, P.: “Surface segregational behaviour studied as an effect of thickness by SIMS and AFM in annealed PS-PMMA blend and block copolymer thin films,” (in English), Composite Interfaces. Article; Proceedings Paper 13(4–6), 423–439 (2006). https://doi.org/10.1163/156855406777408610

    Article  CAS  Google Scholar 

  27. D. Briggs, "Analysis of polymer surfaces by SIMS .3. Preliminary-results from molecular imaging and microanalysis experiments," (in English), Surface and Interface Analysis, Article vol. 5, no. 3, pp. 113–118, 1983, https://doi.org/10.1002/sia.740050307.

  28. Karar, N., Gupta, T.K.: “Study of polymers and their blends using TOF-SIMS ion imaging,” (in English). Vacuum, Article 111, 119–123 (Jan 2015). https://doi.org/10.1016/j.vacuum.2014.10.006

    Article  CAS  Google Scholar 

  29. Kostov, K.G., Nishime, T.M.C., Castro, A.H.R., Toth, A., Hein, L.R.O.: “Surface modification of polymeric materials by cold atmospheric plasma jet,” (in English). Applied Surface Science, Article 314, 367–375 (2014). https://doi.org/10.1016/j.apsusc.2014.07.009

    Article  CAS  Google Scholar 

  30. Onyshchenko, I., De Geyter, N., Nikiforov, A.Y., Morent, R.: Atmospheric Pressure Plasma Penetration inside Flexible Polymeric Tubes. Plasma Processes Polym. 12(3), 271–284 (2015). https://doi.org/10.1002/ppap.201400190

    Article  CAS  Google Scholar 

  31. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Wiley, 1992.

    Google Scholar 

  32. Lock, E.H., et al.: “Surface Composition, Chemistry, and Structure of Polystyrene Modified by Electron-Beam-Generated Plasma,” (in English). Langmuir, Article 26(11), 8857–8868 (Jun 2010). https://doi.org/10.1021/la9046337

    Article  CAS  Google Scholar 

  33. Baty, A.M., Suci, P.A., Tyler, B.J., Geesey, G.G.: “Investigation of mussel adhesive protein adsorption on polystyrene and poly(octadecyl methacrylate) using angle dependent XPS, ATR-FTIR, and AFM,” (in English). Journal of Colloid and Interface Science, Article 177(2), 307–315 (Feb 1996). https://doi.org/10.1006/jcis.1996.0036

    Article  CAS  Google Scholar 

  34. Gilbert, J.B., Rubner, M.F., Cohen, R.E.: “Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers,” (in English). Proceedings of the National Academy of Sciences of the United States of America, Article 110(17), 6651–6656 (Apr 2013). https://doi.org/10.1073/pnas.1222325110

    Article  Google Scholar 

  35. Barbey, R., Laporte, V., Alnabulsi, S., Klok, H.A.: “Postpolymerization Modification of Poly(glycidyl methacrylate) Brushes: An XPS Depth-Profiling Study,” (in English). Macromolecules, Article 46(15), 6151–6158 (Aug 2013). https://doi.org/10.1021/ma400819a

    Article  CAS  Google Scholar 

  36. Artyushkova, K., Fulghum, J.E.: “Multivariate image analysis methods applied to XPS imaging data sets,” (in English). Surface and Interface Analysis, Article 33(3), 185–195 (Mar 2002). https://doi.org/10.1002/sia.1201

    Article  CAS  Google Scholar 

  37. Morgan, D.J.: “Imaging XPS for industrial applications,” (in English). Journal of Electron Spectroscopy and Related Phenomena, Article 231, 109–117 (2019). https://doi.org/10.1016/j.elspec.2017.12.008

    Article  CAS  Google Scholar 

  38. Skariyachan, S., Setlur, A.S., Naik, S.Y., Naik, A.A., Usharani, M., Vasist, K.S.: “Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions,” (in English). Environmental Science and Pollution Research, Article 24(9), 8443–8457 (Mar 2017). https://doi.org/10.1007/s11356-017-8537-0

    Article  CAS  Google Scholar 

  39. R. Avolio et al., "Recycling Polyethylene-Rich Plastic Waste from Landfill Reclamation: Toward an Enhanced Landfill-Mining Approach," (in English), Polymers, Article vol. 11, no. 2, p. 12, Feb 2019, Art no. 208, https://doi.org/10.3390/polym11020208.

  40. Dizman, B., Elasri, M.O., Mathias, L.J.: “Synthesis and antibacterial activities of water-soluble methacrylate polymers containing quaternary ammonium compounds,” (in English). Journal of Polymer Science Part a-Polymer Chemistry, Article 44(20), 5965–5973 (Oct 2006). https://doi.org/10.1002/pola.21678

    Article  CAS  Google Scholar 

  41. Pathigoolla, A., Sureshan, K.M.: “A Crystal-to-Crystal Synthesis of Triazolyl-Linked Polysaccharide,” (in English). Angewandte Chemie-International Edition, Article 52(33), 8671–8675 (Aug 2013). https://doi.org/10.1002/anie.201303372

    Article  CAS  Google Scholar 

  42. Bourbigot, S., Duquesne, S., Jama, C.: “Polymer nanocomposites: How to reach low flammability?,” (in English), Macromolecular Symposia. Article; Proceedings Paper 233, 180–190 (2006). https://doi.org/10.1002/masy.200690016

    Article  CAS  Google Scholar 

  43. Gambogi, R.J., Cho, D.L., Yasuda, H., Blum, F.D.: “Characterization of plasma polymerized hydrocarbons using CP-MAS C-13-NMR,” (in English). Journal of Polymer Science Part a-Polymer Chemistry, Article 29(12), 1801–1805 (1991). https://doi.org/10.1002/pola.1991.080291212

  44. Kaplan, S., Dilks, A.: “The structure of plasma-polymerized toluene - a solid-state c-13-nmr study of isotopically labeled polymers,” (in English). Journal of Polymer Science Part a-Polymer Chemistry, Article 21(6), 1819–1829 (1983). https://doi.org/10.1002/pol.1983.170210622

  45. Ataeefard, M., Moradian, S., Mirabedini, M., Ebrahimi, M., Asiaban, S.: “Investigating the effect of power/time in the wettability of Ar and O-2 gas plasma-treated low-density polyethylene,” (in English). Progress in Organic Coatings, Review 64(4), 482–488 (Mar 2009). https://doi.org/10.1016/j.porgcoat.2008.08.011

    Article  CAS  Google Scholar 

  46. Lee, J.H., Kim, H.G., Khang, G.S., Lee, H.B., Jhon, M.S.: “Characterization of wettability gradient surfaces prepared by corona discharge treatment,” (in English). Journal of Colloid and Interface Science, Article 151(2), 563–570 (Jul 1992). https://doi.org/10.1016/0021-9797(92)90504-f

  47. Encinas, N., Diaz-Benito, B., Abenojar, J., Martinez, M.A.: “Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch,” (in English). Surface & Coatings Technology, Article 205(2), 396–402 (Oct 2010). https://doi.org/10.1016/j.surfcoat.2010.06.069

    Article  CAS  Google Scholar 

  48. Lee, K.T., Goddard, G.M., Hotchkiss, J.H.: Plasma Modification of Polyolefin Surfaces," (in English), Packaging Technology and Science, Article vol. 22, no. 3, pp. 139–150, Apr-May 2009, https://doi.org/10.1002/pts.829.

  49. Choi, D.M., Park, C.K., Cho, K., Park, C.E.: “Adhesion improvement of epoxy resin/polyethylene joints by plasma treatment of polyethylene,” (in English). Polymer, Article 38(25), 6243–6249 (Dec 1997). https://doi.org/10.1016/s0032-3861(97)00175-4

    Article  CAS  Google Scholar 

  50. Wu, D.Y., Gutowski, W.V.S., Li, S., Griesser, H.J.: “Ammonia plasma treatment of polyolefins for adhesive bonding with a cyanoacrylate adhesive,” (in English). Journal of Adhesion Science and Technology, Article 9(4), 501–525 (1995)

    Google Scholar 

  51. Johnsen, K., Kirkhorn, S., Olafsen, K., Redford, K., Stori, A.: “Modification of polyolefin surfaces by plasma-induced grafting,” (in English). Journal of Applied Polymer Science, Article 59(10), 1651–1657 (1996). https://doi.org/10.1002/(sici)1097-4628(19960307)59:10%3c1651::aid-app17%3e3.0.co;2-z

  52. Galmiz, O., Zemanek, M., Pavlinak, D., Cernak, M.: Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes, (in English), Journal of Physics D-Applied Physics, Article vol. 51, no. 19, p. 9, May 2018, Art no. 195201, https://doi.org/10.1088/1361-6463/aabb49.

  53. Drnovska, H., Lapcik, L., Bursikova, V., Zemek, J., Barros-Timmons, A.M.: “Surface properties of polyethylene after low-temperature plasma treatment,” (in English). Colloid and Polymer Science, Article 281(11), 1025–1033 (Oct 2003). https://doi.org/10.1007/s00396-003-0871-8

    Article  CAS  Google Scholar 

  54. Anand, M., Cohen, R.E., Baddour, R.F.: Surface modification of low-density polyethylene in a fluorine-gas plasma,” (in English). Polymer, Article 22(3), 361–371 (1981). https://doi.org/10.1016/0032-3861(81)90048-3

  55. Kostov, K.G., Nishime, T.M.C., Hein, L.R.O., Toth, A.: “Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies,” (in English). Surface & Coatings Technology, Article 234, 60–66 (Nov 2013). https://doi.org/10.1016/j.surfcoat.2012.09.041

    Article  CAS  Google Scholar 

  56. Chen, Y.S., Liu, P.: “Surface modification of polyethylene by plasma pretreatment and UV-induced graft polymerization for improvement of antithrombogenicity,” (in English). Journal of Applied Polymer Science, Article 93(5), 2014–2018 (2004). https://doi.org/10.1002/app.20663

    Article  CAS  Google Scholar 

  57. Mason, M., et al.: Attachment of hyaluronic acid to polypropylene, polystyrene, and polytetrafluoroethylene. Biomaterials 21(1), 31–36 (2000). https://doi.org/10.1016/s0142-9612(99)00129-5

    Article  CAS  Google Scholar 

  58. Ikada, Y.: “Surface modification of polymers for medical applications,” (in English), Biomaterials. Article; Proceedings Paper 15(10), 725–736 (1994). https://doi.org/10.1016/0142-9612(94)90025-6

  59. Prachar, J., et al.: “Plasma grafting of polypropylene with organosilanes and its alkylamine treatment,” (in English). Vacuum, Article 127, 38–44 (May 2016). https://doi.org/10.1016/j.vacuum.2016.02.007

    Article  CAS  Google Scholar 

  60. Greenwood, O.D., Boyd, R.D., Hopkins, J., Badyal, J.P.S.: “Atmospheric silent discharge versus low-pressure plasma treatment of polyethylene, polypropylene, polyisobutylene, and polystyrene,” (in English). Journal of Adhesion Science and Technology, Article 9(3), 311–326 (1995). https://doi.org/10.1163/156856195x00527

  61. Aouinti, M., Bertrand, P., Poncin-Epaillard, F.: “Characterization of polypropylene surface treated in a CO2 plasma,” (in English). Plasmas and Polymers, Article 8(4), 225–236 (Dec 2003). https://doi.org/10.1023/a:1026392525543

    Article  CAS  Google Scholar 

  62. Hsiue, G.H., Wang, C.C.: “Functionalization of polyethylene surface using plasma-induced graft-copolymerization of acrylic-acid,” (in English). Journal of Polymer Science Part a-Polymer Chemistry, Article 31(13), 3327–3337 (Dec 1993). https://doi.org/10.1002/pola.1993.080311321

  63. Chvatalova, L., et al.: “The effect of plasma treatment on structure and properties of poly(1-butene) surface,” (in English). European Polymer Journal, Article 48(4), 866–874 (Apr 2012). https://doi.org/10.1016/j.eurpolymj.2012.02.007

    Article  CAS  Google Scholar 

  64. Morra, M., Occhiello, E., Gila, L., Garbassi, F.: “Surface dynamics vs adhesion in oxygen plasma treated polyolefiNS,” (in English). Journal of Adhesion, Article 33(1–2), 77–88 (1990). https://doi.org/10.1080/00218469008030418

  65. Truica-Marasescu, F., Guimond, S., Jedrzejowski, P., Wertheimer, M.R.: “Hydrophobic recovery of VUV/NH3 modified polyolefin surfaces: Comparison with plasma treatments in nitrogen,” (in English), Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. Article; Proceedings Paper 236, 117–122 (Jul 2005). https://doi.org/10.1016/j.nimb.2005.03.266

    Article  CAS  Google Scholar 

  66. Kwon, O.J., Myung, S.W., Lee, C.S., Choi, H.S.: “Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O-2) atmospheric pressure plasma,” (in English). Journal of Colloid and Interface Science, Article 295(2), 409–416 (Mar 2006). https://doi.org/10.1016/j.jcis.2005.11.007

    Article  CAS  Google Scholar 

  67. Klages, C.P., Hinze, A., Willich, P., Thomas, M.: Atmospheric-Pressure Plasma Amination of Polymer Surfaces, (in English). Journal of Adhesion Science and Technology, Article 24(6), 1167–1180 (2010). https://doi.org/10.1163/016942409x12598231568500

    Article  CAS  Google Scholar 

  68. Friedrich, J. et al.: Plasma-based introduction of monosort functional groups of different type and density onto polymer surfaces. Part 1: Behaviour of polymers exposed to oxygen plasma, (in English), Composite Interfaces, Article vol. 10, no. 2–3, pp. 139–171, (2003). https://doi.org/10.1163/156855403765826865

  69. Gross, T., et al.: Determination of OH groups at plasma oxidised Poly(propylene) by TFAA chemical derivatisation XPS: an inter-laboratory comparison,” (in English). Plasma Processes and Polymers, Article 7(6), 494–503 (2010). https://doi.org/10.1002/ppap.200900142

    Article  CAS  Google Scholar 

  70. Friedrich, J.F., Rohrer, P., Saur, W., Gross, T., Lippitz, A., Unger, W.: Improvement in polymer adhesivity by low and normal-pressure plasma surface modification, (in English). Surf. Coatings Technol. Article; Proceedings Paper 59(1–3), 371–378 (1993). https://doi.org/10.1016/0257-8972(93)90115-5

  71. Ramanujam, M., Mix, R., Wagner, M., Friedrich, J.F.: Effect of Br gassing after Ar plasma treatment of polyolefins, (in English). J. Adhesion Sci. Technol. Article 27(16), 1828–1839 (2013). https://doi.org/10.1080/01694243.2012.762326

    Article  CAS  Google Scholar 

  72. Foerch, R., McIntyre, N.S., Sodhi, R.N.S., Hunter, D.H.: NItrogen plasma treatment of polyethylene and polystyrene in a remote plasma reactor, (in English). J. Appli. Polym. Sci. Article 40(11–12), 1903–1915 (1990). https://doi.org/10.1002/app.1990.070401109

  73. Nihlstrand, A., Hjertberg, T., Johansson, K.: Plasma treatment of polyolefins: Influence of material composition. Bulk and surface characterization (in English), Polymer, Article 38(14): 3581–3589 (1997). https://doi.org/10.1016/s0032-3861(96)00930-5

  74. Lianos, L., Quet, C., Duc, T.M.: Surface structural studies of polyethylene, polypropylene and their copolymers with toF SIMS, (in English). Surf. Interf. Anal. Article 21(1), 14–22 (1994). https://doi.org/10.1002/sia.740210103

  75. Endo, K., Kobayashi, N., Aida, M., Hoshi, T.: Spectral analysis of polystyrene, polypropylene, and poly(methyl methacrylate) polymers in TOF SIMS and XPS by MO calculations using the model oligomers, (in English). Polymer J. Article 28(10), 901–910 (1996). https://doi.org/10.1295/polymj.28.901

    Article  CAS  Google Scholar 

  76. Karam, L., Casetta, M., Chihib, N.E., Bentiss, F., Maschke, U., Jama, C.: Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films, (in English). J. Taiwan Inst. Chem. Eng. Article 64, 299–305 (2016). https://doi.org/10.1016/j.jtice.2016.04.018

    Article  CAS  Google Scholar 

  77. Boschmans, B., Vanneste, M., Ruys, L., Temmerman, E., Leys, C., Van Vaeck, L.: Static secondary ion mass spectrometry (S-SIMS) analysis of atmospheric plasma treated polypropylene films, (in English). Appl. Surface Sci. Article; Proceedings Paper 252(19), 6660–6663 (2006). https://doi.org/10.1016/j.apsusc.2006.02.240

    Article  CAS  Google Scholar 

  78. Khairallah, Y., Arefi, F., Amouroux, J., Leonard, D., Bertrand, P.: Surface fluorination of polyethylene films by different glow-discharges - effects of frequency and electrode configuration, (in English). J. Adhesion Sci. Technol. Article 8(4), 363–381 (1994). https://doi.org/10.1163/156856194x00285

  79. Cristaudo, V., Collette, S., Poleunis, C., Reniers, F., Delcorte, A.: Surface Analysis and Ultra-Shallow Molecular Depth-Profiling of Polyethylene Treated by an Atmospheric Ar-D2O Post-Discharge, (in English). Plasma Proces Polym. Article 12(9), 919–925 (Sep 2015). https://doi.org/10.1002/ppap.201400248

    Article  CAS  Google Scholar 

  80. Cristaudo, V., et al.: Molecular Surface analysis and depth-profiling of polyethylene modified by an atmospheric Ar-D2O Post-Discharge, (in English). Plasma Process. Polym. Article 13(11), 1106–1119 (Nov 2016). https://doi.org/10.1002/ppap.201600061

    Article  CAS  Google Scholar 

  81. Wettmarshausen, S., Min, H., Unger, W., Jager, C., Hidde, G., Friedrich, J.: Significance of hydrogen-deuterium exchange at polyolefin surfaces on exposure to ammonia low-pressure plasma, (in English). Plasma Chem. Plasma Process. Article 31(4), 551–572 (2011). https://doi.org/10.1007/s11090-011-9304-5

    Article  CAS  Google Scholar 

  82. Poncinepaillard, F., Chevet, B., Brosse, J.C.: Modification of isotactic polypropylene by a cold-plasma or an electron-beam and grafting of the acrylic-acid onto these activated polymers, (in English). J. Appl. Polym. Sci. Article 53(10), 1291–1306 (1994). https://doi.org/10.1002/app.1994.070531003

  83. Boyd, R.D., Kenwright, A.M., Badyal, J.P.S., Briggs, D.: “Atmospheric nonequilibrium plasma treatment of biaxially oriented polypropylene,” (in English). Macromolecules, Article 30(18), 5429–5436 (1997). https://doi.org/10.1021/ma960940x

    Article  CAS  Google Scholar 

  84. PoncinEpaillard, F., Vallon, S., Drevillon, B.: Illustration of surface crosslinking of different polymers treated in argon plasma, (in English). Macromol. Chem. Phys. 198(8), 2439–2456 (1997). https://doi.org/10.1002/macp.1997.021980807

    Article  CAS  Google Scholar 

  85. Hanus, J., et al.: NMR Study of Polyethylene-Like Plasma Polymer Films, (in English), plasma processes and polymers. Proceedings Paper 6, S362–S365 (2009). https://doi.org/10.1002/ppap.200930802

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuliia Onyshchenko or Rino Morent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onyshchenko, Y., Chan, K.V., De Geyter, N., Morent, R. (2022). Spectroscopic Analysis of Plasma Modified Polymer Surfaces. In: Baneesh, N.S., Sari, P.S., Vackova, T., Thomas, S. (eds) Plasma Modification of Polyolefins. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-52264-3_6

Download citation

Publish with us

Policies and ethics

Navigation