Different Techniques Used for Plasma Modification of Polyolefin Surfaces

  • Chapter
  • First Online:
Plasma Modification of Polyolefins

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Polyolefins are well-known and the most commonly used polymers worldwide. Advantages like outstanding mechanical properties, chemical resistance, low cost, and processability are neighboring with some drawbacks like relatively high gas and vapor permeability, low surface energy. This chapter introduces surface plasma modification as an environmentally friendly, fast, and versatile technique. Details regarding different plasma reactor designs, generation methods, working parameters suitable for treating polyolefins are presented. Furthermore, plasma activation, grafting, and etching are described as the most commonly used techniques for surface energy modification to enhance polyolefins' biocompatibility, printability, adhesion to materials, and other parameters. For instance, plasma activation cross-linking of the polymer chains can be achieved, which leads to gas and vapor permeability improvement. Choice of working conditions allows controlling the degree of cross-linking, the type, and the concentration of the incorporated functional groups on the surface. Plasma polymerization is introduced as a technique for coating deposition with different properties and functionality depending on the operating parameters and monomer selection. Improvement of barrier layer performance and modification of the surface energy are the main applications of plasma polymerization of polyolefins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abourayana, H.M., Milosavljević, V., Dobbyn, P., et al.: Evaluation of the effect of plasma treatment frequency on the activation of polymer particles. Plasma Chem. Plasma Process. 37(4), 1223–1235 (2017)

    Article  CAS  Google Scholar 

  2. Akbar, D.: Surface modification of polypropylene (PP) using single and dual high radio frequency capacitive coupled argon plasma discharge. Appl. Surf. Sci. 362, 63–69 (2016)

    Article  CAS  Google Scholar 

  3. Amorim, M.K.M, Rangel, E.C., Landers, R., et al.: Effects of cold SF6 plasma treatment on a-C:H, polypropylene and polystyrene. Surf. Coat. Technol. 385, 125398 (2020)

    Google Scholar 

  4. Anand, M., Cohen, R., Baddour, R.: Surface modification of low density polyethylene in a fluorine gas plasma. Polymer 22(3), 361–371 (1981)

    Article  CAS  Google Scholar 

  5. Aouinti, M., Bertrand, P., Poncin-Epaillard, F.: Characterization of polypropylene surface treated in a CO2 plasma. Plasmas Polym. 8(4), 225–236 (2003)

    Article  CAS  Google Scholar 

  6. Aumann, T., Theirich, D., Engemann, J.: Rapid surface modification of polyethylene in microwave and rf-plasmas: comparative study. Surf. Coat. Technol. 142, 169–174 (2001)

    Article  Google Scholar 

  7. Aziz, G., Cools, P., Geyter, N.D., et al.: Dielectric barrier discharge plasma treatment of ultrahigh molecular weight polyethylene in different discharge atmospheres at medium pressure: a cell-biomaterial interface study. Biointerphases 10(2), 029502 (2015)

    Google Scholar 

  8. Aziz, G., De Geyter, N., Declercq, H., et al.: Incorporation of amine moieties onto ultra-high molecular weight polyethylene (UHMWPE) surface via plasma and UV polymerization of allylamine. Surf. Coat. Technol. 271, 39–47 (2015)

    Article  CAS  Google Scholar 

  9. Baba, K., Hatada, R.: Deposition of diamond-like carbon films on polymers by plasma source ion implantation. Thin Solid Films 506, 55–58 (2006)

    Article  Google Scholar 

  10. Babaei, S., Sabbatier, G., Hoesli, C.A., et al.: Functional plasma polymer films for the purification of pancreatic β cells. Plasma Process. Polym. 16(10), 1900041 (2019)

    Article  CAS  Google Scholar 

  11. Babaeva, N.Y., Kushner, M.J.: Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air. Plasma Sources Sci. Technol. 23(1), 015007 (2014)

    Google Scholar 

  12. Bazaka, K., Jacob, M.V., Chrzanowski, W., et al.: Anti-bacterial surfaces: natural agents, mechanisms of action, and plasma surface modification. RSC Adv. 5(60), 48739–48759 (2015)

    Article  CAS  Google Scholar 

  13. Behnisch, J., Holländer, A., Zimmermann, H.: Surface modification of polyethylene by remote dc discharge plasma treatment. J. Appl. Polym. Sci. 49(1), 117–124 (1993)

    Article  CAS  Google Scholar 

  14. Bhowmik, S., Ghosh, P., Ray, S., et al.: Surface modification of high density polyethylene and polypropylene by DC glow discharge and adhesive bonding to steel. J. Adhes. Sci. Technol. 12(11), 1181–1204 (1998)

    Article  CAS  Google Scholar 

  15. Bitar, R., Cools, P., De Geyter, N., et al.: Acrylic acid plasma polymerization for biomedical use. Appl. Surf. Sci. 448, 168–185 (2018)

    Article  CAS  Google Scholar 

  16. Boaen, N.K., Hillmyer, M.A.: Post-polymerization functionalization of polyolefins. Chem. Soc. Rev. 34(3), 267–275 (2005)

    Article  CAS  Google Scholar 

  17. Brandenburg, R.: Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 26(5), 053001 (2017)

    Google Scholar 

  18. Briggs, D., Brewis, D.M., Dahm, R.H., et al.: Analysis of the surface chemistry of oxidized polyethylene: comparison of XPS and ToF-SIMS. Surf. Interface Anal. 35(2), 156–167 (2003)

    Article  CAS  Google Scholar 

  19. Bruggeman, P.J., Iza, F., Brandenburg, R.: Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 26(12), 123002 (2017)

    Google Scholar 

  20. Carrino, L., Polini, W., Sorrentino, L.: Ageing time of wettability on polypropylene surfaces processed by cold plasma. J. Mater. Process. Technol. 153, 519–525 (2004)

    Article  Google Scholar 

  21. Chang, J.-S., Lawless, P.A., Yamamoto, T.: Corona discharge processes. IEEE Trans. Plasma Sci. 19(6), 1152–1166 (1991)

    Article  CAS  Google Scholar 

  22. Chapman, B.: Sputtering [Glow Discharge Process], vol. 177. Wiley, New York (1980)

    Google Scholar 

  23. Cheng, Z., Teoh, S.-H.: Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials 25(11), 1991–2001 (2004)

    Article  CAS  Google Scholar 

  24. Chirayil, C.J., Joy, J., Maria, H.J., et al.: Polyolefins in automotive industry, pp. 265–283. Fundamentals and Industrial Applications. Springer International Publishing, Polyolefin Compounds and Materials (2016)

    Google Scholar 

  25. Choi, C., Hwang, I., Cho, Y.-L., et al.: Fabrication and characterization of plasma-polymerized poly(ethylene glycol) film with superior biocompatibility. ACS Appl. Mater. Interfaces. 5(3), 697–702 (2013)

    Article  CAS  Google Scholar 

  26. Chu, P.K., Lu, X.: Low Temperature Plasma Technology: Methods and Applications. CRC Press (2013)

    Book  Google Scholar 

  27. Coen, M.C., Dietler, G., Kasas, S., et al.: AFM measurements of the topography and the roughness of ECR plasma treated polypropylene. Appl. Surf. Sci. 103(1), 27–34 (1996)

    Article  Google Scholar 

  28. Cognard, J.: Some recent progress in adhesion technology and science. C. R. Chim. 9(1), 13–24 (2006)

    Article  CAS  Google Scholar 

  29. Cools, P., Declercq, H., De Geyter, N., et al.: A stability study of plasma polymerized acrylic acid films. Appl. Surf. Sci. 432, 214–223 (2018)

    Article  CAS  Google Scholar 

  30. Corbin, G.A., Cohen, R.E., Baddour, R.: Surface fluorination of polymers in a glow discharge plasma: photochemistry. Macromolecules 18(1), 98–103 (1985)

    Article  CAS  Google Scholar 

  31. Cui, N.-Y., Brown, N.M.D.: Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl. Surf. Sci. 189(1), 31–38 (2002)

    Article  CAS  Google Scholar 

  32. De Geyter, N., Morent, R., Leys, C.: Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy. Surf. Interface Anal.: Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Films 40(3–4), 608–611 (2008)

    Article  Google Scholar 

  33. De Geyter, N., Morent, R., Leys, C., et al.: Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf. Coat. Technol. 201(16), 7066–7075 (2007)

    Article  Google Scholar 

  34. De Smet, L., Vancoillie, G., Minshall, P., et al.: Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials. Nat. Commun. 9(1), 1123 (2018)

    Article  Google Scholar 

  35. Denes, F.S., Manolache, S.: Macromolecular plasma-chemistry: an emerging field of polymer science. Prog. Polym. Sci. 29(8), 815–885 (2004)

    Article  CAS  Google Scholar 

  36. Desai SM and Singh RP (2004) Surface Modification of Polyethylene. In: Albertsson A-C (ed) Long Term Properties of Polyolefins. Berlin, Heidelberg: Springer Berlin Heidelberg, pp.231–294.

    Google Scholar 

  37. Desmet, T., Morent, R., De Geyter, N., et al.: Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromol 10(9), 2351–2378 (2009)

    Article  CAS  Google Scholar 

  38. Detomaso, L., Gristina, R., Senesi, G.S., et al.: Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials 26(18), 3831–3841 (2005)

    Article  CAS  Google Scholar 

  39. Drnovska, H., Lapčík, L., Buršíková, V., et al.: Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym. Sci. 281(11), 1025–1033 (2003)

    Article  CAS  Google Scholar 

  40. Dvořáková, H., Čech, J., Stupavská, M., et al.: Fast surface hydrophilization via atmospheric pressure plasma polymerization for biological and technical applications. Polymers 11(10), 1613 (2019)

    Article  Google Scholar 

  41. Encinas, N., Díaz-Benito, B., Abenojar, J., et al.: Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf. Coat. Technol. 205(2), 396–402 (2010)

    Article  CAS  Google Scholar 

  42. Fahmy, A., Schönhals, A., Friedrich, J.: Reaction of water with (radicals in) plasma polymerized allyl alcohol (and formation of OH-rich polymer layers). J. Phys. Chem. B 117(36), 10603–10611 (2013)

    Article  CAS  Google Scholar 

  43. Farris, S., Pozzoli, S., Biagioni, P., et al.: The fundamentals of flame treatment for the surface activation of polyolefin polymers – a review. Polymer 51(16), 3591–3605 (2010)

    Article  CAS  Google Scholar 

  44. Favia, P., Palumbo, F., d’Agostino, R., et al.: Immobilization of heparin and highly-sulphated hyaluronic acid onto plasma-treated polyethylene. Plasmas Polym. 3(2), 77–96 (1998)

    Article  CAS  Google Scholar 

  45. Favia, P., Stendardo, M.V., d’Agostino, R.: Selective grafting of amine groups on polyethylene by means of NH3−H2 RF glow discharges. Plasmas Polym. 1(2), 91–112 (1996)

    Article  CAS  Google Scholar 

  46. Favia, P., Stendardo, M.V., d’Agostino, R.: Selective grafting of amine groups on polyethylene by means of NH 3− H 2 RF glow discharges. Plasmas Polym. 1(2), 91–112 (1996)

    Article  CAS  Google Scholar 

  47. Finke, B., Schröder, K., Ohl, A.: Structure retention and water stability of microwave plasma polymerized films from allylamine and acrylic acid. Plasma Process. Polym. 6(S1), S70–S74 (2009)

    Article  CAS  Google Scholar 

  48. Foerch, R., McIntyre, N., Sodhi, R., et al.: Nitrogen plasma treatment of polyethylene and polystyrene in a remote plasma reactor. J. Appl. Polym. Sci. 40(11–12), 1903–1915 (1990)

    Article  CAS  Google Scholar 

  49. Fresnais, J., Chapel, J., Poncin-Epaillard, F.: Synthesis of transparent superhydrophobic polyethylene surfaces. Surf. Coat. Technol. 200(18–19), 5296–5305 (2006)

    Article  CAS  Google Scholar 

  50. Fricke, K., Steffen, H., Von Woedtke, T., et al.: High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Process. Polym. 8(1), 51–58 (2011)

    Article  CAS  Google Scholar 

  51. Fridman, A.: Plasma Chemistry. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  52. Fridman, A., Chirokov, A., Gutsol, A.: Non-thermal atmospheric pressure discharges. J. Phys. D Appl. Phys. 38(2), R1 (2005)

    Article  CAS  Google Scholar 

  53. Friedrich, J.: The plasma chemistry of polymer surfaces: advanced techniques for surface design. Wiley (2012)

    Book  Google Scholar 

  54. Friedrich, J., Kühn, G., Mix, R., et al.: Formation of plasma polymer layers with functional groups of different type and density at polymer surfaces and their interaction with Al atoms. Plasma Process. Polym. 1(1), 28–50 (2004)

    Article  CAS  Google Scholar 

  55. Friedrich, J., Wettmarshausen, S., Hennecke, M.: Haloform plasma modification of polyolefin surfaces. Surf. Coat. Technol. 203(23), 3647–3655 (2009)

    Article  CAS  Google Scholar 

  56. Friedrich, J.F., Mix, R., Schulze, R.-D., et al.: New plasma techniques for polymer surface modification with monotype functional groups. Plasma Process. Polym. 5(5), 407–423 (2008)

    Article  CAS  Google Scholar 

  57. Friedrich, J.F., Wigan, L., Unger, W., et al.: Barrier properties of plasma and chemically fluorinated polypropylene and polyethyleneterephthalate. Surf. Coat. Technol. 74, 910–918 (1995)

    Article  Google Scholar 

  58. Geckeler, K., Gebhardt, R., Grünwald, H.: Surface modification of polyethylene by plasma grafting with styrene for enhanced biocompatibility. Naturwissenschaften 84(4), 150–151 (1997)

    Article  CAS  Google Scholar 

  59. Ghasemi, M., Minier, M.J.G., Tatoulian, M., et al.: Ammonia plasma treated polyethylene films for adsorption or covalent immobilization of trypsin: quantitative correlation between X-ray photoelectron spectroscopy data and enzyme activity. J. Phys. Chem. B 115(34), 10228–10238 (2011)

    Article  CAS  Google Scholar 

  60. Girard-Lauriault, P.-L., Mwale, F., Iordanova, M., et al.: Atmospheric pressure deposition of micropatterned nitrogen-rich plasma-polymer films for tissue engineering. Plasma Process. Polym. 2(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  61. Guang-Liang, C., Xu, Z., Guo-Hua, L., et al.: Fabricating a reactive surface on the fibroin film by a room-temperature plasma jet array for biomolecule immobilization. Chinese Phys. B 21(10), 105201 (2012)

    Google Scholar 

  62. Guruvenket, S., Rao, G.M., Komath, M., et al.: Plasma surface modification of polystyrene and polyethylene. Appl. Surf. Sci. 236(1), 278–284 (2004)

    Article  CAS  Google Scholar 

  63. Habib, S., Lehocky, M., Vesela, D., et al.: Preparation of progressive antibacterial LDPE surface via active biomolecule deposition approach. Polymers 11(10), 1704 (2019)

    Article  CAS  Google Scholar 

  64. Hassan, A., Aal, S.A.A.E., Shehata, M.M., et al.: Plasma-etching and modification of polyethylene for improved surface structure, wettability and optical behavior. Surf. Rev. Lett. 26(07) (2019)

    Google Scholar 

  65. He, T., Yang, Z., Chen, R., et al.: Enhanced endothelialization guided by fibronectin functionalized plasma polymerized acrylic acid film. Mater. Sci. Eng. C 32(5), 1025–1031 (2012)

    Article  CAS  Google Scholar 

  66. Hegemann, D.: Plasma polymerization and its applications in textiles. Indian J. Fibre Text. Res. 31, 99–115 (2006)

    CAS  Google Scholar 

  67. Hollahan, J., Stafford, B., Falb, R., et al.: Attachment of amino groups to polymer surfaces by radiofrequency plasmas. J. Appl. Polym. Sci. 13(4), 807–816 (1969)

    Article  CAS  Google Scholar 

  68. Hong, J., Truica-Marasescu, F., Martinu, L., et al.: An investigation of plasma-polymer interactions by mass spectrometry. Plasmas Polym. 7(3), 245–260 (2002)

    Article  CAS  Google Scholar 

  69. Hoshida, T., Tsubone, D., Takada, K., et al.: Controlling the adhesion between diamond-like carbon (DLC) film and high-density polyethylene (HDPE) substrate. Surf. Coat. Technol. 202(4), 1089–1093 (2007)

    Article  CAS  Google Scholar 

  70. Hrycak, B., Sikora, A., Moczała, M., et al.: Atmospheric pressure microwave argon plasma sheet for wettability modification of polyethylene surfaces. IEEE Trans. Plasma Sci. 47(2), 1309–1315 (2019)

    Article  CAS  Google Scholar 

  71. Ibrahim, J., Al-Bataineh, S.A., Michelmore, A., et al.: Atmospheric pressure dielectric barrier discharges for the deposition of organic plasma polymer coatings for biomedical application. Plasma Chem. Plasma Process. (2020)

    Google Scholar 

  72. Inagaki, N., Tasaka, S., Nakajima, T.: Preparation of oxygen gas barrier polypropylene films by deposition of SiOx films plasma-polymerized from mixture of tetramethoxysilane and oxygen. J. Appl. Polym. Sci. 78(13), 2389–2397 (2000)

    Article  CAS  Google Scholar 

  73. Johnsen, K., Kirkhorn, S., Olafsen, K., et al.: Modification of polyolefin surfaces by plasma-induced grafting. J. Appl. Polym. Sci. 59(10), 1651–1657 (1996)

    Article  CAS  Google Scholar 

  74. Kang, M.S., Chun, B., Kim, S.S.: Surface modification of polypropylene membrane by low-temperature plasma treatment. J. Appl. Polym. Sci. 81(6), 1555–1566 (2001)

    Article  CAS  Google Scholar 

  75. Kawakami, R., Yoshitani, Y., Mitani, K., et al.: Effects of air-based nonequilibrium atmospheric pressure plasma jet treatment on characteristics of polypropylene film surfaces. Appl. Surf. Sci. 509, 144910 (2020)

    Google Scholar 

  76. Khairallah, Y., Arefi, F., Amouroux, J.: Surface fluorination of polyethylene films by different CF4 glow discharges: effects of frequency and electrode configuration. Thin Solid Films 241(1–2), 295–300 (1994)

    Article  CAS  Google Scholar 

  77. Kim, H., Lee, J.: Dual radio-frequency discharges: Effective frequency concept and effective frequency transition. J. Vac. Sci. Technol. A: Vac. Surf. Films 23(4), 651–657 (2005)

    Article  CAS  Google Scholar 

  78. Kiss, É., Samu, J., Tóth, A., et al.: Novel ways of covalent attachment of poly(ethylene oxide) onto polyethylene: surface modification and characterization by XPS and contact angle measurements. Langmuir 12(6), 1651–1657 (1996)

    Article  CAS  Google Scholar 

  79. Kogelschatz, U.: Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23(1), 1–46 (2003)

    Article  CAS  Google Scholar 

  80. Korner L, Sonnenfeld A, Heuberger R, et al. (2010a) Oxygen permeation, mechanical and structural properties of multilayer diffusion barrier coatings on polypropylene. Journal of Physics D-Applied Physics 43(11).

    Google Scholar 

  81. Korner, L., Sonnenfeld, A., von Rohr, P.R.: Silicon oxide diffusion barrier coatings on polypropylene. Thin Solid Films 518(17), 4840–4846 (2010)

    Article  Google Scholar 

  82. Kostov, K., Nishime, T., Hein, L., et al.: Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies. Surf. Coat. Technol. 234, 60–66 (2013)

    Article  CAS  Google Scholar 

  83. Kostov, K.G., Nishime, T.M.C., Castro, A.H.R., et al.: Surface modification of polymeric materials by cold atmospheric plasma jet. Appl. Surf. Sci. 314, 367–375 (2014)

    Article  CAS  Google Scholar 

  84. Kwon, O.-J., Myung, S.-W., Lee, C.-S., et al.: Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma. J. Colloid Interface Sci. 295(2), 409–416 (2006)

    Article  CAS  Google Scholar 

  85. Lacoste, J., Carlsson, D.J.: Gamma-, photo-, and thermally-initiated oxidation of linear low density polyethylene: a quantitative comparison of oxidation products. J. Polym. Sci., Part A: Polym. Chem. 30(3), 493–500 (1992)

    Article  CAS  Google Scholar 

  86. Lai, J., Sunderland, B., Xue, J., et al.: Study on hydrophilicity of polymer surfaces improved by plasma treatment. Appl. Surf. Sci. 252(10), 3375–3379 (2006)

    Article  CAS  Google Scholar 

  87. Laimer, J., Störi, H.: Recent Advances in the Research on Non-Equilibrium Atmospheric Pressure Plasma Jets. Plasma Process. Polym. 4(3), 266–274 (2007)

    Article  CAS  Google Scholar 

  88. Lamendola, R., Favia, P., Palumbo, F., et al.: Plasma-modification of polymers: process control in PE-CVD of gas-barrier films and plasma-processes for immobilizing anti-thrombotic molecules. Eur. Phys. J.-Appl. Phys. 4(1), 65–71 (1998)

    Article  CAS  Google Scholar 

  89. Langmuir, I.: Oscillations in ionized gases. Proc. Natl. Acad. Sci. USA 14(8), 627 (1928)

    Article  CAS  Google Scholar 

  90. Lee, J.W., Kim, M.I., Kim, B.G., et al.: Plasma polymerization and rhBMP-2 immobilization on porous high density polyethylene for osteoinduction. Int. J. Oral Maxillofac. Surg. 44, e252 (2015)

    Google Scholar 

  91. Lee, S.H., Yeo, S.Y., Cools, P., et al.: Plasma polymerization onto nonwoven polyethylene/polypropylene fibers for laccase immobilization as dye decolorization filter media. Text. Res. J. 3578–3590 (2018)

    Google Scholar 

  92. Lehocký, M., Drnovská, H., Lapčı́ková, B., et al.: Plasma surface modification of polyethylene. Colloids Surf. A 222(1), 125–131 (2003)

    Article  Google Scholar 

  93. Li, Y., Zhang, Z., Shi, W., et al.: Adhesion enhancement of polyethylene modified by capacitively coupled radio frequency plasma polymerization of ethanol. Surf. Coat. Technol. 259, 77–82 (2014)

    Article  CAS  Google Scholar 

  94. Lin, Y., Yasuda, H.: Hydrocarbon barrier performance of plasma-surface-modified polyethylene. J. Appl. Polym. Sci. 60(12), 2227–2238 (1996)

    Article  CAS  Google Scholar 

  95. Liston, E., Martinu, L., Wertheimer, M.: Plasma surface modification of polymers for improved adhesion: a critical review. J. Adhes. Sci. Technol. 7(10), 1091–1127 (1993)

    Article  CAS  Google Scholar 

  96. Liu, H., **e, D., Qian, L., et al.: The mechanical properties of the ultrahigh molecular weight polyethylene (UHMWPE) modified by oxygen plasma. Surf. Coat. Technol. 205(8–9), 2697–2701 (2011)

    Article  CAS  Google Scholar 

  97. Liu, Z.-M., Tingry, S., Innocent, C., et al.: Modification of microfiltration polypropylene membranes by allylamine plasma treatment: Influence of the attachment route on peroxidase immobilization and enzyme efficiency. Enzyme Microb. Technol. 39(4), 868–876 (2006)

    Article  CAS  Google Scholar 

  98. Lommatzsch, U., Pasedag, D., Baalmann, A., et al.: Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement. Plasma Process. Polym. 4(S1), S1041–S1045 (2007)

    Article  Google Scholar 

  99. Lu, X., Laroussi, M., Puech, V.: On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol. 21(3) 034005 (2012)

    Google Scholar 

  100. Macgregor, M., Vasilev, K.: Perspective on plasma polymers for applied biomaterials nanoengineering and the recent rise of oxazolines. Materials 12(1), 191 (2019)

    Article  CAS  Google Scholar 

  101. Maitz, M.F.: Applications of synthetic polymers in clinical medicine. Biosurface Biotribology 1(3), 161–176 (2015)

    Article  Google Scholar 

  102. Mandolfino, C.: Polypropylene surface modification by low pressure plasma to increase adhesive bonding: effect of process parameters. Surf. Coat. Technol. 366, 331–337 (2019)

    Article  CAS  Google Scholar 

  103. Mandolfino, C., Lertora, E., Gambaro, C., et al.: Improving adhesion performance of polyethylene surfaces by cold plasma treatment. Meccanica 49(10), 2299–2306 (2014)

    Article  Google Scholar 

  104. Mansuroglu, D., Uzun-Kaymak, I.U.: Argon and nitrogen plasma modified polypropylene: surface characterization along with the optical emission results. Surf. Coat. Technol. 358, 551–559 (2019)

    Article  CAS  Google Scholar 

  105. McNaught, A.D., Wilkinson, A.: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). WileyBlackwell; 2nd Revised edition edition)

    Google Scholar 

  106. Medard, N., Soutif, J.-C., Poncin-Epaillard, F.: Characterization of CO2 plasma-treated polyethylene surface bearing carboxylic groups. Surf. Coat. Technol. 160(2–3), 197–205 (2002)

    Article  CAS  Google Scholar 

  107. Merche, D., Vandencasteele, N., Reniers, F.: Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films 520(13), 4219–4236 (2012)

    Article  CAS  Google Scholar 

  108. Morent, R., De Geyter, N., Gengembre, L., et al.: Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure. Eur. Phys. J. Appl. Phys. 43(3), 289–294 (2008)

    Article  CAS  Google Scholar 

  109. Morent, R., De Geyter, N., Jacobs, T., et al.: Plasma-polymerization of HMDSO using an atmospheric pressure dielectric barrier discharge. Plasma Process. Polym. 6, S537–S542 (2009)

    Article  CAS  Google Scholar 

  110. Morent, R., De Geyter, N., Leys, C., et al.: Surface modification of non-woven textiles using a dielectric barrier discharge operating in air, helium and argon at medium pressure. Text. Res. J. 77(7), 471–488 (2007)

    Article  CAS  Google Scholar 

  111. Morent, R., De Geyter, N., Trentesaux, M., et al.: Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure. Appl. Surf. Sci. 257(2), 372–380 (2010)

    Article  CAS  Google Scholar 

  112. Morent, R., De Geyter, N., Van Vlierberghe, S., et al.: Influence of operating parameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectric barrier discharge. Prog. Org. Coat. 70(4), 336–341 (2011)

    Article  CAS  Google Scholar 

  113. Morent, R., De Geyter, N., Van Vlierberghe, S., et al.: Organic-inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure. Surf. Coat. Technol. 203(10–11), 1366–1372 (2009)

    Article  CAS  Google Scholar 

  114. Mortazavi, S.H., Jahazi, A., Ghoranneviss, M.: The effect of plasma polymerization of silicon compounds on the properties of biaxially oriented polypropylene (BOPP). Polym. Bull. 77(4), 1813–1828 (2020)

    Article  CAS  Google Scholar 

  115. Médard, N., Soutif, J.-C., Poncin-Epaillard, F.: CO2, H2O, and CO2/H2O plasma chemistry for polyethylene surface modification. Langmuir 18(6), 2246–2253 (2002)

    Article  Google Scholar 

  116. Nihlstrand, A., Hjertberg, T., Johansson, K.: Plasma polymerization of allyl alcohol on polyolefin-based materials: characterization and adhesion properties. J. Adhes. Sci. Technol. 10(2), 123–150 (1996)

    Article  CAS  Google Scholar 

  117. Nikitin, D., Lipatova, I., Naumova, I., et al.: Immobilization of chitosan onto polypropylene foil via air/solution atmospheric pressure plasma afterglow treatment. Plasma Chem. Plasma Process. 40(1), 207–220 (2020)

    Article  CAS  Google Scholar 

  118. Nisticò, R., Rosellini, A., Rivolo, P., et al.: Surface functionalisation of polypropylene hernia-repair meshes by RF-activated plasma polymerisation of acrylic acid and silver nanoparticles. Appl. Surf. Sci. 328, 287–295 (2015)

    Article  Google Scholar 

  119. Novák, I., Pollak, V., Chodak, I.: Study of surface properties of polyolefins modified by corona discharge plasma. Plasma Process. Polym. 3(4–5), 355–364 (2006)

    Article  Google Scholar 

  120. Novák, I., Popelka, A., Špitalský, Z., et al.: Polyolefin in packaging and food industry, pp. 181–199. Fundamentals and Industrial Applications. Springer International Publishing, Polyolefin Compounds and Materials (2016)

    Google Scholar 

  121. Nuzzo, R., Smolinsky, G.: Preparation and characterization of functionalized polyethylene surfaces. Macromolecules 17(5), 1013–1019 (1984)

    Article  CAS  Google Scholar 

  122. Onyshchenko, I., De Geyter, N., Nikiforov, A.Y., et al.: Atmospheric pressure plasma penetration inside flexible polymeric tubes. Plasma Process. Polym. 12(3), 271–284 (2015)

    Article  CAS  Google Scholar 

  123. Owonubi, S.J., Agwuncha, S.C., Fasiku, V.O., et al.: 17 - Biomedical applications of polyolefins. In: Polyolefin Fibres, 2nd edn. Woodhead Publishing, pp.517–538 (2017)

    Google Scholar 

  124. Petasch, W., Räuchle, E., Walker, M., et al.: Improvement of the adhesion of low-energy polymers by a short-time plasma treatment. Surf. Coat. Technol. 74–75, 682–688 (1995)

    Article  Google Scholar 

  125. Poncin-Epaillard, F., Chevet, B., Brosse, J.C.: Modification of isotactic polypropylene by a cold plasma or an electron beam and grafting of the acrylic acid onto these activated polymers. J. Appl. Polym. Sci. 53(10), 1291–1306 (1994)

    Article  CAS  Google Scholar 

  126. Prachar, J., Novak, I., Kleinova, A., et al.: Plasma grafting of polypropylene with organosilanes and its alkylamine treatment. Vacuum 127, 38–44 (2016)

    Article  CAS  Google Scholar 

  127. Raj, J., Herzog, G., Manning, M., et al.: Surface immobilisation of antibody on cyclic olefin copolymer for sandwich immunoassay. Biosens. Bioelectron. 24(8), 2654–2658 (2009)

    Article  CAS  Google Scholar 

  128. Ramkumar, M., Pandiyaraj, K.N., Kumar, A.A., et al.: Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment. Appl. Surf. Sci. 439, 991–998 (2018)

    Article  CAS  Google Scholar 

  129. Sajeev, U., Mathai, C.J., Saravanan, S., et al.: On the optical and electrical properties of RF and AC plasma polymerized aniline thin films. Bull. Mater. Sci. 29(2), 159–163 (2006)

    Article  CAS  Google Scholar 

  130. Sanchis, R., Fenollar, O., García, D., et al.: Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int. J. Adhes. Adhes. 28(8), 445–451 (2008)

    Article  CAS  Google Scholar 

  131. Murthy, V.S.M.D., Vaidya, U.: Improving the adhesion of glass/polypropylene (glass-PP) and high-density polyethylene (HDPE) surfaces by open air plasma treatment. Int. J. Adhes. Adhes. 95, 102435 (2019)

    Google Scholar 

  132. Sarani, A., Nikiforov, A.Y., De Geyter, N., et al.: Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl. Surf. Sci. 257(20), 8737–8741 (2011)

    Article  CAS  Google Scholar 

  133. Sarmadi, A.M., Ying, T.H., Denes, F.: HMDSO-plasma modification of polypropylene fabrics. Eur. Polymer J. 31(9), 847–857 (1995)

    Article  CAS  Google Scholar 

  134. Saxena, S., Ray, A.R., Kapil, A., et al.: Development of a new polypropylene-based suture: plasma grafting, surface treatment, characterization, and biocompatibility studies. Macromol. Biosci. 11(3), 373–382 (2011)

    Article  CAS  Google Scholar 

  135. Sciarratta, V., Vohrer, U., Hegemann, D., et al.: Plasma functionalization of polypropylene with acrylic acid. Surf. Coat. Technol. 174, 805–810 (2003)

    Article  Google Scholar 

  136. Scopece, P., Viaro, A., Sulcis, R., et al.: SiOx-based gas barrier coatings for polymer substrates by atmospheric pressure plasma jet deposition. Plasma Process. Polym. 6, S705–S710 (2009)

    Article  CAS  Google Scholar 

  137. Sekiguchi, H., Orimo, T.: Gasification of polyethylene using steam plasma generated by microwave discharge. Thin Solid Films 457(1), 44–47 (2004)

    Article  CAS  Google Scholar 

  138. Seo, H.S., Ko, Y.M., Shim, J.W., et al.: Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization. Appl. Surf. Sci. 257(2), 596–602 (2010)

    Article  CAS  Google Scholar 

  139. Shenton, M., Stevens, G.: Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments. J. Phys. D Appl. Phys. 34(18), 2761 (2001)

    Article  CAS  Google Scholar 

  140. Siow, K.S., Britcher, L., Kumar, S., et al.: Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization-a review. Plasma Process. Polym. 3(6–7), 392–418 (2006)

    Article  CAS  Google Scholar 

  141. Suzuki, M., Kishida, A., Iwata, H., et al.: Graft copolymerization of acrylamide onto a polyethylene surface pretreated with glow discharge. Macromolecules 19(7), 1804–1808 (1986)

    Article  CAS  Google Scholar 

  142. Švorčík, V., Kolářová, K., Slepička, P., et al.: Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym. Degrad. Stab. 91(6), 1219–1225 (2006)

    Article  Google Scholar 

  143. Švorčík, V., Kotál, V., Slepička, P., et al.: Modification of surface properties of polyethylene by Ar plasma discharge. Nucl. Instrum. Methods Phys. Res. Sect. B 244(2), 365–372 (2006)

    Article  Google Scholar 

  144. Tahara, M., Cuong, N., Nakashima, Y.: Improvement in adhesion of polyethylene by glow-discharge plasma. Surf. Coat. Technol. 174, 826–830 (2003)

    Article  Google Scholar 

  145. Tajima, S., Komvopoulos, K.: Surface modification of low-density polyethylene by inductively coupled argon plasma. J. Phys. Chem. B 109(37), 17623–17629 (2005)

    Article  CAS  Google Scholar 

  146. Tajima, S., Komvopoulos, K.: Physicochemical properties and morphology of fluorocarbon films synthesized on crosslinked polyethylene by capacitively coupled octafluorocyclobutane plasma. J. Phys. Chem. C 111(11), 4358–4367 (2007)

    Article  CAS  Google Scholar 

  147. Takahashi, J., Hotta, A.: Adhesion enhancement of polyolefins by diamond like carbon coating and photografting polymerization. Diam. Relat. Mater. 26, 55–59 (2012)

    Article  CAS  Google Scholar 

  148. Tamada, Y., Ikada, Y.: Cell adhesion to plasma-treated polymer surfaces. Polymer 34(10), 2208–2212 (1993)

    Article  CAS  Google Scholar 

  149. Tatoulian, M., Arefi-Khonsari, F., Mabille-Rouger, I., et al.: Role of helium plasma pretreatment in the stability of the wettability, adhesion, and mechanical properties of ammonia plasma-treated polymers. Application to the Al-polypropylene system. J. Adhes. Sci. Technol. 9(7), 923–934 (1995).

    Google Scholar 

  150. Thiry, D., Konstantinidis, S., Cornil, J., et al.: Plasma diagnostics for the low-pressure plasma polymerization process: a critical review. Thin Solid Films 606, 19–44 (2016)

    Article  CAS  Google Scholar 

  151. Thomas, M., von Hausen, M., Klages, C.P., et al.: Generation of stable coatings with carboxylic groups by copolymerization of MAA and VTMS using DBD at atmospheric pressure. Plasma Process. Polym. 4(S1), S475–S481 (2007)

    Article  Google Scholar 

  152. Truica-Marasescu, F., Wertheimer, M.R.: Nitrogen-rich plasma-polymer films for biomedical applications. Plasma Process. Polym. 5(1), 44–57 (2008)

    Article  CAS  Google Scholar 

  153. Unger, W., Lippitz, A., Gross, T., et al.: The use of octadecyltrichlorosilane self-assembled layers as a model for the assessment of plasma treatment and metallization effects on polyolefins. Langmuir 15(4), 1161–1166 (1999)

    Article  CAS  Google Scholar 

  154. Valentina, S.: Food packaging permeability behaviour: a report. Int. J. Polymer Sci. 2012, 11 (2012)

    Google Scholar 

  155. Van Deynse, A., Cools, P., Leys, C., et al.: Surface modification of polyethylene in an argon atmospheric pressure plasma jet. Surf. Coat. Technol. 276, 384–390 (2015)

    Article  Google Scholar 

  156. Van Guyse, J.F.R., Cools, P., Egghe, T., et al.: Influence of the aliphatic side chain on the near atmospheric pressure plasma polymerization of 2-alkyl-2-oxazolines for biomedical applications. ACS Appl. Mater. Interfaces 11(34), 31356–31366 (2019)

    Article  Google Scholar 

  157. Van Vrekhem, S., Cools, P., Declercq, H., et al.: Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion. Thin Solid Films 596, 256–263 (2015)

    Article  Google Scholar 

  158. Vartiainen, J., Rättö, M., Paulussen, S.: Antimicrobial activity of glucose oxidase-immobilized plasma-activated polypropylene films. Packag. Technol. Sci. 18(5), 243–251 (2005)

    Article  CAS  Google Scholar 

  159. Vartiainen, J., Rättö, M., Tapper, U., et al.: Surface modification of atmospheric plasma activated BOPP by immobilizing chitosan. Polym. Bull. 54(4), 343–352 (2005)

    Article  CAS  Google Scholar 

  160. Volcke, C., Gandhiraman, R.P., Gubala, V., et al.: Reactive amine surfaces for biosensor applications, prepared by plasma-enhanced chemical vapour modification of polyolefin materials. Biosens. Bioelectron. 25(8), 1875–1880 (2010)

    Article  CAS  Google Scholar 

  161. Wagner, A.J., Fairbrother, D.H., Reniers, F.: A comparison of PE surfaces modified by plasma generated neutral nitrogen species and nitrogen Ions. Plasmas Polym. 8(2), 119–134 (2003)

    Article  Google Scholar 

  162. Walker, M., Baumgärtner, K.M., Räuchle, E.: Multilayer barrier films on polyethylene polymerized from CF3H/C2H4 plasmas. Acta Polym. 47(10), 466–469 (1996)

    Article  Google Scholar 

  163. Wang, Y., Zhang, J., Shen, X.Y.: Surface structures tailoring of hexamethyldisiloxane films by pulse rf plasma polymerization. Mater. Chem. Phys. 96(2–3), 498–505 (2006)

    Article  CAS  Google Scholar 

  164. Wettmarshausen, S., Kühn, G., Hidde, G., et al.: Plasmabromination – the Selective Way to Monotype Functionalized Polymer Surfaces. Plasma Process. Polym. 4(9), 832–839 (2007)

    Article  CAS  Google Scholar 

  165. Wu, S., Zhang, J., Xu, X.: Studies on high density polyethylene (HDPE) functionalized by ultraviolet irradiation and its application. Polym. Int. 52(9), 1527–1530 (2003)

    Article  CAS  Google Scholar 

  166. Yasuda, H., Hsu, T.: Some aspects of plasma polymerization investigated by pulsed RF discharge. J. Polym. Sci.: Polym. Chem. Ed. 15(1), 81–97 (1977)

    CAS  Google Scholar 

  167. Yenchun, L., Yenpei, F.: Inductively coupling plasma (ICP) treatment of propylene (PP) surface and adhesion improvement. Plasma Sci. Technol 11(6), 704 (2009)

    Article  Google Scholar 

  168. Zhang, W., Ji, J., Zhang, Y., et al.: Effects of NH3, O2, and N2 co-implantation on Cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene. Appl. Surf. Sci. 253(22), 8981–8985 (2007)

    Article  CAS  Google Scholar 

  169. Zhang, W., Luo, Y., Wang, H., et al.: Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater. 4(6), 2028–2036 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuliia Onyshchenko or Rino Morent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narimisa, M., Ghobeira, R., Onyshchenko, Y., De Geyter, N., Egghe, T., Morent, R. (2022). Different Techniques Used for Plasma Modification of Polyolefin Surfaces. In: Baneesh, N.S., Sari, P.S., Vackova, T., Thomas, S. (eds) Plasma Modification of Polyolefins. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-52264-3_2

Download citation

Publish with us

Policies and ethics

Navigation