Drug Excretion

  • Living reference work entry
  • First Online:
The ADME Encyclopedia

Synonyms

Clearance; Drug elimination; Hepatobiliary excretion; Renal excretion

Definition

Drug excretion comprises those processes responsible of physically removing a drug, unchanged, from the body. Drug metabolites can also be excreted as well. The main routes for excretion are, undoubtedly, urinary excretion and biliary excretion. Secondary excretion routes include respiration (which may have an impact for volatile compounds), perspiration, saliva, semen, hair, breast milk, and tears [1]. In the case of poultry, drugs can also be excreted in eggs. Of course, many of these routes do not correspond to evolutive specialized strategies to dispose of xenobiotics but emerge from the fact that drugs are potentially distributed to virtually every body fluid and tissue. While secondary routes are often unimportant from a purely pharmacokinetic perspective, they are relevant for other reasons. Elimination of drugs through eggs or breast milk can result in undesired exposure to xenobiotics...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Testa B, Krämer SD. The biochemistry of drug metabolism – an introduction. Part 1. Principles and overview. Chem Biodivers. 2006;3:1053–101.

    Article  CAS  Google Scholar 

  2. Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 2018;23:795.

    Article  Google Scholar 

  3. Sachs HC. Committee on drugs. The transfer of drugs and therapeutics into human breast milk: an update on selected topics. Pediatrics. 2013;132:e796–809.

    Article  Google Scholar 

  4. Franz T, Scheufler F, Stein K, Uhl M, Dame T, Schwarz G, et al. Determination of hydroxy metabolites of cocaine from hair samples and comparison with street cocaine samples. Forensic Sci Int. 2018;288:223–6.

    Article  CAS  Google Scholar 

  5. Ruiz ME, Conforti P, Fagiolino P, Volonté MG. The use of saliva as a biological fluid in relative bioavailability studies: comparison and correlation with plasma results. Biopharm Drug Dispos. 2010;31:476–85.

    Article  CAS  Google Scholar 

  6. Ferreira C, Paulino C, Quintas A. Extraction procedures for hair forensic toxicological analysis: a mini-review. Chem Res Toxicol. 2019;32:2367–81.

    Article  CAS  Google Scholar 

  7. Caldwell J, Gardner I, Swales N. An introduction to drug disposition: the basic principles of absorption, distribution, metabolism, and excretion. Toxicol Pathol. 1995;23:102–14.

    Article  CAS  Google Scholar 

  8. Garza AZ, Park SB, Kocz R. Drug elimination. [Updated 2020 Dec 4]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547662/. Last assessed April 2021.

  9. Wu B. Pharmacokinetic interplay of phase II metabolism and transport: a theoretical study. J Pharm Sci. 2012;101:381–93.

    Article  CAS  Google Scholar 

  10. Bruno CD, Harmatz JS, Duan SX, Zhang Q, Chow CR, Greenblatt DJ. Effect of lipophilicity on drug distribution and elimination: influence of obesity. Br J Clin Pharmacol. 2021; https://doi.org/10.1111/bcp.14735.

  11. Testa B, Crivori P, Reist M, Carrupt PA. The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples. Perspect Drug Discov Des. 2000;19:179–211.

    Article  CAS  Google Scholar 

  12. Haraldsson B, Nyström J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev. 2008;88:451–87.

    Article  CAS  Google Scholar 

  13. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–70.

    Article  CAS  Google Scholar 

  14. Reiser J, Altintas MM. Podocytes. F1000Res. 2016;5:F1000 Faculty Rev-114.

    Google Scholar 

  15. Kanwar YS. Continuum of historical controversies regarding the structural-functional relationship of the glomerular ultrafiltration unit. Am J Physiol Renal Physiol. 2015;308:F420–4.

    Article  CAS  Google Scholar 

  16. Ito S, Ando H, Ose A, Kitamura Y, Ando T, Kusuhara H, et al. Relationship between the urinary excretion mechanisms of drugs and their physicochemical properties. J Pharm Sci. 2013;102:3294–301.

    Article  CAS  Google Scholar 

  17. Izzedine H, Perazella MA. Anticancer drug-induced acute kidney injury. Kidney Int Rep. 2017;2(4):504–14.

    Article  Google Scholar 

  18. Perazella MA. Drug-induced acute kidney injury: diverse mechanisms of tubular injury. Curr Opin Crit Care. 2019;25:550–7.

    Article  Google Scholar 

  19. Pazhayattil GS, Shirali AC. Drug-induced impairment of renal function. Int J Nephrol Renovasc Dis. 2014;7:457–68.

    PubMed  PubMed Central  Google Scholar 

  20. Kwon Y. Handbook of essential pharmacokinetics, pharmacodynamics and drug metabolism for industrial scientists. New York: Kluwer Academic; 2002.

    Google Scholar 

  21. Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet. 2002;41:751–90.

    Article  CAS  Google Scholar 

  22. Klaassen CD, Watkins JB 3rd. Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev. 1984;36:1–67.

    CAS  PubMed  Google Scholar 

  23. Hosey CM, Broccatelli F, Benet LZ. Predicting when biliary excretion of parent drug is a major route of elimination in humans. AAPS J. 2014;16:1085–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Talevi .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Talevi, A., Bellera, C.L. (2021). Drug Excretion. In: The ADME Encyclopedia. Springer, Cham. https://doi.org/10.1007/978-3-030-51519-5_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51519-5_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51519-5

  • Online ISBN: 978-3-030-51519-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation