Percutaneous Interventional Radiology for Lung Tumors

  • Living reference work entry
  • First Online:
Interventional Oncology
  • 21 Accesses

Abstract

Percutaneous ablation techniques have emerged as a viable treatment option for primary and secondary lung malignancies. Utilizing minimally invasive image-guided approaches, these techniques allow for the precise placement of ablation devices with the goal of total tumor necrosis and local control, offering in some instances curative potential. The different ablative technologies used in the thorax are based on application of thermal energies, chemical lysis, and alteration of cell permeability—the thermal energies most extensively studied thus far. These ablative techniques provide a valuable stand-alone alternative to conventional surgical resection or an adjunct to surgery, chemotherapy, or radiotherapy. The development of these and additional novel therapies has resulted in a multidisciplinary approach for the treatment of primary and secondary pulmonary malignancies with percutaneous ablative techniques proving to be a robust therapeutic option. To date, radiofrequency ablation (RFA) is the best developed and most widely used thermal ablation technique in the lung. Using radiofrequency ablation as a model for thermal ablation, this chapter will outline the principles of thermal ablation, the role of thermal ablation in the treatment of primary and secondary pulmonary malignancies, the procedural-related complications of thermal ablation within the lung, post-ablation follow-up and treatment results, as well as a brief discussion and comparison of the different ablative technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  2. Riihimaki M, Thomsen H, Sundquist K, Sundquist J, Hemminki K. Clinical landscape of cancer metastases. Cancer Med. 2018;7(11):5534–42. https://doi.org/10.1002/cam4.1697.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Donington JS. Metastatic cancer to lung. In: Chang AE, Pass HI, Stone RM, Ganz PA, Kinsella TJ, Schiller JH, Strecher VJ, editors. Oncology – an evidence-based approach. New York: Springer; 2006. p. 1635–44.

    Chapter  Google Scholar 

  4. Zierhut D, Bettscheider C, Schubert K, van Kampen M, Wannenmacher M. Radiation therapy of stage I and II non-small cell lung cancer (NSCLC). Lung Cancer. 2001;34(Suppl 3):S39–43. https://doi.org/10.1016/s0169-5002(01)00381-6.

    Article  PubMed  Google Scholar 

  5. Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med. 2004;350(4):379–92. https://doi.org/10.1056/NEJMra035536.

    Article  CAS  PubMed  Google Scholar 

  6. Mountain CF. A new international staging system for lung cancer. Chest. 1986;89(4 Suppl):225S–33S. https://doi.org/10.1378/chest.89.4_supplement.225s.

    Article  CAS  PubMed  Google Scholar 

  7. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest. 2017;151(1):193–203. https://doi.org/10.1016/j.chest.2016.10.010.

    Article  PubMed  Google Scholar 

  8. Darling GE, Allen MS, Decker PA, Ballman K, Malthaner RA, Inculet RI, et al. Randomized trial of mediastinal lymph node sampling versus complete lymphadenectomy during pulmonary resection in the patient with N0 or N1 (less than hilar) non-small cell carcinoma: results of the American College of Surgery Oncology Group Z0030 trial. J Thorac Cardiovasc Surg. 2011;141(3):662–70. https://doi.org/10.1016/j.jtcvs.2010.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wao H, Mhaskar R, Kumar A, Miladinovic B, Djulbegovic B. Survival of patients with non-small cell lung cancer without treatment: a systematic review and meta-analysis. Syst Rev. 2013;2:10. https://doi.org/10.1186/2046-4053-2-10.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Detterbeck FC, Gibson CJ. Turning gray: the natural history of lung cancer over time. J Thorac Oncol. 2008;3(7):781–92. https://doi.org/10.1097/JTO.0b013e31817c9230.

    Article  PubMed  Google Scholar 

  11. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage grou**s in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(1):39–51. https://doi.org/10.1016/j.jtho.2015.09.009.

    Article  PubMed  Google Scholar 

  12. Hanna NH, Robinson AG, Temin S, Baker S Jr, Brahmer JR, Ellis PM, et al. Therapy for stage IV non-small-cell lung cancer with driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol. 2021;39(9):1040–91. https://doi.org/10.1200/JCO.20.03570.

    Article  CAS  PubMed  Google Scholar 

  13. Hanna N, Johnson D, Temin S, Baker S Jr, Brahmer J, Ellis PM, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(30):3484–515. https://doi.org/10.1200/JCO.2017.74.6065.

    Article  CAS  PubMed  Google Scholar 

  14. Lackey A, Donington JS. Surgical management of lung cancer. Semin Intervent Radiol. 2013;30(2):133–40. https://doi.org/10.1055/s-0033-1342954.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Winckelmans T, Decaluwe H, De Leyn P, Van Raemdonck D. Segmentectomy or lobectomy for early-stage non-small-cell lung cancer: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2020;57(6):1051–60. https://doi.org/10.1093/ejcts/ezz339.

    Article  PubMed  Google Scholar 

  16. Narsule CK, Ebright MI, Fernando HC. Sublobar versus lobar resection: current status. Cancer J. 2011;17(1):23–7. https://doi.org/10.1097/PPO.0b013e31820a51b6.

    Article  PubMed  Google Scholar 

  17. Divisi D, De Vico A, Zaccagna G, Crisci R. Lobectomy versus sublobar resection in patients with non-small cell lung cancer: a systematic review. J Thorac Dis. 2020;12(6):3357–62. https://doi.org/10.21037/jtd.2020.02.54.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McGarry RC, Song G, des Rosiers P, Timmerman R. Observation-only management of early stage, medically inoperable lung cancer: poor outcome. Chest. 2002;121(4):1155–8. https://doi.org/10.1378/chest.121.4.1155.

    Article  PubMed  Google Scholar 

  19. van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell lung cancer. Lancet. 2011;378(9804):1741–55. https://doi.org/10.1016/S0140-6736(11)60165-7.

    Article  PubMed  Google Scholar 

  20. Morgan-Parkes JH. Metastases: mechanisms, pathways, and cascades. AJR Am J Roentgenol. 1995;164(5):1075–82. https://doi.org/10.2214/ajr.164.5.7717206.

    Article  CAS  PubMed  Google Scholar 

  21. Figlin RAHE, Turrisi AT. Neoplasms of the lung, pleura, and mediastinum. In: Haskell CM, editor. Cancer treatment. 4th ed. Philadelphia: WB Saunders; 1995. p. 385–13.

    Google Scholar 

  22. Landreneau RJ, De Giacomo T, Mack MJ, Hazelrigg SR, Ferson PF, Keenan RJ, et al. Therapeutic video-assisted thoracoscopic surgical resection of colorectal pulmonary metastases. Eur J Cardiothorac Surg. 2000;18(6):671–6; discussion 6–7. https://doi.org/10.1016/s1010-7940(00)00580-7.

    Article  CAS  PubMed  Google Scholar 

  23. Chen PWPH. Indications for resection of pulmonary metastases. In: Baue AESC, editor. Glenn’s thoracic and cardiovascular surgery. 6th ed. Stanford: Appleton & Lange; 1996. p. 499–510.

    Google Scholar 

  24. Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria–a 10-year update. J Vasc Interv Radiol. 2014;25(11):1691–705.e4. https://doi.org/10.1016/j.jvir.2014.08.027.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goldberg SN, Charboneau JW, Dodd GD 3rd, Dupuy DE, Gervais DA, Gillams AR, et al. Image-guided tumor ablation: proposal for standardization of terms and reporting criteria. Radiology. 2003;228(2):335–45. https://doi.org/10.1148/radiol.2282021787.

    Article  PubMed  Google Scholar 

  26. Nahum Goldberg S, Dupuy DE. Image-guided radiofrequency tumor ablation: challenges and opportunities–part I. J Vasc Interv Radiol. 2001;12(9):1021–32. https://doi.org/10.1016/s1051-0443(07)61587-5.

    Article  CAS  PubMed  Google Scholar 

  27. Mountain CF, McMurtrey MJ, Hermes KE. Surgery for pulmonary metastasis: a 20-year experience. Ann Thorac Surg. 1984;38(4):323–30. https://doi.org/10.1016/s0003-4975(10)62280-1.

    Article  CAS  PubMed  Google Scholar 

  28. Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol. 2000;174(2):323–31. https://doi.org/10.2214/ajr.174.2.1740323.

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg SN, Gazelle GS, Compton CC, Mueller PR, McLoud TC. Radio-frequency tissue ablation of VX2 tumor nodules in the rabbit lung. Acad Radiol. 1996;3(11):929–35. https://doi.org/10.1016/s1076-6332(96)80303-5.

    Article  CAS  PubMed  Google Scholar 

  30. Rose SC, Thistlethwaite PA, Sewell PE, Vance RB. Lung cancer and radiofrequency ablation. J Vasc Interv Radiol. 2006;17(6):927–51; ; quiz 51. https://doi.org/10.1097/01.RVI.0000222707.44902.66.

    Article  PubMed  Google Scholar 

  31. Quirk MT, Lee S, Murali N, Genshaft S, Abtin F, Suh R. Alternatives to surgery for early-stage non-small cell lung cancer: thermal ablation. Clin Chest Med. 2020;41(2):197–210. https://doi.org/10.1016/j.ccm.2020.02.002.

    Article  PubMed  Google Scholar 

  32. Abtin F, De Baere T, Dupuy DE, Genshaft S, Healey T, Khan S, et al. Updates on current role and practice of lung ablation. J Thorac Imaging. 2019;34(4):266–77. https://doi.org/10.1097/RTI.0000000000000417.

    Article  PubMed  Google Scholar 

  33. Skonieczki BD, Wells C, Wasser EJ, Dupuy DE. Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: is it safe? Eur J Radiol. 2011;79(3):343–6. https://doi.org/10.1016/j.ejrad.2010.04.004.

    Article  PubMed  Google Scholar 

  34. Dupuy DE. Image-guided thermal ablation of lung malignancies. Radiology. 2011;260(3):633–55. https://doi.org/10.1148/radiol.11091126.

    Article  PubMed  Google Scholar 

  35. Cazzato RL, Garnon J, Ramamurthy N, Koch G, Tsoumakidou G, Caudrelier J, et al. Percutaneous image-guided cryoablation: current applications and results in the oncologic field. Med Oncol. 2016;33(12):140. https://doi.org/10.1007/s12032-016-0848-3.

    Article  PubMed  Google Scholar 

  36. Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208. https://doi.org/10.1038/nrc3672.

    Article  CAS  PubMed  Google Scholar 

  37. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S192–203. https://doi.org/10.1016/j.jvir.2010.04.007.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vogl TJ, Eckert R, Naguib NN, Beeres M, Gruber-Rouh T, Nour-Eldin NA. Thermal ablation of colorectal lung metastases: retrospective comparison among laser-induced thermotherapy, radiofrequency ablation, and microwave ablation. AJR Am J Roentgenol. 2016;207(6):1340–9. https://doi.org/10.2214/AJR.15.14401.

    Article  PubMed  Google Scholar 

  39. Vogl TJ, Dommermuth A, Heinle B, Nour-Eldin NE, Lehnert T, Eichler K, et al. Colorectal cancer liver metastases: long-term survival and progression-free survival after thermal ablation using magnetic resonance-guided laser-induced interstitial thermotherapy in 594 patients: analysis of prognostic factors. Investig Radiol. 2014;49(1):48–56. https://doi.org/10.1097/RLI.0b013e3182a6094e.

    Article  CAS  Google Scholar 

  40. Hegenscheid K, Behrendt N, Rosenberg C, Kuehn JP, Ewert R, Hosten N, et al. Assessing early vascular changes and treatment response after laser-induced thermotherapy of pulmonary metastases with perfusion CT: initial experience. AJR Am J Roentgenol. 2010;194(4):1116–23. https://doi.org/10.2214/AJR.09.2810.

    Article  PubMed  Google Scholar 

  41. Rosenberg C, Puls R, Hegenscheid K, Kuehn J, Bollman T, Westerholt A, et al. Laser ablation of metastatic lesions of the lung: long-term outcome. AJR Am J Roentgenol. 2009;192(3):785–92. https://doi.org/10.2214/AJR.08.1425.

    Article  PubMed  Google Scholar 

  42. Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998;37(3):171–86. https://doi.org/10.1006/cryo.1998.2115.

    Article  CAS  PubMed  Google Scholar 

  43. Sharma A, Abtin F, Shepard JA. Image-guided ablative therapies for lung cancer. Radiol Clin North Am. 2012;50(5):975–99. https://doi.org/10.1016/j.rcl.2012.06.004.

    Article  PubMed  Google Scholar 

  44. Littrup PJ, Jallad B, Vorugu V, Littrup G, Currier B, George M, et al. Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number. J Vasc Interv Radiol. 2009;20(10):1343–51. https://doi.org/10.1016/j.jvir.2009.05.038.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology. 2002;60(2 Suppl 1):40–9. https://doi.org/10.1016/s0090-4295(02)01683-7.

    Article  PubMed  Google Scholar 

  46. Wang H, Littrup PJ, Duan Y, Zhang Y, Feng H, Nie Z. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology. 2005;235(1):289–98. https://doi.org/10.1148/radiol.2351030747.

    Article  PubMed  Google Scholar 

  47. Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25(Suppl 1):S69–83. https://doi.org/10.1148/rg.25si055501.

    Article  PubMed  Google Scholar 

  48. Knappe V, Mols A. Laser therapy of the lung: biophysical background. Radiologe. 2004;44(7):677–83. https://doi.org/10.1007/s00117-004-1070-4.

    Article  CAS  PubMed  Google Scholar 

  49. Vogl TJ, Naguib NN, Lehnert T, Nour-Eldin NE. Radiofrequency, microwave and laser ablation of pulmonary neoplasms: clinical studies and technical considerations--review article. Eur J Radiol. 2011;77(2):346–57. https://doi.org/10.1016/j.ejrad.2009.07.034.

    Article  PubMed  Google Scholar 

  50. Gofrit ON, Shapiro A, Pode D, Sidi A, Nativ O, Leib Z, et al. Combined local bladder hyperthermia and intravesical chemotherapy for the treatment of high-grade superficial bladder cancer. Urology. 2004;63(3):466–71. https://doi.org/10.1016/j.urology.2003.10.036.

    Article  CAS  PubMed  Google Scholar 

  51. Weigel C, Rosenberg C, Langner S, Frohlich CP, Hosten N. Laser ablation of lung metastases: results according to diameter and location. Eur Radiol. 2006;16(8):1769–78. https://doi.org/10.1007/s00330-006-0171-z.

    Article  PubMed  Google Scholar 

  52. Kim C, Hoang CD, Kesarwala AH, Schrump DS, Guha U, Rajan A. Role of local ablative therapy in patients with oligometastatic and oligoprogressive non-small cell lung cancer. J Thorac Oncol. 2017;12(2):179–93. https://doi.org/10.1016/j.jtho.2016.10.012.

    Article  PubMed  Google Scholar 

  53. Lee JM, ** GY, Goldberg SN, Lee YC, Chung GH, Han YM, et al. Percutaneous radiofrequency ablation for inoperable non-small cell lung cancer and metastases: preliminary report. Radiology. 2004;230(1):125–34. https://doi.org/10.1148/radiol.2301020934.

    Article  PubMed  Google Scholar 

  54. Steinke K, Haghighi KS, Wulf S, Morris DL. Effect of vessel diameter on the creation of ovine lung radiofrequency lesions in vivo: preliminary results. J Surg Res. 2005;124(1):85–91. https://doi.org/10.1016/j.jss.2004.09.008.

    Article  PubMed  Google Scholar 

  55. Abtin F, Golshan A, Suh R. CT guided percutaneous cryoablation of thoracic tumors: technical feasibility, early efficacy and imaging of 27 treated tumors. Scientific session 8, #713, 2nd World congress of thoracic imaging and diagnosis in chest disease. Valencia; 2009.

    Google Scholar 

  56. Horner-Rieber J, Dern J, Bernhardt D, Konig L, Adeberg S, Verma V, et al. Parenchymal and functional lung changes after stereotactic body radiotherapy for early-stage non-small cell lung cancer-experiences from a single institution. Front Oncol. 2017;7:215. https://doi.org/10.3389/fonc.2017.00215.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Welter S, Cheufou D, Sommerwerck U, Maletzki F, Stamatis G. Changes in lung function parameters after wedge resections: a prospective evaluation of patients undergoing metastasectomy. Chest. 2012;141(6):1482–9. https://doi.org/10.1378/chest.11-1566.

    Article  PubMed  Google Scholar 

  58. Dupuy DE, DiPetrillo T, Gandhi S, Ready N, Ng T, Donat W, et al. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest. 2006;129(3):738–45. https://doi.org/10.1378/chest.129.3.738.

    Article  PubMed  Google Scholar 

  59. Lencioni R, Crocetti L, Cioni R, Suh R, Glenn D, Regge D, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9(7):621–8. https://doi.org/10.1016/S1470-2045(08)70155-4.

    Article  PubMed  Google Scholar 

  60. Dupuy DE, Fernando HC, Hillman S, Ng T, Tan AD, Sharma A, et al. Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer. 2015;121(19):3491–8. https://doi.org/10.1002/cncr.29507.

    Article  CAS  PubMed  Google Scholar 

  61. Palussiere J, Chomy F, Savina M, Deschamps F, Gaubert JY, Renault A, et al. Radiofrequency ablation of stage IA non-small cell lung cancer in patients ineligible for surgery: results of a prospective multicenter phase II trial. J Cardiothorac Surg. 2018;13(1):91. https://doi.org/10.1186/s13019-018-0773-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Baere T, Tselikas L, Woodrum D, Abtin F, Littrup P, Deschamps F, et al. Evaluating cryoablation of metastatic lung tumors in patients–safety and efficacy: the ECLIPSE trial–interim analysis at 1 year. J Thorac Oncol. 2015;10(10):1468–74. https://doi.org/10.1097/JTO.0000000000000632.

    Article  PubMed  Google Scholar 

  63. Akeboshi M, Yamakado K, Nakatsuka A, Hataji O, Taguchi O, Takao M, et al. Percutaneous radiofrequency ablation of lung neoplasms: initial therapeutic response. J Vasc Interv Radiol. 2004;15(5):463–70. https://doi.org/10.1097/01.rvi.0000126812.12853.77.

    Article  PubMed  Google Scholar 

  64. Grieco CA, Simon CJ, Mayo-Smith WW, DiPetrillo TA, Ready NE, Dupuy DE. Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non-small-cell lung cancer. J Vasc Interv Radiol. 2006;17(7):1117–24. https://doi.org/10.1097/01.RVI.0000228373.58498.6E.

    Article  PubMed  Google Scholar 

  65. Wolf FJ, Grand DJ, Machan JT, Dipetrillo TA, Mayo-Smith WW, Dupuy DE. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology. 2008;247(3):871–9. https://doi.org/10.1148/radiol.2473070996.

    Article  PubMed  Google Scholar 

  66. Al-Hakim RA, Abtin FG, Genshaft SJ, Kutay E, Suh RD. Defining new metrics in microwave ablation of pulmonary tumors: ablation work and ablation resistance score. J Vasc Interv Radiol. 2016;27(9):1380–6. https://doi.org/10.1016/j.jvir.2016.05.026.

    Article  PubMed  Google Scholar 

  67. Patel IJ, Rahim S, Davidson JC, Hanks SE, Tam AL, Walker TG, et al. Society of Interventional Radiology Consensus Guidelines for the Periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions-part II: recommendations: endorsed by the Canadian Association for Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe. J Vasc Interv Radiol. 2019;30(8):1168–84.e1. https://doi.org/10.1016/j.jvir.2019.04.017.

    Article  PubMed  Google Scholar 

  68. Liao WY, Chen MZ, Chang YL, Wu HD, Yu CJ, Kuo PH, et al. US-guided transthoracic cutting biopsy for peripheral thoracic lesions less than 3 cm in diameter. Radiology. 2000;217(3):685–91. https://doi.org/10.1148/radiology.217.3.r00dc21685.

    Article  CAS  PubMed  Google Scholar 

  69. Suh RD, Wallace AB, Sheehan RE, Heinze SB, Goldin JG. Unresectable pulmonary malignancies: CT-guided percutaneous radiofrequency ablation–preliminary results. Radiology. 2003;229(3):821–9. https://doi.org/10.1148/radiol.2293021756.

    Article  PubMed  Google Scholar 

  70. Wacker FK, Nour SG, Eisenberg R, Duerk JL, Lewin JS. MRI-guided radiofrequency thermal ablation of normal lung tissue: in vivo study in a rabbit model. AJR Am J Roentgenol. 2004;183(3):599–603. https://doi.org/10.2214/ajr.183.3.1830599.

    Article  PubMed  Google Scholar 

  71. Wacker FK, Reither K, Ritz JP, Roggan A, Germer CT, Wolf KJ. MR-guided interstitial laser-induced thermotherapy of hepatic metastasis combined with arterial blood flow reduction: technique and first clinical results in an open MR system. J Magn Reson Imaging. 2001;13(1):31–6. https://doi.org/10.1002/1522-2586(200101)13:1<31::aid-jmri1005>3.0.co;2-i.

    Article  CAS  PubMed  Google Scholar 

  72. Yamao Y, Yamakado K, Takaki H, Yamada T, Murashima S, Uraki J, et al. Optimal scan parameters for CT fluoroscopy in lung interventional radiologic procedures: relationship between radiation dose and image quality. Radiology. 2010;255(1):233–41. https://doi.org/10.1148/radiol.09090733.

    Article  PubMed  Google Scholar 

  73. Silverman SG, Sun MR, Tuncali K, Morrison PR, van Sonnenberg E, Shankar S, et al. Three-dimensional assessment of MRI-guided percutaneous cryotherapy of liver metastases. AJR Am J Roentgenol. 2004;183(3):707–12. https://doi.org/10.2214/ajr.183.3.1830707.

    Article  PubMed  Google Scholar 

  74. Shankar S, Vansonnenberg E, Silverman SG, Tuncali K, Flanagan HL Jr, Whang EE. Brachial plexus injury from CT-guided RF ablation under general anesthesia. Cardiovasc Intervent Radiol. 2005;28(5):646–8. https://doi.org/10.1007/s00270-004-0282-3.

    Article  PubMed  Google Scholar 

  75. Arata MA, Nisenbaum HL, Clark TW, Soulen MC. Percutaneous radiofrequency ablation of liver tumors with the LeVeen probe: is roll-off predictive of response? J Vasc Interv Radiol. 2001;12(4):455–8. https://doi.org/10.1016/s1051-0443(07)61884-3.

    Article  CAS  PubMed  Google Scholar 

  76. Yamamoto A, Nakamura K, Matsuoka T, Toyoshima M, Okuma T, Oyama Y, et al. Radiofrequency ablation in a porcine lung model: correlation between CT and histopathologic findings. AJR Am J Roentgenol. 2005;185(5):1299–306. https://doi.org/10.2214/AJR.04.0968.

    Article  PubMed  Google Scholar 

  77. Lee KS, Erinjeri JP. Decision making in interventional oncology: ablative options in the lung. Semin Intervent Radiol. 2017;34(2):176–81. https://doi.org/10.1055/s-0037-1602592.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Aerospace Medical Association Medical Guidelines Task F. Medical guidelines for airline travel, 2nd ed. Aviat Space Environ Med. 2003;74(5 Suppl):A1–19.

    Google Scholar 

  79. Zhu JC, Yan TD, Morris DL. A systematic review of radiofrequency ablation for lung tumors. Ann Surg Oncol. 2008;15(6):1765–74. https://doi.org/10.1245/s10434-008-9848-7.

    Article  PubMed  Google Scholar 

  80. Healey TT, March BT, Baird G, Dupuy DE. Microwave ablation for lung neoplasms: a retrospective analysis of long-term results. J Vasc Interv Radiol. 2017;28(2):206–11. https://doi.org/10.1016/j.jvir.2016.10.030.

    Article  PubMed  Google Scholar 

  81. Zheng A, Wang X, Yang X, Wang W, Huang G, Gai Y, et al. Major complications after lung microwave ablation: a single-center experience on 204 sessions. Ann Thorac Surg. 2014;98(1):243–8. https://doi.org/10.1016/j.athoracsur.2014.03.008.

    Article  PubMed  Google Scholar 

  82. Inoue M, Nakatsuka S, Yashiro H, Ito N, Izumi Y, Yamauchi Y, et al. Percutaneous cryoablation of lung tumors: feasibility and safety. J Vasc Interv Radiol. 2012;23(3):295–302; quiz 5. https://doi.org/10.1016/j.jvir.2011.11.019.

    Article  PubMed  Google Scholar 

  83. Kawamura M, Izumi Y, Tsukada N, Asakura K, Sugiura H, Yashiro H, et al. Percutaneous cryoablation of small pulmonary malignant tumors under computed tomographic guidance with local anesthesia for nonsurgical candidates. J Thorac Cardiovasc Surg. 2006;131(5):1007–13. https://doi.org/10.1016/j.jtcvs.2005.12.051.

    Article  PubMed  Google Scholar 

  84. Liu S, Ren R, Liu M, Lv Y, Li B, Li C. MR imaging-guided percutaneous cryotherapy for lung tumors: initial experience. J Vasc Interv Radiol. 2014;25(9):1456–62. https://doi.org/10.1016/j.jvir.2014.04.025.

    Article  PubMed  Google Scholar 

  85. Pusceddu C, Sotgia B, Fele RM, Melis L. CT-guided thin needles percutaneous cryoablation (PCA) in patients with primary and secondary lung tumors: a preliminary experience. Eur J Radiol. 2013;82(5):e246–53. https://doi.org/10.1016/j.ejrad.2012.12.010.

    Article  PubMed  Google Scholar 

  86. Yamauchi Y, Izumi Y, Kawamura M, Nakatsuka S, Yashiro H, Tsukada N, et al. Percutaneous cryoablation of pulmonary metastases from colorectal cancer. PLoS One. 2011;6(11):e27086. https://doi.org/10.1371/journal.pone.0027086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg. 2010;211(1):68–72. https://doi.org/10.1016/j.jamcollsurg.2010.03.020.

    Article  PubMed  Google Scholar 

  88. Zhang X, Tian J, Zhao L, Wu B, Kacher DS, Ma X, et al. CT-guided conformal cryoablation for peripheral NSCLC: initial experience. Eur J Radiol. 2012;81(11):3354–62. https://doi.org/10.1016/j.ejrad.2012.04.035.

    Article  PubMed  Google Scholar 

  89. Kennedy SA, Milovanovic L, Dao D, Farrokhyar F, Midia M. Risk factors for pneumothorax complicating radiofrequency ablation for lung malignancy: a systematic review and meta-analysis. J Vasc Interv Radiol. 2014;25(11):1671–81 e1. https://doi.org/10.1016/j.jvir.2014.07.025.

    Article  PubMed  Google Scholar 

  90. Huo YR, Chan MV, Habib AR, Lui I, Ridley L. Pneumothorax rates in CT-guided lung biopsies: a comprehensive systematic review and meta-analysis of risk factors. Br J Radiol. 2020;93(1108):20190866. https://doi.org/10.1259/bjr.20190866.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Shahrouki P, Barclay J, Khan S, Genshaft S, Abtin F, McGraw C, et al. Treatment of post-ablation bronchopleural fistula using percutaneous synthetic hydrogel surgical sealant: initial experience of safety and efficacy. Cardiovasc Intervent Radiol. 2021;44(2):325–32. https://doi.org/10.1007/s00270-020-02691-3.

    Article  PubMed  Google Scholar 

  92. Hiraki T, Gobara H, Fujiwara H, Ishii H, Tomita K, Uka M, et al. Lung cancer ablation: complications. Semin Intervent Radiol. 2013;30(2):169–75. https://doi.org/10.1055/s-0033-1342958.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sano Y, Kanazawa S, Gobara H, Mukai T, Hiraki T, Hase S, et al. Feasibility of percutaneous radiofrequency ablation for intrathoracic malignancies: a large single-center experience. Cancer. 2007;109(7):1397–405. https://doi.org/10.1002/cncr.22541.

    Article  PubMed  Google Scholar 

  94. Ito N, Nakatsuka S, Inoue M, Yashiro H, Oguro S, Izumi Y, et al. Computed tomographic appearance of lung tumors treated with percutaneous cryoablation. J Vasc Interv Radiol. 2012;23(8):1043–52. https://doi.org/10.1016/j.jvir.2012.04.033.

    Article  PubMed  Google Scholar 

  95. Abtin FG, Eradat J, Gutierrez AJ, Lee C, Fishbein MC, Suh RD. Radiofrequency ablation of lung tumors: imaging features of the postablation zone. Radiographics. 2012;32(4):947–69. https://doi.org/10.1148/rg.324105181.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Deandreis D, Leboulleux S, Dromain C, Auperin A, Coulot J, Lumbroso J, et al. Role of FDG PET/CT and chest CT in the follow-up of lung lesions treated with radiofrequency ablation. Radiology. 2011;258(1):270–6. https://doi.org/10.1148/radiol.10092440.

    Article  PubMed  Google Scholar 

  97. Singnurkar A, Solomon SB, Gonen M, Larson SM, Schoder H. 18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesions. J Nucl Med. 2010;51(12):1833–40. https://doi.org/10.2967/jnumed.110.076778.

    Article  PubMed  Google Scholar 

  98. Chen J, Lin ZY, Wu ZB, Chen ZW, Chen YP. Magnetic resonance imaging evaluation after radiofrequency ablation for malignant lung tumors. J Cancer Res Ther. 2017;13(4):669–75. https://doi.org/10.4103/jcrt.JCRT_448_17.

    Article  PubMed  Google Scholar 

  99. Miao Y, Ni Y, Bosmans H, Yu J, Vaninbroukx J, Dymarkowski S, et al. Radiofrequency ablation for eradication of pulmonary tumor in rabbits. J Surg Res. 2001;99(2):265–71. https://doi.org/10.1006/jsre.2001.6208.

    Article  CAS  PubMed  Google Scholar 

  100. Okuma T, Matsuoka T, Yamamoto A, Hamamoto S, Nakamura K, Inoue Y. Assessment of early treatment response after CT-guided radiofrequency ablation of unresectable lung tumours by diffusion-weighted MRI: a pilot study. Br J Radiol. 2009;82(984):989–94. https://doi.org/10.1259/bjr/13217618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Oyama Y, Nakamura K, Matsuoka T, Toyoshima M, Yamamoto A, Okuma T, et al. Radiofrequency ablated lesion in the normal porcine lung: long-term follow-up with MRI and pathology. Cardiovasc Intervent Radiol. 2005;28(3):346–53. https://doi.org/10.1007/s00270-004-0156-8.

    Article  PubMed  Google Scholar 

  102. Hiraki T, Gobara H, Iguchi T, Fujiwara H, Matsui Y, Kanazawa S. Radiofrequency ablation for early-stage nonsmall cell lung cancer. Biomed Res Int. 2014;2014:152087. https://doi.org/10.1155/2014/152087.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jiang B, McClure MA, Chen T, Chen S. Efficacy and safety of thermal ablation of lung malignancies: a network meta-analysis. Ann Thorac Med. 2018;13(4):243–50. https://doi.org/10.4103/atm.ATM_392_17.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Simon CJ, Dupuy DE, DiPetrillo TA, Safran HP, Grieco CA, Ng T, et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology. 2007;243(1):268–75. https://doi.org/10.1148/radiol.2431060088.

    Article  PubMed  Google Scholar 

  105. Yamakado K, Hase S, Matsuoka T, Tanigawa N, Nakatsuka A, Takaki H, et al. Radiofrequency ablation for the treatment of unresectable lung metastases in patients with colorectal cancer: a multicenter study in Japan. J Vasc Interv Radiol. 2007;18(3):393–8. https://doi.org/10.1016/j.jvir.2006.11.003.

    Article  PubMed  Google Scholar 

  106. Yan TD, King J, Sjarif A, Glenn D, Steinke K, Morris DL. Percutaneous radiofrequency ablation of pulmonary metastases from colorectal carcinoma: prognostic determinants for survival. Ann Surg Oncol. 2006;13(11):1529–37. https://doi.org/10.1245/s10434-006-9101-1.

    Article  PubMed  Google Scholar 

  107. Akhan O, Guler E, Akinci D, Ciftci T, Kose IC. Radiofrequency ablation for lung tumors: outcomes, effects on survival, and prognostic factors. Diagn Interv Radiol. 2016;22(1):65–71. https://doi.org/10.5152/dir.2015.14378.

    Article  PubMed  Google Scholar 

  108. Sakurai J, Hiraki T, Mimura H, Gobara H, Fujiwara H, Tajiri N, et al. Radiofrequency ablation of small lung metastases by a single application of a 2-cm expandable electrode: determination of favorable responders. J Vasc Interv Radiol. 2010;21(2):231–6. https://doi.org/10.1016/j.jvir.2009.09.028.

    Article  PubMed  Google Scholar 

  109. Chua TC, Thornbury K, Saxena A, Liauw W, Glenn D, Zhao J, et al. Radiofrequency ablation as an adjunct to systemic chemotherapy for colorectal pulmonary metastases. Cancer. 2010;116(9):2106–14. https://doi.org/10.1002/cncr.24952.

    Article  PubMed  Google Scholar 

  110. Inoue Y, Miki C, Hiro J, Ojima E, Yamakado K, Takeda K, et al. Improved survival using multi-modality therapy in patients with lung metastases from colorectal cancer: a preliminary study. Oncol Rep. 2005;14(6):1571–6.

    PubMed  Google Scholar 

  111. Champiat S, Tselikas L, Farhane S, Raoult T, Texier M, Lanoy E, et al. Intratumoral immunotherapy: from trial design to clinical practice. Clin Cancer Res. 2021;27(3):665–79. https://doi.org/10.1158/1078-0432.CCR-20-0473.

  112. Lee JM, Lee MH, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE, et al. Phase I trial of intratumoral injection of CCL21 gene-modified dendritic cells in lung cancer elicits tumor-specific immune responses and CD8(+) T-cell infiltration. Clin Cancer Res. 2017;23(16):4556–68. https://doi.org/10.1158/1078-0432.CCR-16-2821.

  113. Shahrouki P, Lee JM, Barclay J, Khan SN, Genshaft S, Abtin F, Dubinett SM, Lisberg A, Sharma S, Garon EB, Suh R. Technical feasibility and safety of repeated computed tomography-guided transthoracic intratumoral injection of gene-modified cellular immunotherapy in metastatic NSCLC. JTO Clin Res Rep. 2021;2(11):100242. https://doi.org/10.1016/j.jtocrr.2021.100242.

  114. Chan MV, Huo YR, Cao C, Ridley L. Survival outcomes for surgical resection versus CT-guided percutaneous ablation for stage I non-small cell lung cancer (NSCLC): a systematic review and meta-analysis. Eur Radiol. 2021;31(7):5421–33. https://doi.org/10.1007/s00330-020-07634-7.

    Article  PubMed  Google Scholar 

  115. Alexander ES, Machan JT, Ng T, Breen LD, DiPetrillo TA, Dupuy DE. Cost and effectiveness of radiofrequency ablation versus limited surgical resection for stage I non-small-cell lung cancer in elderly patients: is less more? J Vasc Interv Radiol. 2013;24(4):476–82. https://doi.org/10.1016/j.jvir.2012.12.016.

    Article  PubMed  Google Scholar 

  116. Safi S, Rauch G, op den Winkel J, Kunz J, Schneider T, Bischof M, et al. Sublobar resection, radiofrequency ablation or radiotherapy in stage I non-small cell lung cancer. Respiration. 2015;89(6):550–7. https://doi.org/10.1159/000381555.

    Article  PubMed  Google Scholar 

  117. Ambrogi MC, Fanucchi O, Dini P, Melfi F, Davini F, Lucchi M, et al. Wedge resection and radiofrequency ablation for stage I nonsmall cell lung cancer. Eur Respir J. 2015;45(4):1089–97. https://doi.org/10.1183/09031936.00188014.

    Article  PubMed  Google Scholar 

  118. Kwan SW, Mortell KE, Talenfeld AD, Brunner MC. Thermal ablation matches sublobar resection outcomes in older patients with early-stage non-small cell lung cancer. J Vasc Interv Radiol. 2014;25(1):1–9.e1. https://doi.org/10.1016/j.jvir.2013.10.018.

    Article  PubMed  Google Scholar 

  119. Uhlig J, Ludwig JM, Goldberg SB, Chiang A, Blasberg JD, Kim HS. Survival rates after thermal ablation versus stereotactic radiation therapy for stage 1 non-small cell lung cancer: a National Cancer Database Study. Radiology. 2018;289(3):862–70. https://doi.org/10.1148/radiol.2018180979.

    Article  PubMed  Google Scholar 

  120. Harada H, Okada M, Sakamoto T, Matsuoka H, Tsubota N. Functional advantage after radical segmentectomy versus lobectomy for lung cancer. Ann Thorac Surg. 2005;80(6):2041–5. https://doi.org/10.1016/j.athoracsur.2005.06.010.

    Article  PubMed  Google Scholar 

  121. Nomori H, Mori T, Ikeda K, Yoshimoto K, Iyama K, Suzuki M. Segmentectomy for selected cT1N0M0 non-small cell lung cancer: a prospective study at a single institute. J Thorac Cardiovasc Surg. 2012;144(1):87–93. https://doi.org/10.1016/j.jtcvs.2012.03.034.

    Article  PubMed  Google Scholar 

  122. Crabtree T, Puri V, Timmerman R, Fernando H, Bradley J, Decker PA, et al. Treatment of stage I lung cancer in high-risk and inoperable patients: comparison of prospective clinical trials using stereotactic body radiotherapy (RTOG 0236), sublobar resection (ACOSOG Z4032), and radiofrequency ablation (ACOSOG Z4033). J Thorac Cardiovasc Surg. 2013;145(3):692–9. https://doi.org/10.1016/j.jtcvs.2012.10.038.

    Article  PubMed  Google Scholar 

  123. Kwan SW, Mortell KE, Hippe DS, Brunner MC. An economic analysis of sublobar resection versus thermal ablation for early-stage non-small-cell lung cancer. J Vasc Interv Radiol. 2014;25(10):1558–64; quiz 65. https://doi.org/10.1016/j.jvir.2014.07.002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Suh .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shahrouki, P., Abtin, F., Genshaft, S., Suh, R. (2024). Percutaneous Interventional Radiology for Lung Tumors. In: Fong, Y., Covey, A., Ahmed, M., Kessler, J., Iannitti, D.A., Dupuy, D.E. (eds) Interventional Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-51192-0_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51192-0_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51192-0

  • Online ISBN: 978-3-030-51192-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation