Permafrost Features and Talik Geometry in Hydrologic System

  • Chapter
  • First Online:
Arctic Hydrology, Permafrost and Ecosystems

Abstract

Permafrost is widely distributed in the high latitudes. This chapter discusses frozen (permafrost) and unfrozen states of the hydrological geometry in the northern regions. The hydrological activities are very active and dynamic not only in discontinuous permafrost zone but also in cold continuous permafrost areas. Water carries significant amount of heat in aquifer and talik system. Water locates in the depth below the maximum ice formation can develop an unfrozen layer underneath the water body (i.e., talik and thaw bulb). Taliks could be open to connect to the sub-permafrost layer, while the hydrologic gradient makes flow in upward or downward directions. The heat balance of the super-, inter-, or sub- permafrost generates unique unfrozen geometry in the permafrost. This chapter also reviews various cellars developed and used in the arctic regions by indigenous people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alekseev VR, Tolstikhin ON (1973) Questions of terminology in study of naleds. Siberian naleds. CRREL Draft Transl 399:187–191

    Google Scholar 

  • Amundsen R (1908). The north west passage. Archibald Constable and Company Limited, London, p 397

    Google Scholar 

  • Boike J, Roth K, Overduin PP (1998) Thermal and hydrological dynamics of the active layer at continuous permafrost site (Taymyr peninsula, Siberia). Water Resour Res 34:355–363

    Article  Google Scholar 

  • Bolton WR, Hinzman LD, Yoshikawa K. 2000. Stream flow studies in a watershed underlain by discontinuous permafrost. In: Kane DL (ed) Proceedings AWRA spring specialty conference, water resources in extreme environments, 1–3 May, 2000. American Water Resources Association, Anchorage, Alaska, pp 31–36

    Google Scholar 

  • Brewer MC (1958a) The thermal regime of an arctic lake. Trans Am Geophys Union 39(1):278–284

    Article  Google Scholar 

  • Brewer MC (1958b) Some results of geothermal investigations of permafrost in northern Alaska. Trans Am Geophys Union 39(1):19–26

    Article  Google Scholar 

  • Brown J (1969) Ionic concentration gradients in permafrost, Barrow, Alaska. CRREL research report 272, 26p

    Google Scholar 

  • Brown J, Grave NA (1979a). Physical and thermal disturbance and protection of permafrost. US Army CRREL special report no. 79-5, 42pp

    Google Scholar 

  • Brown J, Grave NA (1979b) Physical and thermal disturbance and protection of permafrost. CRREL report 79-5, 42pp

    Google Scholar 

  • Brown RJE, Pewe TL (1973) Distribution of permafrost in North America and its relationship to the environment, a review, 1963–1973. In: Proceedings of the second international conference on permafrost, Washington D.C., pp 71–100

    Google Scholar 

  • Brown J, Ferrians OJ Jr, Heginbottom JA, Melnikov ES (1998) Revised February 2001. Circum-Arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO, Digital media

    Google Scholar 

  • Bukayev NA (1973) Basic tendencies in regime of huge naleds in upper reaches of Kolyma River. In: Alekseyev VR et al (eds) Siberian naleds, Draft Translation 399, USACRREL, Hanover, NH, pp 92–117

    Google Scholar 

  • Burn CR, Smith MW (1990) Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory. Permafr Periglac Process 1(2):161–176

    Article  Google Scholar 

  • Carey K (1973) Icings developed from surface and ground water. CRREL monograph III-D3, U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 67p

    Google Scholar 

  • Carr A (2003) Hydrologic comparisons and model simulation of subarctic watersheds containing continuous and discontinuous permafrost, Seward Peninsula, Alaska. M.S. thesis. University of Alaska Fairbanks

    Google Scholar 

  • Childers JM, Sloan CE, Meckel JP, Nauman JW (1977) Hydrologic reconnaissance of the eastern North Slope, Alaska, 1975, U.S. geological survey open-file report 77–492, 65p

    Google Scholar 

  • Collett TS, Bird KJ (1993) Unfrozen, high‐salinity intervals within ice‐bearing Permafrost, North Slope of Alaska. In: 6th international conference on permafrost, pp 1‐7, South China Univ. of Technol. Press, Bei**g

    Google Scholar 

  • Czudek T, Demek J (1970) Thermokarst in Siberia and its influence on the development of lowland relief. Quat Res 1:103–120

    Article  Google Scholar 

  • de K Leffingwell E (1919) The canning river region, Northern Alaska. U.S. geological survey of professional paper 109, 251p

    Google Scholar 

  • Dean, K.G., 1983. Stream Icing zones in Alaska, Final Report to Alaska Division of Geological and Geophysical Surveys, Fairbanks, AK, 1983

    Google Scholar 

  • Ding Y (1998) Recent degradation of permafrost in China and Response to Climatic Warming. In: Lewkowicz AG, Allard M (eds) Proceedings of the international conference on Permafrost: seventh international conference, 2–5 August 1998, Yellowknife, Canada, Universite Laval, Quebec, Collection Nordicana 57, pp 225–231

    Google Scholar 

  • Douglas TA, Torre Jorgenson M, Kanevskiy MZ, Romanovsky VR, Shur Y, Yoshikawa K (2012) Investigations into permafrost dynamics at the Fairbanks Permafrost Experimental Station near Fairbanks, Alaska. In: Ninth international conference on permafrost, Fairbanks, Alaska

    Google Scholar 

  • Duxbury NS, Zotikov IA, Nealson KH, Romanovsky VE, Carsey FD (2001) A numerical model for an alternative origin of lake Vostok and its exobiological implications for Mars. J Geophys Res Planets 106:1453–1462

    Article  Google Scholar 

  • Duxbury NS, Abyzov S, Romanovsky V, Yoshikawa K (2004) A combination of radar and thermal approaches to search for methane clathrate in the Martian subsurface. Planet Sp Sci 52:109–115

    Google Scholar 

  • Ferrians OJ (1965) Permafrost map of Alaska. U.S. geological survey miscellaneous geologic investigations map 1–445

    Google Scholar 

  • Franklin J (1828) Narrative of a second expedition to the shores of the polar sea in the year 1825, 1826, and 1827, London, John Murray, 320p

    Google Scholar 

  • French HM (1996) The periglacial environment, 2nd edn. Longman Group Limited, London, pp 5.1–5.7.4

    Google Scholar 

  • Froehlich W, Slupik J (1982) River icings and fluvial activity in extreme continental climate: Khangai Mountains, Mongolia. In: Proceedings, Fourth Canadian permafrost conference. National Research Council of Canada, Ottawa, Ontario, pp 203–211

    Google Scholar 

  • Goering DJ, Kumar P (1996) Winter-time convection in open-graded embankments. Cold Reg Sci Technol 24(1):57–74

    Article  Google Scholar 

  • Gold LW, Johnston GH, Slusarchuk WA, Goodrich LE (1972) Thermal effects in permafrost. In: Proceedings of the February 2–4, 1972, Canadian Northern pipeline conference: Ottawa, Ontario, Canada. National Research Council, Associate Committee for Geotechnical Research Technical Memorandum, vol 104, pp 25–36

    Google Scholar 

  • Hall DK, Roswell C (1981) The origin of water feeding icings on the eastern North Slope of Alaska. Polar Record 20(0128):433–438

    Article  Google Scholar 

  • Harden D, Barnes P, Reimnitz E (1977) Distribution and character of naleds in northeast Alaska. Arctic 30(1):28–40

    Article  Google Scholar 

  • Harris SA, Van Everdingen RO, Pollard WH (1983) Guidebook to permafrost and related features. Nothern Yukon Territory and Mackenzie Delta, Canada. In: French HM, Heginbottom JA (eds) Fourth international conference on permafrost, Fairbanks, Alaska

    Google Scholar 

  • Hinzman LD, Goering DJ, Li S, Kinney TC (1997) Numeric simulation of thermokarst formation during disturbance. In: Crawford RMM (ed) Disturbance and recovery in Arctic lands: an ecological perspective NATO Advanced Science Institutes series: (NATO ASI) partnership sub-series: 2 environment, vol 25. Kluwer Academic Publishers, Dordrecht, p 621. ISBN: 0-7923-4418-9

    Google Scholar 

  • Holmes WG, Hopkins MD, Foster LH (1968) **os in central Alaska. US Geol Surv Bull 1241-H:34p

    Google Scholar 

  • Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Chang 48:551–579

    Article  Google Scholar 

  • Kane DL (1981) Physical mechanics of aufeis growth. Can J Civ Eng 8:186–195

    Article  Google Scholar 

  • Kane DL, Slaughter CW (1973a) Seasonal regime and hydrological significance of stream icings in central Alaska. In: Symposium of the role of snow and ice in hydrology, IAHS-UNESCO-WMO, Banff, Alberta, Canada, pp 528–540

    Google Scholar 

  • Kane DL, Slaughter CW (1973b) Recharge of a central Alaska lake by subpermafrost groundwater. In: North American contribution, second international conference on permafrost, Yakutsk, U.S.S.R. National Academy of Sciences, Washington, DC, pp 458–462

    Google Scholar 

  • Kane DL, Yoshikawa K, McNamara JP (2014) Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA). Hydrogeol J. https://doi.org/10.1007/s10040-012-0937-0, ISSN 1431-2174

  • Kawasaki K, Osterkamp TE (1988) Map** shallow permafrost by electromagnetic induction—practical conditions. Cold Region Sci Technol 15:279–288

    Article  Google Scholar 

  • Kintisch E (2015) These ice cellars fed arctic people for generations. Now they’re melting. National Geographic. http://news.nationalgeographic.com/2015/10/151030-ice-cellar-arctic-melting-climate-change/. Accessed 18 Dec 2015

  • Klene AE, Yoshikawa K, Streletskiy DA, Shiklomanov NI, Brown J, Nelson FE (2012) Temperature regimes in traditional Iñupiat ice cellars, Barrow, Alaska, USA. In: Proceedings of the tenth international conference on permafrost. Salekhard, Russia. Extended abstracts, vol 4, pp 268–269

    Google Scholar 

  • Lachenbruch AH (1962) Mechanics of thermal contraction cracks and ice-wedgepolygons in permafrost. Geological Society of America special paper 70, 69p

    Google Scholar 

  • Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234:689–696

    Article  Google Scholar 

  • Lawson DE (1986) Response of permafrost terrain to disturbance: a synthesis of observations from northern Alaska. Arct Alp Res 18:1–17

    Article  Google Scholar 

  • Li S, Benson C, Shapiro L, Dean K (1997) Aufeis in the Ivishak River, Alaska, mapped from satellite radar interferometry. Remote Sensing of the Environment 60:131–139

    Article  Google Scholar 

  • Liestøl O (1977) **os, springs, and permafrost in Spitsbergen. Norsk Polarinstitutt Årbok 1977:7–29

    Google Scholar 

  • Lifshits FA, Piguzova VM, Ustinova ZG (1966) Estimate of naled regulation of ground-water flow in the Chul’man River Basin (southern Yakutiya). Trans State Hydrol Inst (Trudy GGI) 133:82–89

    Google Scholar 

  • Linell KA (1973) Long-term effects of vegetative cover on permafrost stability in an area of discontinuous permafrost. In: Proceedings of permafrost: North American contribution to the second international conference. National Academy of Sciences, National Research Council, pp 688–693

    Google Scholar 

  • Lobdell J (1986) The Kuparuk **o Site: a Northern Archaic Hunting Camp of the Arctic Coastal Plain, North Alaska. Arctic 39(1):47–51

    Article  Google Scholar 

  • Mackay JR (1979) **os of the Tuktoyaktuk Peninsula, Northwest Territories. Geographie physique et Quaternaire 33:3–61

    Article  Google Scholar 

  • Mackay JR (1997) A full-scale field experiment (1978–1995) on the growth of permafrost by means of lake drainage, western Arctic coast: a discussion of the method and some results. 1997. Can J Earth Sci 34:17–33

    Article  Google Scholar 

  • Mackay JR (1998) **o growth and collapse, Tuktoyaktuk Peninsula area, western arctic coast, Canada: a long-term field study. Geographie physique et Quaternaire 52(3):271–323

    Google Scholar 

  • Maydel G (ed) (1896) On Taryns in Yakutskaya Oblast. Travels through NE part of Yakutskaya Oblast from 1868–1870 2. Saint Petersburg

    Google Scholar 

  • McNamara JP, Kane DL, Hinzman LD (1999) An analysis of an arctic channel network using a digital elevation model. Geomorphology 29:339–353

    Article  Google Scholar 

  • Middendorf AF (1861) Travels in the North and East of Siberia. Saint Petersburg

    Google Scholar 

  • Müller F (1959) Beobachtungenber **os. Meddelelser om Grønland 153:1–127 (Trans. from the German. Ottawa, Nat. Res. Counc. Can. TT-1073, 1963, 117p)

    Google Scholar 

  • Nyland KE, Klene AE, Brown J, Shiklomanov NI, Nelson FE, Streletskiy DA, Yoshikawa K (2016) Traditional Iñupiat ice cellars (SIĠḷUAQ) in barrow, Alaska: characteristics, temperature monitoring, and distribution. Geogr Rev. https://doi.org/10.1111/j.1931-0846.2016.12204.x

  • Orvin, A. K., 1944: Outline of the Geological History of Spitsbergen. Skr. Svalbard og Ishavet, Nr.78. 1–24

    Google Scholar 

  • Osterkamp TE, Romanovsky VE (1999) Evidence for warming and thawing of discontinuous permafrost in Alaska. Permafr Periglac Process 10:17–37

    Article  Google Scholar 

  • Osterkamp TE, Viereck LA, Shur Y, Jorgenson MT, Racine C, Doyle A, Boone RD (2000) Observations of thermokarst and its impact on boreal forests in Alaska, USA. Arct Antarct Alp Res 32:303–315

    Article  Google Scholar 

  • Parameswaran VR, Mackay JR (1996) Electrical freezing potentials measured in a **o growing in the western Canadian Arctic. Cold Reg Sci Technol 24:191–203

    Article  Google Scholar 

  • Parkhomenko SG (1932) Program for study of phenomena connected with soil permafrost and soil. Soviet Asia Press

    Google Scholar 

  • Pavlov AV (1994) Current changes of climate and permafrost in the Arctic and sub-Arctic of Russia. Permafr Periglac Process 5:101–110

    Article  Google Scholar 

  • Petrone KC, Hinzman LD, Boone RD (2000) Nitrogen and carbon dynamics of storm runoff in three sub-arctic streams. In: Kane DL (ed) Proceedings of American water resources association on water resources in extreme environments, Anchorage, AK, 1–3 May 2000, pp 167–172

    Google Scholar 

  • Podyakonov SA (1903) Naledi Vostochnoi Sibiri I prichiny ikh voznikneniia (icings of eastern Siberia and their origin). Izvestiia Vsesoyunogo Geograficheskogo Obshchestva 39:305–337

    Google Scholar 

  • Pollard WH (2005) Icing processes associated with high Arctic perennial springs, Axel Heiberg Island, Nunavut, Canada. Permafr Periglac Process 16(1):51–68

    Article  Google Scholar 

  • Porsild AE (1938) Earth mounds in unglaciated arctic northwestern America. Geogr Rev 28:46–58

    Article  Google Scholar 

  • Romanovskii NN (1983) Taliks and icings of ground water. In: Ground water of cryolithozone. Moscow State University Publisher, pp 94–101

    Google Scholar 

  • Romanovsky VE, Osterkamp TE (1995) Interannual variations of the thermal regime of the active layer and near surface permafrost in Northern Alaska. Permafr Periglac Process 6:313–335

    Article  Google Scholar 

  • Romanovsky VE, Burgess M, Smith S, Yoshikawa K, Brown J (2002) Permafrost temperature records: Indicators of climate change. Eos 83(50):586–594

    Article  Google Scholar 

  • Sellmann PV, Brown J, Lewellen RI, McKim H, Merry C (1975) The classification and geomorphic implication of thaw lakes on the Arctic Coastal Plain, Alaska. USA cold regions research and engineering laboratory, Research Report 344

    Google Scholar 

  • Sharkuu N (1998) Trends of permafrost development in the Selenge River basin, Mongolia. In: Lewkowicz AG, Allard M (eds) Proceedings of the international conference on permafrost: seventh international conference, 2–5 August 1998, Yellowknife, Canada, Universite Laval, Quebec, Collection Nordicana 57, pp 979–985

    Google Scholar 

  • Slaughter CW (1982) Occurrence of and recurrence of aufeis in an upland Taiga catchment. In: Canadian permafrost conference, 4th, Calgary, 1981, Proceedings. National Research Council of Canada, Ottawa, pp 182–188

    Google Scholar 

  • Sloan CE, Zenone C, Mayo L (1976) Icings along the trans-Alaska pipeline route. U.S. geological survey professional paper 979, 31p

    Google Scholar 

  • Smith MW, Tice AR (1988) Measurement of the unfrozen water content of soils – comparison of NMR and TDR methods. CRREL report, vol 88–18. US Army Cold Regions Research and Engineering Lab (CRREL)

    Google Scholar 

  • Sokolov BL (1973) Certain features in structure and mechanical breakdown of naleds, their significance in estimates of naled runoff, Siberian naleds. CRREL Draft Transl 399:140–154

    Google Scholar 

  • Sumgin MI (1927) Contribution to the study of permafrost in the peat mounds of the Kola Peninsula. Akademiya Nauk SSSR Komissiya izuch. vechnoi merzloty Trudy 3:107–115

    Google Scholar 

  • Tice AR, Oliphant JL, Nakano Y, Jenkins TF (1982) Relationship between the ice and unfrozen water phases in frozen soil as determined by pulsed nuclear magnetic resonance and physical desorption data. US. Army. Cold Regions Research and Engineering Lab (CRREL), CRREL Report 82-15

    Google Scholar 

  • Tolstikhin NI (1941) Underground water in frozen zone of lithosphere, gosgeolizdat, Moscow-Leningrad

    Google Scholar 

  • Tolstikhin ON (1963) On possibility of utilizing naled area for rough evaluation of underground water resources, Materials on geology and minerals of Yakutsk ASSR, no. 11, Yakutsk

    Google Scholar 

  • Wendler KD (2011) Numerical heat transfer model of a traditional ice cellar with passive cooling methods. M.S. thesis, University of Alaska Fairbanks, 164pp

    Google Scholar 

  • Woo MK (1986) Permafrost hydrology in North America. Atmos Ocean 24(3):201–234

    Article  Google Scholar 

  • Woodcock AH (1974) Permafrost and climatology of a Hawaii volcano crater. Arct Alp Res 6(1):49–62

    Article  Google Scholar 

  • Wrangel FP (1841) A journey to the northern shores of Siberia and along the Arctic Ocean made in 1820–1924. St. Petersburg

    Google Scholar 

  • Yang D, Kane DL, Hinzman LD, Zhang X, Zhang T, Ye H (2002) Siberian Lena river hydrologic regime and recent charge. J Geophys Res—Atmos 107:4694. https://doi.org/10.1029/2002jd002542

  • Yde JC, Knudsen NT (2005) Observations of debris-rich naled associated with a major glacier surge event, Disko Island, West Greenland. Permafr Periglac Process 16(4):319–325

    Article  Google Scholar 

  • Yoshikawa K (2008) Stable isotope composition of ice in seasonally and perennially frozen mounds. In: Permafrost, ninth international conference on permafrost

    Google Scholar 

  • Yoshikawa K (2013) Permafrost in our time. University of Alaska Fairbanks Permafrost Outreach Center. Fairbanks, AK, 300pp. http://issuu.com/permafrostbook/docs/piots

  • Yoshikawa K, Harada K (1995) Observations on nearshore **o growth, Adventdalen, Spitsbergen. Permafr Periglac Process 6:361–372

    Article  Google Scholar 

  • Yoshikawa K, Petrone K, Hinzman LD, Bolton WR (1999) Aufeis development and stream baseflow hydrology in the discontinuous permafrost region, Caribou Poker Creeks Research Watershed, Interior Alaska. In: The 50th Arctic science conference. Denali National Park and Preserve, Alaska, 19–22 September 1999

    Google Scholar 

  • Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD (2002) Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J Geophys Res 107:8148. https://doi.org/10.1029/2001jd000438 (printed 108(D1), 2003)

  • Yoshikawa K, Overduin PP, Harden JW (2004) Moisture content measurements of moss (Sphagnum spp.) using recently developed commercial sensors. Permafr Periglac Process 15:1–11

    Article  Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost. Permafr Periglac Process 14(2):151–160

    Google Scholar 

  • Yoshikawa K, Hinzman LD, Kane DL (2007) Spring and aufeis (icing) hydrology in the Brooks Range, Alaska. J Geophys Res 112:G04S43. https://doi.org/10.1029/2006jg000294

  • Zhou Y, Guo D, Qiu G, Cheng G, Li S (2000) Geocryology in China. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Bei**g, 448p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Yoshikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshikawa, K., Kane, D.L. (2021). Permafrost Features and Talik Geometry in Hydrologic System. In: Yang, D., Kane, D.L. (eds) Arctic Hydrology, Permafrost and Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-50930-9_14

Download citation

Publish with us

Policies and ethics

Navigation