Biofortification Technologies Used in Agriculture in Relation to Micronutrients

  • Chapter
  • First Online:
Plant Micronutrients

Abstract

Micronutrient malnutrition is a serious public health problem in many develo** countries. Different interventions are currently used, but their overall coverage is relatively limited. Biofortification—that is, breeding staple food crops for higher micronutrient contents—is a new agriculture-based approach. The density of minerals and vitamins in food staples eaten widely by the poor may be increased either through conventional plant breeding or using transgenic techniques, a process known as biofortification. Hence, increasing the concentration of bioavailable micronutrients in edible crop tissues (biofortification) has become a promising strategy in modern agriculture, allowing the access of more nutritious foods to more people, with the use of fewer resources. Traditional agricultural practices can partly enhance the nutritional value of plant foods, but the advances in the “omics” technologies are rapidly being exploited to engineer crops with enhanced key nutrients. Ionomics, or the study of the ionome (which can be defined as the mineral trace element composition of a particular organism), is a modern functional genomics tool that can provide high-throughput information about the broad-spectrum nutrient composition of a given plant food. In alliance with other “omics” technologies, such as genomics, transcriptomics, and proteomics, it can be used to identify numerous genes with important roles in the uptake, transport, and accumulation of mineral nutrients in plant foods, in their edible parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alfthan, G., Eurola, M., Ekholm, P., et al. (2015). Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. Journal of Trace Elements in Medicine and Biology, 31, 142–147.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, L. B. (2004). Folate and vitamin B 12 recommended intakes and status in the United States. Nutrition reviews, 62(suppl_1), S14-S20.

    Google Scholar 

  • Bouis, H. E. (2003). Micronutrient fortification of plants through plant breeding: Can it improve nutrition in man at low cost? Proceedings of the Nutrition Society, 62(2), 403–411.

    Article  PubMed  Google Scholar 

  • Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: a new tool to reduce micronutrient malnutrition. Food and nutrition bulletin, 32(1_suppl1), S31-S40.

    Google Scholar 

  • Cahoon, E. B., Hall, S. E., Ripp, K. G., et al. (2003). Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnology, 21(9), 1082.

    Article  CAS  PubMed  Google Scholar 

  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1–2), 1–17.

    CAS  Google Scholar 

  • Cakmak, I. (2014). Agronomic biofortification. Conference brief# 8. In Proceedings of the 2nd Global Conference on Biofortification: Getting Nutritious Foods to People, Rwanda.

    Google Scholar 

  • Cakmak, I., & Kutman, U. B. (2018). Agronomic biofortification of cereals with zinc: A review. European Journal of Soil Science, 69(1), 172–180.

    Article  Google Scholar 

  • Chen, L., Yang, F., Xu, J., et al. (2002). Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. Journal of Agricultural and Food Chemistry, 50(18), 5128–5130.

    Article  CAS  PubMed  Google Scholar 

  • Chow, J., Klein, E. Y., & Laxminarayan, R. (2010). Cost-effectiveness of “golden mustard” for treating vitamin A deficiency in India. PLoS One, 5(8), e12046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deodhar, S., Ganesh, S., Chern, W. (2008). Emerging markets for GM foods: a study of consumer’s willingness to pay in India. Int J Biotechnol 10(6):570–587.

    Google Scholar 

  • de Santiago, A., García-López, A. M., Quintero, J. M., et al. (2013). Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biology and Biochemistry, 57, 598–605.

    Article  CAS  Google Scholar 

  • De Steur, H., Gellynck, X., Feng, S., et al. (2012). Determinants of willingness-to-pay for GM rice with health benefits in a high-risk region: Evidence from experimental auctions for folate biofortified rice in China. Food Quality and Preference, 25(2), 87–94.

    Article  Google Scholar 

  • De Valença, A. W., Bake, A., Brouwer, I. D., et al. (2017). Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Global Food Security, 12, 8–14.

    Article  Google Scholar 

  • Ekiz, H., Bagci, S. A., Kiral, A. S., et al. (1998). Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soils. Journal of Plant Nutrition, 21(10), 2245–2256.

    Article  CAS  Google Scholar 

  • Erenoglu, E. B., Kutman, U. B., Ceylan, Y., et al. (2011). Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. The New Phytologist, 189(2), 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Casal, M. N., Peña-Rosas, J. P., Pachón, H., et al. (2016). Staple crops biofortified with increased micronutrient content: Effects on vitamin and mineral status, as well as health and cognitive function in the general population. Cochrane Database of Systematic Reviews, (8), CD012311.

    Google Scholar 

  • Garg, M., Sharma, N., Sharma, S., et al. (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Frontiers in Nutrition, 5, 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez-Galera, S., Rojas, E., Sudhakar, D., et al. (2010). Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Research, 19(2), 165–180.

    Article  PubMed  CAS  Google Scholar 

  • Graham, R. D., Ascher, J. S., Hynes, S. C., et al. (1992). Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant and Soil, 146(1–2), 241–250.

    Article  CAS  Google Scholar 

  • Grusak, M. A., Pearson, J. N., Marentes, E., et al. (1999). The physiology of micronutrient homeostasis in field crops. Field Crops Research, 60(1–2), 41–56.

    Article  Google Scholar 

  • Harper, C. G., Sheedy, D. L., Lara, A. I., et al. (1998). Prevalence of Wernicke-Korsakoff syndrome in Australia: Has thiamine fortification made a difference? The Medical Journal of Australia, 168(11), 542–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, J., Schneberg, K. A., & Pilon-Smits, E. A. (2014). Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae). Planta, 239(2), 479–491.

    Google Scholar 

  • Hurrell, R., & Egli, I. (2010). Iron bioavailability and dietary reference values. The American Journal of Clinical Nutrition, 91(5), 1461–1467.

    Article  CAS  Google Scholar 

  • IOM. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington DC: National Academy of Sciences. Institute of Medicine. Food and Nutrition Board; 2002.

    Google Scholar 

  • Ivanov, R., Brumbarova, T., Bauer, P., et al. (2012). Fitting into the harsh reality: Regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant, 5(1), 27–42.

    Article  CAS  PubMed  Google Scholar 

  • **, C. W., He, Y. F., Tang, C. X., et al. (2006). Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant, Cell & Environment, 29(5), 888–897.

    Article  Google Scholar 

  • Katyal, J. C., & Rattan, R. K. (2003). Secondary and micronutrients research gaps and future needs. Fertilizer News, 48(4), 9–20.

    CAS  Google Scholar 

  • Kobayashi, T., & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, 131–152.

    Article  CAS  PubMed  Google Scholar 

  • Ku, Y. S., Rehman, H. M., & Lam, H. M. (2019). Possible roles of rhizospheric and endophytic microbes to provide a safe and affordable means of crop biofortification. Agronomy, 9(11), 764.

    Article  CAS  Google Scholar 

  • Mabesa, R. L., Impa, S. M., Grewal, D., et al. (2013). Contrasting grain-Zn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Research, 149, 223–233.

    Article  Google Scholar 

  • Manzeke, G. M., Mapfumo, P., Mtambanengwe, F., et al. (2012). Soil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of Zimbabwe. Plant and Soil, 361(1–2), 57–69.

    Article  CAS  Google Scholar 

  • Manzeke, G. M., Mtambanengwe, F., Nezomba, H., et al. (2014). Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe. Field Crops Research, 166, 128–136.

    Article  Google Scholar 

  • Méplan, C. (2011). Trace elements and ageing, a genomic perspective using selenium as an example. Journal of Trace Elements in Medicine and Biology, 25, S11–S16.

    Google Scholar 

  • Murphy, J. J., Allen, P. G., Stevens, T. H., et al. (2005). A meta-analysis of hypothetical bias in stated preference valuation. Environmental and Resource Economics, 30(3), 313–325.

    Article  Google Scholar 

  • Nozoye, T., Nagasaka, S., Kobayashi, T., et al. (2011). Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. The Journal of Biological Chemistry, 286(7), 5446–5454.

    Article  CAS  PubMed  Google Scholar 

  • Paine, J. A., Shipton, C. A., Chaggar, S., et al. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology, 23(4), 482.

    Article  CAS  PubMed  Google Scholar 

  • Pal, S., Datta, S. P., Rattan, R. K., et al. (2008). Diagnosis and amelioration of iron deficiency under aerobic rice. Journal of Plant Nutrition, 31(5), 919–940.

    Article  CAS  Google Scholar 

  • Pourcel, L., Moulin, M., & Fitzpatrick, T. B. (2013). Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering. Frontiers in Plant Science, 4, 160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad, R. (2006). Zinc in soils and in plant, human & animal nutrition. Indian Journal of Fertilisers, 2(9), 103.

    CAS  Google Scholar 

  • Prasad, R., Shivay, Y. S., & Kumar, D. (2014). Agronomic biofortification of cereal grains with iron and zinc. Advances in Agronomy, 125, 55–91.

    Article  Google Scholar 

  • Prasanna, R., Bidyarani, N., Babu, S., et al. (2015). Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food and Agriculture, 1(1), 998507.

    Article  CAS  Google Scholar 

  • Rajashekhara Rao, B. K., Krishnappa, K., Srinivasarao, C., et al. (2012). Alleviation of multinutrient deficiency for productivity enhancement of rain-fed soybean and finger millet in the semi-arid region of India. Communications in Soil Science and Plant Analysis, 43(10), 1427–1435.

    Article  CAS  Google Scholar 

  • Ray, P., Datta, S. P., Rakshit, R., et al. (2016). Agronomic biofortification of food crops with zinc and iron for ameliorating their deficiencies in humans: Constraints and possibilities. Indian Journal of Fertilisers, 12(7), 28–35.

    Google Scholar 

  • Rosell, C. M. (2016). Fortification of grain-based foods. Amsterdam: Elsevier.

    Google Scholar 

  • Sestili, F., Janni, M., Doherty, A., et al. (2010). Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biology, 10(1), 144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shewmaker, C. K., Sheehy, J. A., Daley, M., et al. (1999). Seed-specific overexpression of phytoene synthase: Increase in carotenoids and other metabolic effects. The Plant Journal, 20(4), 401–412.

    Article  CAS  PubMed  Google Scholar 

  • Shi, R., Zhang, Y., Chen, X., et al. (2010). Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science, 51(1), 165–170.

    Article  CAS  Google Scholar 

  • Shivay, Y. S., Kumar, D., & Prasad, R. (2008). Relative efficiency of zinc sulfate and zinc oxide–coated urea in rice–wheat crop** system. Communications in Solid Science and Plant Analysis, 39(7–8), 1154–1167.

    Article  CAS  Google Scholar 

  • Singh, J. P., Karamanos, R. E., Stewart, J. W. B., et al. (1988). The mechanism of phosphorus-induced zinc deficiency in bean (Phaseolus vulgaris L.). Canadian Journal of Soil Science, 68(2), 345–358.

    Article  CAS  Google Scholar 

  • Stein, A. J., Sachdev, H. P., & Qaim, M. (2008). Can genetic engineering for the poor pay off?: an ex-ante evaluation of Golden Rice in India.

    Google Scholar 

  • Storozhenko, S., De Brouwer, V., Volckaert, M., et al. (2007). Folate fortification of rice by metabolic engineering. Nature Biotechnology, 25(11), 1277.

    Article  CAS  PubMed  Google Scholar 

  • Talsma, E. F. (2014). Yellow cassava: Efficacy of provitamin A rich cassava on improvement of vitamin A status in Kenyan schoolchildren. Wageningen: Wageningen University.

    Google Scholar 

  • Tanumihardjo, S. A. (2013). Vitamin A and bone health: The balancing act. Journal of Clinical Densitometry, 16(4), 414–419.

    Article  PubMed  Google Scholar 

  • Thilakarathna, M. S., & Raizada, M. N. (2015). A review of nutrient management studies involving finger millet in the semi-arid tropics of Asia and Africa. Agronomy, 5(3), 262–290.

    Article  CAS  Google Scholar 

  • Thongbai, P., Hannam, R. J., Graham, R. D., & Webb, M. J. (1993). Interaction between zinc nutritional status of cereals and Rhizoctonia root rot severity. Plant and Soil, 153(2), 207–214.

    Article  CAS  Google Scholar 

  • Vanlauwe, B., Bationo, A., Chianu, J., et al. (2010). Integrated soil fertility management: Operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24.

    Article  Google Scholar 

  • Visioli, G., D’Egidio, S., & Sanangelantoni, A. M. (2015). The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Frontiers in plant science, 5, 752.

    Google Scholar 

  • Wakeel, A., Farooq, M., Bashir, K., et al. (2018). Micronutrient malnutrition and biofortification: Recent advances and future perspectives. In Plant micronutrient use efficiency (pp. 225–243). London: Academic Press.

    Chapter  Google Scholar 

  • Wei, Y., Shohag, M. J. I., Yang, X., et al. (2012). Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. Journal of Agricultural and Food Chemistry, 60(45), 11433–11439.

    Article  CAS  PubMed  Google Scholar 

  • Winkel, L. H., Johnson, C. A., Lenz, M., Grundl, T., Leupin, O. X., Amini, M., & Charlet, L. (2012). Environmental selenium research: from microscopic processes to global understanding. Environmental science and technology, 46, 571–579.

    Google Scholar 

  • World Health Organization. (2005). Modern food biotechnology, human health and development: an evidence-based study. Geneva: World Health Organization.

    Google Scholar 

  • **aoyan, S., Yan, Z., & Shubin, W. (2013). Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. Journal of Agricultural Biotechnology, 7(20), 766–773.

    Google Scholar 

  • Yang, S. H., Moran, D. L., Jia, H. W., et al. (2002). Expression of a synthetic porcine α-lactalbumin gene in the kernels of transgenic maize. Transgenic Research, 11(1), 11–20.

    Article  PubMed  Google Scholar 

  • Ye, X., Al-Babili, S., Klöti, A., et al. (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287(5451), 303–305.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz, A., Ekiz, H., Torun, B., et al. (1997). Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. Journal of Plant Nutrition, 20(4–5), 461–471.

    Article  CAS  Google Scholar 

  • Zhu, C., Naqvi, S., Gomez-Galera, S., et al. (2007). Transgenic strategies for the nutritional enhancement of plants. Trends in Plant Science, 12(12), 548–555.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., Sanahuja, G., Yuan, D., et al. (2013). Biofortification of plants with altered antioxidant content and composition: Genetic engineering strategies. Plant Biotechnology Journal, 11(2), 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, R., & Qaim, M. (2004). Potential health benefits of Golden Rice: A Philippine case study. Food Policy, 29(2), 147–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Riaz, U., Aziz, H., Anum, W., Mehdi, S.M., Murtaza, G., Jamil, M. (2020). Biofortification Technologies Used in Agriculture in Relation to Micronutrients. In: Aftab, T., Hakeem, K.R. (eds) Plant Micronutrients. Springer, Cham. https://doi.org/10.1007/978-3-030-49856-6_9

Download citation

Publish with us

Policies and ethics

Navigation