System Architecture: Control Unit

  • Chapter
  • First Online:
Ultrasound Energy and Data Transfer for Medical Implants

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 337 Accesses

Abstract

In the previous chapters the use of ultrasound in medicine for telemetry applications was introduced. System specifications such as frequency, battery, and transducer selections were given by conforming FDA regulations in terms of maximum acoustic intensity (I SPPA and I SPTA). Here, the architecture of the control unit is presented. Specifically, the circuit description addresses choices in the wireless energy transmission and half-duplex communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Yoo, L. Yan, S. Lee, Y. Kim, H.-J. Yoo, A 5.2 mw self-configured wearable body sensor network controller and a 12 μ W wirelessly powered sensor for a continuous health monitoring system. IEEE J. Solid-State Circuits 45(1), 178–188 (2010)

    Google Scholar 

  2. J. Cheng, L. **a, C. Ma, Y. Lian, X. Xu, C.P. Yue, Z. Hong, P.Y. Chiang, A near-threshold, multi-node, wireless body area sensor network powered by RF energy harvesting, in 2012 IEEE Custom Integrated Circuits Conference (CICC), Sept 2012, pp. 1–4

    Google Scholar 

  3. C.M. Zierhofer, E.S. Hochmair, High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link. IEEE Trans. Biomed. Eng. 37(7), 716–722 (1990)

    Article  Google Scholar 

  4. S. Arra, J. Leskinen, J. Heikkila, J. Vanhala, Ultrasonic power and data link for wireless implantable applications, in 2nd International Symposium on Wireless Pervasive Computing, 2007, ISWPC ’07, Feb 2007

    Google Scholar 

  5. S. Ozeri, D. Shmilovitz, Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 50(6), 556–566 (2010)

    Article  Google Scholar 

  6. T. Maleki, N. Cao, S.H. Song, C. Kao, S.-C. Ko, B. Ziaie, An ultrasonically powered implantable micro-oxygen generator (IMOG). IEEE Trans. Biomed. Eng. 58(11), 3104–3111 (2011)

    Article  Google Scholar 

  7. G. Wang, W. Liu, M. Sivaprakasam, G.A. Kendir, Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans. Circuits Syst. I Regul. Pap. 52(10), 2109–2117 (2005)

    Article  Google Scholar 

  8. A. Sanni, A. Vilches, C. Toumazou, Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices. IEEE Trans. Biomed. Circuits Syst. 6(4), 297–308 (2012)

    Article  Google Scholar 

  9. R. Carta, M. Sfakiotakis, N. Pateromichelakis, J. Thone, D.P. Tsakiris, R. Puers, A multi-coil inductive powering system for an endoscopic capsule with vibratory actuation. Sens. Actuators A Phys. 172(1), 253–258 (2011)

    Article  Google Scholar 

  10. E.G. Kilinc, B. Canovas, F. Maloberti, C. Dehollain, Intelligent cage for remotely powered freely moving animal telemetry systems, in 2012 IEEE International Symposium on Circuits and Systems (ISCAS), May 2012, pp. 2207–2210

    Google Scholar 

  11. P. Reynaert, M. Steyaert, RF Power Amplifiers for Mobile Communications (Springer, New York, 2006)

    Google Scholar 

  12. T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  13. M. Acar, A.J. Annema, B. Nauta, Analytical design equations for class-E power amplifiers. IEEE Trans. Circuits Syst. I Regul. Pap. 54(12), 2706–2717 (2007)

    Article  Google Scholar 

  14. F. Hooi, K. Thomenius, R. Fisher, P. Carson, Hybrid beamforming and steering with reconfigurable arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(6), 1311–1319 (2010)

    Article  Google Scholar 

  15. H. Liu, S. Gao, T.H. Loh, Compact dual-band antenna with electronic beam-steering and beamforming capability. IEEE Antennas Wirel. Propag. Lett. 10, 1349–1352 (2011)

    Article  Google Scholar 

  16. J. Atkins, Robust beamforming and steering of arbitrary beam patterns using spherical arrays, in 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct 2011, pp. 237–240

    Google Scholar 

  17. D.H. Turnbull, F.S. Foster, Beam steering with pulsed two-dimensional transducer arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(4), 320–333 (1991)

    Article  Google Scholar 

  18. M. Karaman, A. Atalar, H. Koymen, VLSI circuits for adaptive digital beamforming in ultrasound imaging. IEEE Trans. Med. Imaging 12(4), 711–720 (1993)

    Article  Google Scholar 

  19. L. Azar, Y. Shi, S.-C. Wooh, Beam focusing behavior of linear phased arrays. NDT E Int. 33(3), 189–198 (2000)

    Article  Google Scholar 

  20. M.A. Hassan, A.M. Youssef, Y.M. Kadah, Modular FPGA-based digital ultrasound beamforming, in 2011 1st Middle East Conference on Biomedical Engineering (MECBME), Feb 2011, pp. 134–137

    Google Scholar 

  21. Michigan State University. FOCUS. http://www.egr.msu.edu/~fultras-web/download.php

  22. K. McLeish, D.L.G. Hill, D. Atkinson, J.M. Blackall, R. Razavi, A study of the motion and deformation of the heart due to respiration. IEEE Trans. Med. Imaging 21(9), 1142–1150 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzilli, F., Dehollain, C. (2020). System Architecture: Control Unit. In: Ultrasound Energy and Data Transfer for Medical Implants. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-49004-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49004-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49003-4

  • Online ISBN: 978-3-030-49004-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation