Dental Restorative Materials

  • Chapter
  • First Online:
A Review on Dental Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 123))

Abstract

Restorative dental materials are of great importance in dentistry for restoring and replacing injured or missed teeth with the purpose of simulating natural teeth functions besides providing translucency and tooth-like color shade. Restorative dental materials are produced as crowns, inlays, onlays, multi-unit fixed dental prostheses, and veneers. These materials are divided into two distinct categories, which are direct and indirect restorative materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anusavice, K. J., Shen, C., & Rawls, H. R. (Eds.). (2012). Phillips’ science of dental materials. Elsevier Health Sciences.

    Google Scholar 

  2. Höland, W., Schweiger, M., Rheinberger, V. M., & Kappert, H. (2009). Bioceramics and their application for dental restoration. Advances in Applied Ceramics, 108(6), 373–380.

    Google Scholar 

  3. Powers, J. M., Sakaguchi, R. L., & Craig, R. G. (2012). Craig’s restorative dental materials/edited by Ronald L. Sakaguchi, John M. Powers. Philadelphia, PA: Elsevier/Mosby.

    Google Scholar 

  4. Bergmann, C. P., & Stumpf, A. (2013). Dental ceramics microstructure, properties and degradation, topics in mining, Metallurgy and Materials Engineering. Berlin, Heidelberg: Springer.

    Google Scholar 

  5. Zhang, Y., & Kelly, J. R. (2017). Dental ceramics for restoration and metal veneering. Dental Clinics of North America, 61(4), 797–819.

    Google Scholar 

  6. Zanelli, C., Raimondo, M., Guarini, G., & Dondi, M. (2011). The vitreous phase of porcelain stoneware: composition, evolution during sintering and physical properties. Journal of Non-Crystalline Solids, 357(16–17), 3251–3260.

    CAS  Google Scholar 

  7. Saint-Jean, S. J. (2014). Dental glasses and glass-ceramics. In Advanced Ceramics for Dentistry (pp. 255–277). Butterworth-Heinemann.

    Google Scholar 

  8. Ho, G. W., & Matinlinna, J. P. (2011). Insights on ceramics as dental materials. Part I: ceramic material types in dentistry. Silicon3(3), 109–115.

    Google Scholar 

  9. McLaren, E. A., & Cao, P. T. (2009). Ceramics in dentistry—part I: classes of materials. Inside dentistry, 5(9), 94–103.

    Google Scholar 

  10. Kelly, J. R. (2008). Dental ceramics: What is this stuff anyway? The Journal of the American Dental Association, 139, S4–S7.

    Google Scholar 

  11. Shenoy, A., & Shenoy, N. (2010). Dental ceramics: An update. Journal of conservative dentistry: JCD, 13(4), 195.

    Google Scholar 

  12. Denry, I., & Holloway, J. (2010). Ceramics for dental applications: a review. Materials, 3(1), 351–368.

    CAS  Google Scholar 

  13. Pollington, S., & van Noort, R. (2009). An update of ceramics in dentistry. Int J Clin Dent, 2(4), 283–307.

    CAS  Google Scholar 

  14. Höland, W., Schweiger, M., Watzke, R., Peschke, A., & Kappert, H. (2008). Ceramics as biomaterials for dental restoration. Expert Review of Medical Devices, 5(6), 729–745.

    Google Scholar 

  15. Conrad, H. J., Seong, W. J., & Pesun, I. J. (2007). Current ceramic materials and systems with clinical recommendations: a systematic review. The Journal of prosthetic dentistry, 98(5), 389–404.

    CAS  Google Scholar 

  16. Kelly, J. R., & Benetti, P. (2011). Ceramic materials in dentistry: historical evolution and current practice. Australian Dental Journal, 56, 84–96.

    Google Scholar 

  17. Silva, L. H. D., Miranda, R. B. D. P., Favero, S. S., Lohbauer, U., & Cesar, P. F. (2017). Dental ceramics: A review of new materials and processing methods. Brazilian oral research31.

    Google Scholar 

  18. Höland, W., Rheinberger, V., Apel, E., van’t Hoen, C., Höland, M., Dommann, A., … & Graf-Hausner, U. (2006). Clinical applications of glass-ceramics in dentistry. Journal of Materials Science: Materials in Medicine17(11), 1037–1042.

    Google Scholar 

  19. Denry, I., & Kelly, J. R. (2014). Emerging ceramic-based materials for dentistry. Journal of Dental Research, 93(12), 1235–1242.

    CAS  Google Scholar 

  20. de Carvalho Ramos, N., Campos, T. M. B., de La Paz, I. S., Machado, J. P. B., Bottino, M. A., Cesar, P. F., et al. (2016). Microstructure characterization and SCG of newly engineered dental ceramics. Dental Materials, 32(7), 870–878.

    Google Scholar 

  21. Raigrodski, A. J. (2004). Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. The Journal of Prosthetic Dentistry, 92(6), 557–562.

    CAS  Google Scholar 

  22. Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24(3), 299–307.

    CAS  Google Scholar 

  23. Turon-Vinas, M., & Anglada, M. (2018). Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 34(3), 365–375.

    CAS  Google Scholar 

  24. Piconi, C., Condo, S. G., & Kosmač, T. (2014). Alumina-and zirconia-based ceramics for load-bearing applications. In Advanced ceramics for dentistry (pp. 219–253). Butterworth-Heinemann.

    Google Scholar 

  25. Yin, L., Song, X. F., Song, Y. L., Huang, T., & Li, J. (2006). An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. International Journal of Machine Tools and Manufacture, 46(9), 1013–1026.

    Google Scholar 

  26. Hill, E. E. (2007). Dental cements for definitive luting: a review and practical clinical considerations. Dental Clinics of North America, 51(3), 643–658.

    Google Scholar 

  27. Wilson, A. D., & Nicholson, J. W. (2005). Acid-base cements: their biomedical and industrial applications. Cambridge University Press.

    Google Scholar 

  28. Sunico-Segarra, M., & Segarra, A. (2015). A practical clinical guide to resin cements. Berlin Heidelberg: Springer.

    Google Scholar 

  29. Albers, H. F. (2002). Tooth-colored restoratives: principles and techniques. PMPH-USA.

    Google Scholar 

  30. Kumar, M., & Kumari, S. (2016). Resin-modified Glass Ionomer Cements and its Use in Orthodontics-Concept Old is Gold: View Point. International Journal of Dental and Medical Speciality, 3(3), 10.

    Google Scholar 

  31. Wingo, K. (2018). A review of dental cements. Journal of veterinary dentistry, 35(1), 18–27.

    Google Scholar 

  32. McCabe, J. F., & Walls, A. W. (Eds.). (2013). Applied dental materials. Wiley.

    Google Scholar 

  33. Powers, J. M., & Wataha, J. C. (2015). Dental Materials-E-Book: Foundations and Applications. Elsevier Health Sciences.

    Google Scholar 

  34. Von Fraunhofer, J. A. (2013). Dental materials at a glance. Wiley.

    Google Scholar 

  35. Shelton, R. (Ed.). (2016). Biocompatibility of Dental Biomaterials. Woodhead Publishing.

    Google Scholar 

  36. Tabatabaian, F. (2019). Color aspect of monolithic zirconia restorations: A review of the literature. Journal of Prosthodontics, 28(3), 276–287.

    Google Scholar 

  37. de la Macorra, J. C., & Pradíes, G. (2002). Conventional and adhesive luting cements. Clinical Oral Investigations, 6(4), 198–204.

    Google Scholar 

  38. Lad, P. P., Kamath, M., Tarale, K., & Kusugal, P. B. (2014). Practical clinical considerations of luting cements: A review. Journal of international oral health: JIOH, 6(1), 116.

    Google Scholar 

  39. Wilson, A. D., Paddon, J. M., & Crisp, S. (1979). The hydration of dental cements. Journal of Dental Research, 58(3), 1065–1071.

    CAS  Google Scholar 

  40. Moshaverinia, A., Roohpour, N., Chee, W. W., & Schricker, S. R. (2011). A review of powder modifications in conventional glass-ionomer dental cements. Journal of Materials Chemistry, 21(5), 1319–1328.

    CAS  Google Scholar 

  41. Sidhu, S. K., & Nicholson, J. W. (2016). A review of glass-ionomer cements for clinical dentistry. Journal of functional biomaterials, 7(3), 16.

    Google Scholar 

  42. Mount, G. J. (2001). An atlas of glass-ionomer cements: a clinician’s guide. CRC Press.

    Google Scholar 

  43. Deb, S., & Chana, S. (2015). Biomaterials in relation to dentistry. In Biomaterials for Oral and Craniomaxillofacial Applications (Vol. 17, pp. 1–12). Karger Publishers.

    Google Scholar 

  44. Sidhu, S. K. (2011). Glass-ionomer cements restorative materials: a sticky subject? Australian Dental Journal, 56, 23–30.

    Google Scholar 

  45. Hafshejani, T. M., Zamanian, A., Venugopal, J. R., Rezvani, Z., Sefat, F., Saeb, M. R., … & Mozafari, M. (2017). Antibacterial glass-ionomer cements restorative materials: A critical review on the current status of extended release formulations. Journal of Controlled Release262, 317–328.

    Google Scholar 

  46. Noumbissi, S., Scarano, A., & Gupta, S. (2019). A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials, 12(3), 368.

    CAS  Google Scholar 

  47. Roberts, H. W., Berzins, D. W., Moore, B. K., & Charlton, D. G. (2009). Metal-ceramic alloys in dentistry: A review. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, 18(2), 188–194.

    Google Scholar 

  48. Upadhyay, D., Panchal, M. A., Dubey, R. S., & Srivastava, V. K. (2006). Corrosion of alloys used in dentistry: A review. Materials Science and Engineering A, 432(1–2), 1–11.

    Google Scholar 

  49. Spencer, P., & Misra, A. (Eds.). (2016). Material-tissue Interfacial Phenomena: Contributions from Dental and Craniofacial Reconstructions. Woodhead Publishing.

    Google Scholar 

  50. Liu, X., Chen, S., Tsoi, J. K., & Matinlinna, J. P. (2017). Binary titanium alloys as dental implant materials—a review. Regenerative Biomaterials, 4(5), 315–323.

    CAS  Google Scholar 

  51. Gosavi, S., Gosavi, S., & Alla, R. (2013). Titanium: A Miracle metal in dentistry. Trends in Biomaterials & Artificial Organs, 27(1).

    Google Scholar 

  52. Park, Y. J., Song, Y. H., An, J. H., Song, H. J., & Anusavice, K. J. (2013). Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. Journal of Dentistry, 41(12), 1251–1258.

    CAS  Google Scholar 

  53. Song, Y. H., Kim, M. K., Park, E. J., Song, H. J., Anusavice, K. J., & Park, Y. J. (2014). Cytotoxicity of alloying elements and experimental titanium alloys by WST-1 and agar overlay tests. Dental Materials, 30(9), 977–983.

    CAS  Google Scholar 

  54. Meffert, R. M., Langer, B., & Fritz, M. E. (1992). Dental implants: a review. Journal of Periodontology, 63(11), 859–870.

    CAS  Google Scholar 

  55. Duraccio, D., Mussano, F., & Faga, M. G. (2015). Biomaterials for dental implants: current and future trends. Journal of Materials Science, 50(14), 4779–4812.

    CAS  Google Scholar 

  56. Özcan, M., & Hämmerle, C. (2012). Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls. Materials, 5(9), 1528–1545.

    Google Scholar 

  57. Seo, H. S., Kim, B. H., & Ko, Y. M. (2010). Fabrication of anodized titanium with immobilization of hyaluronic acid to improve biological performance. Progress in Organic Coatings, 69(1), 38–44.

    CAS  Google Scholar 

  58. Reclaru, L., Lüthy, H., Eschler, P. Y., Blatter, A., & Susz, C. (2005). Corrosion behaviour of cobalt–chromium dental alloys doped with precious metals. Biomaterials, 26(21), 4358–4365.

    CAS  Google Scholar 

  59. McCabe, J. F., & Walls, A. W. (Eds.). (2013). Applied dental materials. Wiley.

    Google Scholar 

  60. Bharti, R., Wadhwani, K. K., Tikku, A. P., & Chandra, A. (2010). Dental amalgam: An update. Journal of conservative dentistry: JCD, 13(4), 204.

    Google Scholar 

  61. Blackwood, D. J. (2003). Biomaterials: past successes and future problems.

    Google Scholar 

  62. Fathi, M., & Mortazavi, V. (2004). A review on dental amalgam corrosion and its consequences.

    Google Scholar 

  63. Moncada, G., Fernández, E., Mena, K., Martin, J., Vildósola, P., Junior, O. D. O., … & Gordan, V. V. (2015). Seal, replacement or monitoring amalgam restorations with occlusal marginal defects? Results of a 10-year clinical trial. Journal of dentistry, 43(11), 1371–1378.

    Google Scholar 

  64. Corti, C., & Holliday, R. (2009). Gold: Science and applications. CRC Press.

    Google Scholar 

  65. Knosp, H., Holliday, R. J., & Corti, C. W. (2003). Gold in dentistry: alloys, uses and performance. Gold Bulletin, 36(3), 93–102.

    Google Scholar 

  66. Kirkup, J. (1993). From flint to stainless steel: Observations on surgical instrument composition. Annals of the Royal College of Surgeons of England, 75(5), 365.

    CAS  Google Scholar 

  67. Vijayalakshmi, R. D., Nagachandran, K. S., Kummi, P., & Jayakumar, P. (2009). A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires-An in vitro study. Indian Journal of Dental Research, 20(4), 448.

    Google Scholar 

  68. Corradi, M., Di Schino, A., Borri, A., & Rufini, R. (2018). A review of the use of stainless steel for masonry repair and reinforcement. Construction and Building Materials, 181, 335–346.

    Google Scholar 

  69. Santander, S. A., & Ossa, C. M. L. (2015). Stainless Steel: Material Facts for the Orthodontic Practitioner. Revista Nacional de Odontología, 11(20).

    Google Scholar 

  70. Li, H. F., & Zheng, Y. F. (2016). Recent advances in bulk metallic glasses for biomedical applications. Acta Biomaterialia, 36, 1–20.

    Google Scholar 

  71. Thompson, S. A. (2000). An overview of nickel–titanium alloys used in dentistry. International Endodontic Journal, 33(4), 297–310.

    CAS  Google Scholar 

  72. Xu, X., He, L., Zhu, B., Li, J., & Li, J. (2017). Advances in polymeric materials for dental applications. Polymer Chemistry, 8(5), 807–823.

    CAS  Google Scholar 

  73. Lai, W. F., Oka, K., & Jung, H. S. (2015). Advanced functional polymers for regenerative and therapeutic dentistry. Oral Diseases, 21(5), 550–557.

    Google Scholar 

  74. Rokaya, D., Srimaneepong, V., Sapkota, J., Qin, J., Siraleartmukul, K., & Siriwongrungson, V. (2018). Polymeric materials and films in dentistry: An overview. Journal of advanced research, 14, 25–34.

    CAS  Google Scholar 

  75. Skirbutis, G., Dzingutė, A., Masiliūnaitė, V., Šulcaitė, G., & Žilinskas, J. (2017). A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija, 19(1), 19–23.

    Google Scholar 

  76. Rutkuniene, Z., Pervazaite, M., & Skirbutis, G. (2018, September). Modification of Polyetheretherketone Surface by Argon, Oxygen and Nitrogen Plasma for Dentistry Application. In International Conference on Global Research and Education (pp. 160–164). Springer, Cham.

    Google Scholar 

  77. Bathala, L., Majeti, V., Rachuri, N., Singh, N., & Gedela, S. (2019). The role of polyether ether Ketone (Peek) in dentistry–A Review. Journal of medicine and life, 12(1), 5.

    Google Scholar 

  78. Ali, U., Karim, K. J. B. A., & Buang, N. A. (2015). A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polymer Reviews, 55(4), 678–705.

    CAS  Google Scholar 

  79. Wypych, G. (2016). Handbook of polymers. Elsevier.

    Google Scholar 

  80. Raj, P. A., & Dentino, A. R. (2013). Denture polymers with antimicrobial properties: a review of the development and current status of anionic poly (methyl methacrylate) polymers. Future medicinal Chemistry, 5(14), 1635–1645.

    CAS  Google Scholar 

  81. Paxton, N. C., Allenby, M. C., Lewis, P. M., & Woodruff, M. A. (2019). Biomedical applications of polyethylene. European Polymer Journal.

    Google Scholar 

  82. Meiers, J. C., Kazemi, R. B., & Donadio, M. (2003). The influence of fiber reinforcement of composites on shear bond strengths to enamel. The Journal of prosthetic dentistry, 89(4), 388–393.

    CAS  Google Scholar 

  83. Vitale, M. C., Caprioglio, C., Martignone, A., Marchesi, U., & Botticelli, A. R. (2004). Combined technique with polyethylene fibers and composite resins in restoration of traumatized anterior teeth. Dental Traumatology, 20(3), 172–177.

    Google Scholar 

  84. Ganesh, M., & Tandon, S. (2006). Versatility of ribbond in contemporary dental practice. Trends Biomater Artif Organs, 20(1), 53–58.

    Google Scholar 

  85. Motisuki, C., Santos-Pinto, L., & Giro, E. M. A. (2005). Restoration of severely decayed primary incisors using indirect composite resin restoration technique. International Journal of Paediatric Dentistry, 15(4), 282–286.

    CAS  Google Scholar 

  86. Qualtrough, A. J., & Mannocci, F. (2003). Tooth-colored post systems: A review. Operative Dentistry, 28(1), 86–91.

    CAS  Google Scholar 

  87. Kargul, B., Çaglar, E., & Kabalay, U. (2005). Glass fiber-reinforced composite resin as fixed space maintainers in children: 12-month clinical follow-up. Journal of Dentistry for Children, 72(3), 109–112.

    Google Scholar 

  88. Freilich, M. A., Meiers, J. C., Duncan, J. P., Eckrote, K. A., & Goldberg, A. J. (2002). Clinical evaluation of fiber-reinforced fixed bridges. The Journal of the American Dental Association, 133(11), 1524–1534.

    Google Scholar 

  89. Harris, J. M. (1992). Introduction to biotechnical and biomedical applications of poly (ethylene glycol). In Poly (ethylene glycol) Chemistry (pp. 1–14). Springer, Boston, MA.

    Google Scholar 

  90. Peng, L., Chang, L., Liu, X., Lin, J., Liu, H., Han, B., et al. (2017). Antibacterial property of a polyethylene glycol-grafted dental material. ACS Applied Materials & Interfaces, 9(21), 17688–17692.

    CAS  Google Scholar 

  91. Zargar, V., Asghari, M., & Dashti, A. (2015). A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2(3), 204–226.

    CAS  Google Scholar 

  92. Arnaud, T. M. S., de Barros Neto, B., & Diniz, F. B. (2010). Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. Journal of Dentistry, 38(11), 848–852.

    CAS  Google Scholar 

  93. Lendlein, A., & Kelch, S. (2002). Shape-memory polymers. Angewandte Chemie International Edition, 41(12), 2034–2057.

    CAS  Google Scholar 

  94. Nascimento, R. O. do, & Chirani, N. (2015). Shape-memory polymers for dental applications. In Shape Memory Polymers for Biomedical Applications (pp. 267–280). Woodhead Publishing.

    Google Scholar 

  95. Ferracane, J. L. (2011). Resin composite—state of the art. Dental Materials, 27(1), 29–38.

    CAS  Google Scholar 

  96. Curtis, R. V., & Watson, T. F. (Eds.). (2014). Dental biomaterials: imaging, testing and modelling. Elsevier.

    Google Scholar 

  97. Maas, M. S., Alania, Y., Natale, L. C., Rodrigues, M. C., Watts, D. C., & Braga, R. R. (2017). Trends in restorative composites research: what is in the future?. Brazilian oral research31.

    Google Scholar 

  98. Braga, R. R., Ballester, R. Y., & Ferracane, J. L. (2005). Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dental Materials, 21(10), 962–970.

    CAS  Google Scholar 

  99. Leprince, J. G., Palin, W. M., Hadis, M. A., Devaux, J., & Leloup, G. (2013). Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials, 29(2), 139–156.

    CAS  Google Scholar 

  100. García, A. H., Lozano, M. A. M., Vila, J. C., Escribano, A. B., & Galve, P. F. (2006). Composite resins. A review of the materials and clinical indications. Med Oral Patol Oral Cir Bucal11(2), E215–220.

    Google Scholar 

  101. Bayne, S. C. (2005). Dental biomaterials: where are we and where are we going? Journal of Dental Education, 69(5), 571–585.

    Google Scholar 

  102. Ilie, N., & Hickel, R. (2011). Resin composite restorative materials. Australian Dental Journal, 56, 59–66.

    Google Scholar 

  103. Moraes, R. R., Goncalves, L. D. S., Lancellotti, A. C., Consani, S., Correr-Sobrinho, L., & Sinhoreti, M. A. (2009). Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins? Operative dentistry, 34(5), 551–557.

    Google Scholar 

  104. Angerame, D., & De Biasi, M. (2018). Do nanofilled/nanohybrid composites allow for better clinical performance of direct restorations than traditional microhybrid composites?A systematic review. Operative dentistry, 43(4), E191–E209.

    CAS  Google Scholar 

  105. Brunthaler, A., König, F., Lucas, T., Sperr, W., & Schedle, A. (2003). Longevity of direct resin composite restorations in posterior teeth: a review. Clinical Oral Investigations, 7(2), 63–70.

    CAS  Google Scholar 

  106. Opdam, N. J. M., Van De Sande, F. H., Bronkhorst, E., Cenci, M. S., Bottenberg, P., Pallesen, U., … & Van Dijken, J. W. (2014). Longevity of posterior composite restorations: a systematic review and meta-analysis. Journal of Dental Research, 93(10), 943–949.

    Google Scholar 

  107. da Veiga, A. M. A., Cunha, A. C., Ferreira, D. M. T. P., da Silva Fidalgo, T. K., Chianca, T. K., Reis, K. R., et al. (2016). Longevity of direct and indirect resin composite restorations in permanent posterior teeth: A systematic review and meta-analysis. Journal of Dentistry, 54, 1–12.

    Google Scholar 

  108. Tsujimoto, A., Barkmeier, W. W., Fischer, N. G., Nojiri, K., Nagura, Y., Takamizawa, T., … & Miazaki, M. (2018). Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors. Japanese Dental Science Review54(2), 76–87.

    Google Scholar 

  109. Zhang, K., Baras, B., Lynch, C. D., Weir, M. D., Melo, M. A. S., Li, Y., … & Xu, H. H. (2018). Develo** a new generation of therapeutic dental polymers to inhibit oral biofilms and protect teeth. Materials11(9), 1747.

    Google Scholar 

  110. Makvandi, P., Jamaledin, R., Jabbari, M., Nikfarjam, N., & Borzacchiello, A. (2018). Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dental Materials, 34(6), 851–867.

    CAS  Google Scholar 

  111. Scribante, A., Vallittu, P. K., Özcan, M., Lassila, L. V., Gandini, P., & Sfondrini, M. F. (2018). Travel beyond Clinical Uses of Fiber Reinforced Composites (FRCs) in Dentistry: A Review of Past Employments, Present Applications, and Future Perspectives. BioMed research international2018.

    Google Scholar 

  112. Khan, A. S., Azam, M. T., Khan, M., Mian, S. A., & Rehman, I. U. (2015). An update on glass fiber dental restorative composites: a systematic review. Materials Science and Engineering C, 47, 26–39.

    CAS  Google Scholar 

  113. Nicholson, J. W. (2007). Polyacid-modified composite resins (“compomers”) and their use in clinical dentistry. Dental Materials, 23(5), 615–622.

    CAS  Google Scholar 

  114. Mahamood, R. M., & Akinlabi, E. T. (2017). Functionally graded materials (pp. 16–18). Berlin: Springer.

    Google Scholar 

  115. Fujihara, K., Teo, K., Gopal, R., Loh, P. L., Ganesh, V. K., Ramakrishna, S., … & Chew, C. L. (2004). Fibrous composite materials in dentistry and orthopaedics: review and applications. Composites Science and Technology64(6), 775–788.

    Google Scholar 

  116. Bakar, W. Z. W., Basri, S. N., Jamaludin, S. N. S., & Sajjad, A. (2018). Functionally graded materials: an overview of dental applications. World Journal of Dentistry, 9(2), 137–144.

    Google Scholar 

  117. Mine, A., De Munck, J., Van Ende, A., Poitevin, A., Matsumoto, M., Yoshida, Y., … & Van Meerbeek, B. (2017). Limited interaction of a self-adhesive flowable composite with dentin.

    Google Scholar 

  118. Poitevin, A., De Munck, J., Van Ende, A., Suyama, Y., Mine, A., Peumans, M., & Van Meerbeek, B. (2013). Bonding effectiveness of self-adhesive composites to dentin and enamel. Dent.

    Google Scholar 

  119. Huyang, G., Debertin, A. E., & Sun, J. (2016). Design and development of self-healing dental composites. Materials and Design, 94, 295–302.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Rezaie .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reza Rezaie, H., Beigi Rizi, H., Rezaei Khamseh, M., Öchsner, A. (2020). Dental Restorative Materials. In: A Review on Dental Materials. Advanced Structured Materials, vol 123. Springer, Cham. https://doi.org/10.1007/978-3-030-48931-1_3

Download citation

Publish with us

Policies and ethics

Navigation