Investigations of Shakedown in the Presence of Ambient Creep Using Direct Methods for High Strength Steel Under Multiaxial Loadings

  • Chapter
  • First Online:
Direct Methods

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 95))

Abstract

Life integrity assessment of industrial components often requires investigations of the cyclic inelastic response at a range of operating temperatures. Some high strength steels exhibit a well-known ambient temperature creep behaviour, which can also impact the cyclic behaviour, especially under long-term operation. In this study, a direct method known as the Linear Matching Method has been used to predict the cyclic shakedown and ratchet limits of high-strength steel (AISI 1144). The numerical predictions are compared with a recent testing campaign that was completed at room temperature to characterise the multiaxial behaviour of AISI 1144. Due to creep of the material, inelastic strain accumulation is also observed for loading conditions within the shakedown limit. The extended Direct Steady Cyclic Analysis (eDSCA) approach has been used to predict the cyclic behaviour in the presence of creep. In addition, for specific load cases of interest, a newly revised creep-ratcheting limit has been derived and compared with the experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Odqvist, F.K.G.: Mathematical theory of creep and creep rupture. Clarendon Press (1974)

    Google Scholar 

  2. Klueh, R., King, J.: Creep and creep rupture of ERNiCr-3 weld metal. J. Nucl. Mater. 98(1–2), 173–189 (1981)

    Article  Google Scholar 

  3. Ainsworth, R., Budden, P.: Design and assessment of components subjected to creep. J. Strain Anal. Eng. Des. 29(3), 201–207 (1994)

    Article  Google Scholar 

  4. Spindler, M.: The multiaxial creep ductility of austenitic stainless steels. Fatigue Fract. Eng. Mater. Struct. 27(4), 273–281 (2004)

    Article  Google Scholar 

  5. Saber, M., et al.: Determination of creep and damage properties for P92 at 675 C. J. Strain Anal. Eng. Des. 46(8), 842–851 (2011)

    Article  Google Scholar 

  6. Isobe, N., Yashirodai, K., Murata, K.I.: Creep damage assessment for notched bar specimens of a low alloy steel considering stress multiaxiality. Eng. Fract. Mech. 123, 211–222 (2014)

    Google Scholar 

  7. Haque, M.S., Stewart, C.M.: A novel sin-hyperbolic creep damage model to overcome the mesh dependency of classic local approach Kachanov-Rabotnov model. In: ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (2015)

    Google Scholar 

  8. Holdsworth, S.: Creep-fatigue failure diagnosis. Materials 8(11), 5418 (2015)

    Article  Google Scholar 

  9. Oh, C.-S., et al.: Creep failure simulations of 316H at 550 C: part I-A method and validation. Eng. Fract. Mech. 78(17), 2966–2977 (2011)

    Article  Google Scholar 

  10. Priest, R., et al.: Creep–fatigue assessment of a welded steel component. In: Creep: Characterization, Damage and Life Assessments, Lake Buena Vista (1992), pp 423–429

    Google Scholar 

  11. Sauzay, M., et al.: Creep-fatigue behaviour of an AISI stainless steel at 550 ℃. Nucl. Eng. Des. 232(3), 219–236 (2004)

    Article  Google Scholar 

  12. Hyde, T.H., Saber, M., Sun, W.: Creep crack growth data and prediction for a P91 weld at 650 ℃. Int. J. Press. Vessels Pip. 87(12), 721–729 (2010)

    Article  Google Scholar 

  13. Narasimhachary, S.B., Saxena, A.: Crack growth behavior of 9Cr − 1Mo (P91) steel under creep–fatigue conditions. Int. J. Fatigue 56, 106–113 (2013)

    Article  Google Scholar 

  14. Yatomi, M., Davies, C.M., Nikbin, K.M.: Creep crack growth simulations in 316H stainless steel. Eng. Fract. Mech. 75(18), 5140–5150 (2008)

    Article  Google Scholar 

  15. Porowski, J.S., O’Donnell W.J.: Creep ratcheting bounds from extended elastic core concept. In: Conference: International Conference on Structural Mechanics in Reactor Technology. Berlin, F.R. Germany, 13 Aug 1979. O’Donnell and Associates, Inc., Pittsburgh, PA (USA). Medium: ED; Size, pp. 18 (1979)

    Google Scholar 

  16. Oehlert, A., Atrens, A.: Room temperature creep of high strength steels. Acta Metall. Mater. 42(5), 1493–1508 (1994)

    Article  Google Scholar 

  17. Liu, C., et al.: Room temperature creep of a high strength steel. Mater. Des. 22(4), 325–328 (2001)

    Article  Google Scholar 

  18. Krempl, E.: An experimental study of room-temperature rate-sensitivity, creep and relaxation of AISI type 304 stainless steel. J. Mech. Phys. Solids 27(5–6), 363–375 (1979)

    Article  Google Scholar 

  19. Neeraj, T., et al.: Phenomenological and microstructural analysis of room temperature creep in titanium alloys. Acta Mater. 48(6), 1225–1238 (2000)

    Article  Google Scholar 

  20. Taleb, L., Cailletaud, G.: Cyclic accumulation of the inelastic strain in the 304L SS under stress control at room temperature: ratcheting or creep? Int. J. Plast 27(12), 1936–1958 (2011)

    Article  Google Scholar 

  21. Pilo, D., et al.: Cyclic induced creep of a plain carbon steel at room temperature. Fatigue Fract. Eng. Mater. Struct. 1(3), 287–295 (1979)

    Article  Google Scholar 

  22. Evans, J., Parkins, R.: Creep induced by load cycling in a C-Mn steel. Acta Metall. 24(6), 511–515 (1976)

    Article  Google Scholar 

  23. Deibler, L.A.: Room temperature creep in metals and alloys. Sandia National Lab (2014)

    Google Scholar 

  24. Bree, J.: Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements. J. Strain Anal. Eng. Des. 2(3), 226–238 (1967)

    Article  Google Scholar 

  25. Barbera, D., Chen, H., Liu, Y.: On creep fatigue interaction of components at elevated temperature. J. Press. Vessel Technol. 138(4), 041403–041403 (2016)

    Article  Google Scholar 

  26. Bradford, R.A.W., Ure, J., Chen, H.F.: The Bree problem with different yield stresses on-load and off-load and application to creep ratcheting. Int. J. Press. Vessels Pip. 113, 32–39 (2014)

    Article  Google Scholar 

  27. O’Donnel, W., Porowski, J.: Upper bounds for accumulated strains due to creep ratcheting. WRC Bull. 195, 57–62 (1974)

    Google Scholar 

  28. Spiliopoulos, K.V., Panagiotou, K.D.: A residual stress decomposition based method for the shakedown analysis of structures. Comput. Methods Appl. Mech. Eng. 276, 410–430 (2014)

    Article  Google Scholar 

  29. Peng, H., Liu, Y., Chen, H.: Shakedown analysis of elastic-plastic structures considering the effect of temperature on yield strength: theory, method and applications. Eur. J. Mech. A. Solids 73, 318–330 (2019)

    Article  MathSciNet  Google Scholar 

  30. Chen, H.F., Ponter, A.R.S., Ainsworth, R.A.: The linear matching method applied to the high temperature life integrity of structures. Part 1. Assessments involving constant residual stress fields. Int. J. Pressure Vessels Pip. 83(2), 123–135 (2006)

    Google Scholar 

  31. Chen, H.F., Ponter, A.R.S., Ainsworth, R.A.: The linear matching method applied to the high temperature life integrity of structures. Part 2. Assessments beyond shakedown involving changing residual stress fields. Int. J. Pressure Vessels Pip. 83(2), 136–147 (2006)

    Google Scholar 

  32. Barbera, D., et al.: Recent developments of the linear matching method framework for structural integrity assessment. J. Pressure Vessel Technol. 139(5), 051101–051101-9 (2017)

    Google Scholar 

  33. Charbal, A., I.S.C., Vermaak, N.: Multiaxial shakedown analysis of structures using stereo digital image correlation. Submitted (2019)

    Google Scholar 

  34. Heitzer, M., et al.: Shakedown and ratchetting under tension–torsion loadings: analysis and experiments. Nucl. Eng. Des. 225(1), 11–26 (2003)

    Article  Google Scholar 

  35. ASTM International.: E8/E8M-09 Standard test methods for tension testing of metallic materials. West Conshohocken, PA; ASTM International (2009). https://doi.org/10.1520/E0008_E0008M-09

  36. Beaubier, B., et al.: CAD-based calibration and shape measurement with stereo DIC. Exp. Mech. 54(3), 329–341 (2014)

    Article  Google Scholar 

  37. Dufour, J.-E., et al.: CAD-based displacement measurements with stereo-DIC. Exp. Mech. 55(9), 1657–1668 (2015)

    Article  Google Scholar 

  38. Charbal, A., C.I.S., Hild, F., Roux, S., Vermaak, N.: Stereo-DIC formalism considering brightness and contrast effects: application to torsional loadings. Under review (2019)

    Google Scholar 

  39. Koiter, W.T.: General theorems for elastic-plastic solids. North-Holland Amsterdam (1960)

    Google Scholar 

  40. Chen, H., Chen, W., Ure, J.: A direct method on the evaluation of cyclic steady state of structures with creep effect. J. Press. Vessel Technol. 136(6), 061404–061404 (2014)

    Article  Google Scholar 

  41. Chen, H., Ponter, A.R.: Linear matching method on the evaluation of plastic and creep behaviours for bodies subjected to cyclic thermal and mechanical loading. Int. J. Numer. Meth. Eng. 68(1), 13–32 (2006)

    Article  Google Scholar 

  42. Barbera, D., Chen, H., Liu, Y.: Creep-fatigue behaviour of aluminum alloy-based metal matrix composite. Int. J. Press. Vessels Pip. 139, 159–172 (2016)

    Article  Google Scholar 

  43. Gorash, Y., Chen, H.: Creep-fatigue life assessment of cruciform weldments using the linear matching method. Int. J. Press. Vessels Pip. 104, 1–13 (2013)

    Article  Google Scholar 

  44. Yoshida, F.: Uniaxial and biaxial creep-ratcheting behavior of SUS304 stainless steel at room temperature. Int. J. Press. Vessels Pip. 44(2), 207–223 (1990)

    Article  MathSciNet  Google Scholar 

  45. Hassan, T., Taleb, L., Krishna, S.: Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plast. 24(10), 1863–1889 (2008)

    Article  Google Scholar 

  46. Cho, N.-K., Chen, H.: Cyclic plasticity behavior of 90° back-to-back pipe bends under cyclic bending and steady pressure. In: 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers Digital Collection (2018)

    Google Scholar 

Download references

Acknowledgements

Dr. Barbera gratefully acknowledges the support of the University of Glasgow and the Vermaak Lab’s experimental work was supported, in part, by the Air Force Office of Scientific Research (AFOSR) under award number FA9550-16-1-0438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Barbera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barbera, D., Charbal, A., Soner Cinoglu, I., Vermaak, N. (2021). Investigations of Shakedown in the Presence of Ambient Creep Using Direct Methods for High Strength Steel Under Multiaxial Loadings. In: Pisano, A., Spiliopoulos, K., Weichert, D. (eds) Direct Methods. Lecture Notes in Applied and Computational Mechanics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-48834-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48834-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48833-8

  • Online ISBN: 978-3-030-48834-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation