Optical Fiber Sensors

  • Chapter
  • First Online:
Biomedical Optical Sensors

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 503 Accesses

Abstract

Fiber optics represents a platform suitable for the monitoring of numerous physical properties. In biology and medicine, optical fibers have found a range of applications ranging from diagnosis to therapy such as cavitational and endoscopic laser surgery. This chapter reviews optical fibers and their wealth of applications in biomedical sensing: from cellular microenvironment to pH, gas, temperature, pressure, and blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Abraham, S.E. Fink, D.R. Markle, G. Pinholster, M. Tsang, Continuous monitoring of tissue pH with a fiberoptic conjunctival sensor. Ann. Emerg. Med. 14, 840–844 (1985)

    Article  Google Scholar 

  2. F.P. Anderson, W.G. Miller, Fiber optic immunochemical sensor for continuous, reversible measurement of phenytoin. Clin. Chem. 34, 1417–1421 (1988)

    Article  Google Scholar 

  3. R.M. André, C.R. Biazoli, S.O. Silva, M.B. Marques, C.M.B. Cordeiro, O. Frazão, Strain-temperature discrimination using multimode interference in tapered fiber. IEEE Photonics Technol. Lett. 25, 155–158 (2013)

    Article  Google Scholar 

  4. J.W. Arkwright, I.D. Underhill, S.A. Maunder, N. Blenman, M.M. Szczesniak, L. Wiklendt, I.J. Cook, D.Z. Lubowski, P.G. Dinning, Design of a high-sensor count fibre optic manometry catheter for in-vivo colonic diagnostics. Opt. Express 17, 22423–22431 (2009)

    Article  Google Scholar 

  5. J.W. Arkwright, N.G. Blenman, I.D. Underhill, S.A. Maunder, M.M. Szczesniak, P.G. Dinning, I.J. Cook, In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders. Opt. Express 17, 4500–4508 (2009)

    Google Scholar 

  6. J.W. Arkwright, N.G. Blenman, I.D. Underhill, S.A. Maunder, N.J. Spencer, M. Costa, S.J. Brookes, M.M. Szczesniak, P.G. Dinning, A fibre optic catheter for simultaneous measurement of longitudinal and circumferential muscular activity in the gastrointestinal tract. J. Biophotonics 4(4), 244–251 (2011)

    Article  Google Scholar 

  7. F. Baldini, P. Bechi, S. Bracci, F. Cosi, F. Pucciani, In vivo optical-fibre pH sensor for gastro-oesophageal measurements. Sens. Actuators B Chem. 29, 164–168 (1995)

    Google Scholar 

  8. F. Baldini, S. Bracci, F. Cosi, P. Bechi, F. Pucciani, Controlled-pore glasses embedded in plastic optical fibers for gastric pH sensing purposes. Appl. Spectrosc. 48, 549–552 (1994)

    Article  Google Scholar 

  9. F. Baldini, L. Ciaccheri, A. Falai, A.G. Mignani, J. Rayss, G. Sudolski, Thymol blue immobilized on tapered fibres as an optical transducer for pH sensing. Chem. Biochem. Environ. Fiber Sens. X 3540, 28–33 (1999)

    Article  Google Scholar 

  10. M. Becker, M. Rothhardt, K. Schröder, S. Voigt, J. Mehner, A. Teubner, T. Lüpke, C. Thieroff, M. Krüger, C. Chojetzki, Characterization of fiber Bragg grating-based sensor array for high resolution manometry. Proc. SPIE 8439 (2012)

    Google Scholar 

  11. E. Benito-Pane, M. Granda Valdes, B. Glahn-Martinez, M.C. Moreno Bondi, Fluorescence based fiber optic and planar waveguide biosensors. A review. Anal. Chim. Acta 943, 17–40 (2016)

    Google Scholar 

  12. R.P. Betts, T. Duckworth, I.G. Austin, S.P. Crocker, S. Moore, Critical light reflection at a plastic/glass interface and its application to foot pressure measurements. J. Med. Eng. Technol. 4(3), 136–142 (1980)

    Article  Google Scholar 

  13. T.A. Birks, Y.W. Li, The shape of fiber tapers. J. Lightwave Technol. 10, 432–438 (1992)

    Article  Google Scholar 

  14. D.R. Biswas, Optical fiber coatings for biomedical applications. Opt. Eng. 31(7), 1400 (1992)

    Article  Google Scholar 

  15. S.M. Borisov, O.S. Wolfbeis, Optical biosensors. Chem. Rev. 108(2), 423–461 (2008)

    Article  Google Scholar 

  16. G. Brambilla, Optical fibre nanowires and microwires: a review. J. Opt. 12, 043001 (2010)

    Article  Google Scholar 

  17. G. Brambilla, E. Koizumi, X. Feng, D.J. Richardson, Compound-glass optical nanowires. Electron. Lett. 41, 400–402 (2005)

    Article  Google Scholar 

  18. M. Brenci, G. Conforti, R. Falciai, A.G. Mignani, A.M. Scheggi, All-fibre temperature sensor. Int. J. Opt. Sens. 1 (1986)

    Google Scholar 

  19. I.L. Bundalo, R. Lwin, L. Leon-Saval, A. Argyros, All-plastic fiber-based pressure sensor. Appl. Opt. 55(4), 811–816 (2016)

    Article  Google Scholar 

  20. Y. Chen, Y. Ming, W. Guo, F. Xu, Y.-Q. Lu, Temperature characteristics of microfiber coil resonators embedded in Teflon, in Passive Components and Fiber-Based Devices VIII, Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics (2012), p. 830711-1-4

    Google Scholar 

  21. Y. Chen, F. Xu, Y.Q. Lu, Teflon-coated microfiber resonator with weak temperature dependence. Opt. Express 19, 22923–22928 (2011)

    Article  Google Scholar 

  22. E. Cibula, D. Donlagic, Miniature fiber-optic pressure sensor with a polymer diaphragm. Appl. Opt. 44(14), 2736–2744 (2005)

    Article  Google Scholar 

  23. E. Cibula, S. Pevec, B. Lenardič, É. Pinet, D. Donlagic, Miniature all-glass robust pressure sensor. Opt. Express 17(7), 5098–5106 (2009)

    Article  Google Scholar 

  24. T. Cižmár, K. Dholakia, Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012)

    Article  Google Scholar 

  25. P.S. Cottler, W.R. Karpen, D.A. Morrow, K.R. Kaufman, Performance characteristics of a new generation pressure microsensor for physiologic applications. Ann. Biomed. Eng. 37(8), 1638–1645 (2009)

    Google Scholar 

  26. A.G. Crenshaw, J.R. Styf, S.J. Mubarak, A.R. Hargens, A new “transducer-tipped” fiber optic catheter for measuring intramuscular pressures. J. Orthop. Res. 8(3), 464–468 (1990)

    Article  Google Scholar 

  27. B.M. Cullum, G.D. Griffin, G.H. Miller, T. Vo-Dinh, Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal. Biochem. 277, 25–32 (2000)

    Article  Google Scholar 

  28. C.M. Davis, E.F. Carome, M.H. Weik, S. Ezekiel, R.E. Einzig, Fiber Optic Sensor Technology Handbook (Dynamic Systems, Reston, Virginia, 1982)

    Google Scholar 

  29. R.A. De Blasi, G. Conti, M. Antonelli, M. Bufi, A. Gasparetto, A fibre optics system for the evaluation of airway pressure in mechanically ventilated patients. Intensive Care Med. 18(7), 405–409 (1992)

    Article  Google Scholar 

  30. F.F.M. de Mul, L. Scalise, A.L. Petoukhova, M. van Herwijnen, P. Moes, W. Steenbergen, Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis. Appl. Opt. 41(4), 658–667 (2002)

    Article  Google Scholar 

  31. M. Ding, P.F. Wang, G. Brambilla, A microfiber coupler tip thermometer. Opt. Express 20, 5402–5408 (2012)

    Article  Google Scholar 

  32. P.G. Dinning, L. Wiklendt, I. Gibbins, V. Patton, P. Bampton, D.Z. Lubowski, I.J. Cook, J.W. Arkwright, Low-resolution colonic manometry leads to a gross misinterpretation of the frequency and polarity of propagating sequences: Initial results from fiber-optic high-resolution manometry studies. Neurogastroenterol. Motil. 25, 640–649 (2013)

    Google Scholar 

  33. A.W. Domanski, T.R. Wolinski, W. Borys, Fiber-optic liquid crystalline high-sensitivity temperature sensor. SPIE Proc. Fiber Opt. Laser Sensor VIII 1169, 573–581 (1990)

    Google Scholar 

  34. D. Donlagic, E. Cibula, All-fiber high-sensitivity pressure sensor with SiO2 diaphragm. Opt. Lett. 30(16), 2071–2073 (2005)

    Article  Google Scholar 

  35. J.M. Edmonson, History of the instruments for gastrointestinal endoscopy. Gastrointest. Endosc. 37, S27–S56 (1991)

    Article  Google Scholar 

  36. G. Emiliyanov, P.E. Hoiby, L.H. Pedersen, O. Bang, Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 13(3), 3242–3251 (2013)

    Article  Google Scholar 

  37. T. Erdogan, Fiber grating spectra. J. Lightwave Technol. 15(8), 1277–1294 (1997)

    Article  Google Scholar 

  38. J. Feng, M. Ding, J.L. Kou, F. Xu, Y.Q. Lu, An optical fiber tip micrograting thermometer. IEEE Photonics J. 3, 810–814 (2011)

    Article  Google Scholar 

  39. J.A. Ferguson, T.C. Boles, C.P. Adams, D.R. Walt, A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat. Biotechnol. 14, 1681–1684 (1996)

    Article  Google Scholar 

  40. K.H. Frank, M. Kessler, K. Appelbaum, W. Dummler, The Erlangen micro-lightguide spectrophotometer EMPHO-I. Phys. Med. Biol. 34, 1883–1900 (1989)

    Article  Google Scholar 

  41. S.M. Gautier, L.J. Blum, P.R. Coulet, Multi-function fibre-optic sensor for bioluminescent flow determination of ATP or NADH. Anal. Chim. Acta 235, 243–253 (1990)

    Article  Google Scholar 

  42. J.L. Gehrich, D.W. Lubbers, N. Opitz, D.R. Hansmann, W.W. Miller, J.K. Tusa, M. Yafuso, Optical fluorescence and its application to an intravascular blood-gas monitoring-system. IEEE Trans. Biomed. Eng. 33, 117–132 (1986)

    Article  Google Scholar 

  43. T.G. Giallorenzi, J.A. Bucaro, A. Dandridge, G.H. Sigel, J.H. Cole, S.C. Rashleigh, R.G. Priest, Optical fiber sensor technology. IEEE J. Quantum Electron. 18, 626–665 (1982)

    Article  Google Scholar 

  44. D. Gloge, Weakly guiding fibers. Appl. Opt. 10, 2252–2258 (1971)

    Article  Google Scholar 

  45. K.T.V. Grattan, B.T. Meggitt, Optical Fiber Sensor Technology: Fundamentals (Kluwer Academic Publishers, Nertherlands, 2000)

    Book  Google Scholar 

  46. K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview. Sens. Actuators Phys. 82, 40–61 (2000)

    Article  Google Scholar 

  47. F.X. Gu, L. Zhang, X.F. Yin, L.M. Tong, Polymer single-nanowire optical sensors. Nano Lett. 8, 2757–2761 (2008)

    Article  Google Scholar 

  48. R.Y. Gu, R.N. Mahalati, J.M. Kahn, Design of flexible multi-mode fiber endoscope. Opt. Express 23(21), 26905–26918 (2015)

    Article  Google Scholar 

  49. M.L. Guo, J.C. Shi, B.J. Li, Polymer-based micro/nanowire structures for three-dimensional photonic integrations. Opt. Lett. 33, 2104–2106 (2008)

    Article  Google Scholar 

  50. T. Hansen, A fiberoptic micro-tip pressure transducer for medical applications. Sens. Actuators 4, 545–554 (1983)

    Article  Google Scholar 

  51. T. Hansen, A. Munkhaugen, Fiber-optic sensors for medical and electrotechnical applications using bifurcated fiber bundles. IEEE J. Quantum Electron. 17, 2530 (1981)

    Article  Google Scholar 

  52. J.Z. Hao, K.M. Tan, S.C. T**, C.Y. Liaw, P.R. Chaudhuri, X. Guo, C. Lu, Design of a foot-pressure monitoring transducer for diabetic patients based on FBG sensors, in The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003 (2003)

    Google Scholar 

  53. K. Harada, M. Tamura, M. Toyono, Noninvasive visualization and measurement of middle cardiac vein flow by transthoracic Doppler echocardiography. Pediatr. Cardiol. 27(6), 679–684 (2006)

    Article  Google Scholar 

  54. S.A. Harfenist, S.D. Cambron, E.W. Nelson, S.M. Berry, A.W. Isham, M.M. Crain, K.M. Walsh, R.S. Keynton, R.W. Cohn, Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers. Nano Lett. 4, 1931–1937 (2004)

    Article  Google Scholar 

  55. S.W. Harun, A.A. Jasim, H.A. Rahman, M.Z. Muhammad, H. Ahmad, Micro-ball lensed fiber-based glucose sensor. IEEE Photonics J. 13, 348–350 (2013)

    Google Scholar 

  56. S. Haxha, A. Teyeb, F.A. Malek, E.K. Akowuah, I. Dayoub, Design of environmental biosensor based on photonic crystal fiber with bends using finite element method. Opt. Photonics J. 5(3), 69–78 (2015)

    Article  Google Scholar 

  57. B.G. Healey, L. Li, D.R. Walt, Multianalyte biosensors on optical imaging bundles. Biosens. Bioelectron. 12, 521–529 (1997)

    Article  Google Scholar 

  58. P. Hilton, C.J. Mayne, Urethral pressure measurement: a comparison of profiles obtained by conventional and fibre-optic microtransducers. Neurol. Urodyn. 8(5), 481–489 (1989)

    Article  Google Scholar 

  59. T. Hirschfeld, F. Miller, S. Thomas, H. Miller, F. Milanovich, R.W. Gaver, Laser-fiber-optic optrode for real-time invivo blood carbon-dioxide level monitoring. J. Lightwave Technol. 5, 1027–1033 (1987)

    Article  Google Scholar 

  60. T. Hirshfeld, Total reflection fluorescence. Can. J. Spectrosc. 10, 128 (1965)

    Google Scholar 

  61. G.A. Holst, T. Koster, E. Voges, D.W. Lubbers, Flox—an oxygen-flux-measuring system using a phase-modulation method to evaluate the oxygen-dependent fluorescence lifetime. Sens. Actuators B Chem. 29, 231–239 (1995)

    Article  Google Scholar 

  62. H.H. Hopkins, N.S. Kapany, A flexible fiberscope using static scanning. Nature 173, 39–41 (1954)

    Article  Google Scholar 

  63. M. Hou, Y. Wang, S. Lui, J. Guo, Z. Li, P. Lu, Sensitivity-enhanced pressure sensor with hollow-core photonic crystal fiber. J. Lightwave Technol. 32(23), 4035–4039 (2014)

    Google Scholar 

  64. J.B. Jensen, P.E. Hoiby, G. Emiliyanov, O. Bang, L.H. Pedersen, A. Bjarklev, Selective detection of antibodies in microstructured polymer optical fibers. Opt. Express 13(15), 5883–5889 (2005)

    Article  Google Scholar 

  65. C.K. Ji, C.L. Zhao, J. Kang, X.Y. Dong, S.Z. **, Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating. Rev. Sci. Instrum. 83, 053109 (2012)

    Article  Google Scholar 

  66. J. Jung, H. Nam, J.H. Lee, N. Park, B. Lee, Simultaneous measurement of strain and temperature by use of a single-fiber Bragg grating and an erbium-doped fiber amplifier. Appl. Opt. 38, 2749–2751 (1999)

    Article  Google Scholar 

  67. F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Tsujioka, A study of coronary circulation by laser doppler velocimetry. Med. Prog. Technol. 12, 77–85 (1987)

    Article  Google Scholar 

  68. F. Kajiya, O. Hiramatsu, K. Mito, Y. Ogasawara, K. Mito, K. Tsujioka, An optical-fiber laser doppler-velocimeter and its application to measurements of coronary blood-flow velocities, in Regulation of Coronary Blood Flow (Springer Japan KK, 1991), pp. 11–23

    Google Scholar 

  69. N.S. Kapany, N. Silbertrust, Fiber optics spectrophotometer for in-vivo oximetry. Nature 204, 138–142 (1964)

    Article  Google Scholar 

  70. P.M. Kasili, J.M. Song, T. Vo-Dinh, Optical sensor for the detection of caspase-9 activity in a single cell. J. Am. Chem. Soc. 126, 2799–2806 (2004)

    Article  Google Scholar 

  71. R.M. Kasili, B.M. Cullum, G.D. Griffin, T. Vo-Dinh, Nanosensor for in vivo measurement of the carcinogen benzo[a]pyrene in a single cell. J. Nanosci. Nanotechnol. 2, 653–658 (2002)

    Article  Google Scholar 

  72. D. Kilpatrick, F. Kajiya, Y. Ogasawara, Fibre optic laser Doppler measurement of intravascular velocity. Australas. Phys. Eng. Sci. Med. 11, 5–14 (1988)

    Google Scholar 

  73. Y. Kim, S. Warren, J. Knight, M. Neil, C. Paterson, J. Stone, C. Dunsby, P. French, Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber. IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016)

    Article  Google Scholar 

  74. Y. Kim, S. Warren, F. Favero, J. Stone, J. Clegg, M. Neil, C. Paterson, J. Knight, P. French, C. Dunsby, Semi-random multicore fibre design for adaptive multiphoton endoscopy. Opt. Lett. 26(3), 3661–3673 (2018)

    Google Scholar 

  75. R. Kist, S. Drope, H. Wolfelschneider, Fiber-Fabry-Perot (FFP) thermometer for medical applications. Proc. Soc. Photo Opt. Instrum. Eng. 514, 165–170 (1984)

    Google Scholar 

  76. K. Kobayashi, H. Okuyama, T. Kato, T. Yasuda, Fiberoptic catheter-tip micromanometer. Iyodenshi To Seitai Kogaku 15(7), 465–472 (1977)

    Google Scholar 

  77. J.L. Kou, J. Feng, L. Ye, F. Xu, Y.Q. Lu, Miniaturized fiber taper reflective interferometer for high temperature measurement. Opt. Express 18, 14245–14250 (2010)

    Article  Google Scholar 

  78. J.L. Kou, S.J. Qiu, F. Xu, Y.Q. Lu, Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt. Express 19, 18452–18457 (2011)

    Article  Google Scholar 

  79. V.I. Krasovskii, I.N. Feofanov, P.I. Ivashkin, M.A. Kazaryan, A fiber-optic Doppler blood flow-velocity sensor. St. Petersburg Polytech. Univ. J. Phys. Math. 3(1), 35–38 (2017)

    Google Scholar 

  80. M.N. Kronick, W.A. Little, A new immunoassay based on fluorescence excitation by internal reflection spectroscopy. J. Immunol. Methods 1975, 235–240 (1975)

    Article  Google Scholar 

  81. C.M. Lawson, V.J. Tekippe, Fiber-optic diaphragm-curvature pressure transducer. Opt. Lett. 8, 286–288 (1983)

    Article  Google Scholar 

  82. A. Lekholm, L.H. Lindström, Optoelectronic transducer for intravascular measurements of pressure variations. Med. Biol. Eng. Comput. 7(3), 333–335 (1969)

    Article  Google Scholar 

  83. S.G. Leon-Saval, T.A. Birks, J. Bland-Hawthorn, M. Englund, Multimode fiber devices with single-mode performance. Opt. Lett. 30(19), 2545–2547 (2005)

    Article  Google Scholar 

  84. S.G. Leon-Saval, N.K. Fontaine, R. Amezcua-Correa, Photonic lantern as mode multiplexer for multimode optical communications. Opt. Fiber Technol. 35, 46–55 (2017)

    Article  Google Scholar 

  85. A. Leung, P. Mohana Shankar, R. Mutharasan, A review of fiber-optics biosensors. Sens. Actuators B: Chem. 125(2), 688–703 (2007)

    Article  Google Scholar 

  86. Q. Li, S.S. Wang, Y.T. Chen, M. Yan, L.M. Tong, M. Qiu, Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550-nm wavelength. IEEE J. Sel. Top. Quantum Electron. 17, 1107–1111 (2011)

    Article  Google Scholar 

  87. L.H. Lindström, Miniaturized pressure transducer intended for intravascular use. IEEE Trans. Bio-Med. Eng. BME-17(3), 207–219 (1970)

    Google Scholar 

  88. X.J. Liu, W. Farmerie, S. Schuster, W.H. Tan, Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions. Anal. Biochem. 283, 56–63 (2000)

    Article  Google Scholar 

  89. P. Lu, J. Harris, Y. Xu, Y. Lu, L. Chen, X. Bao, Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer. Opt. Lett. 37, 4567–4569 (2012)

    Article  Google Scholar 

  90. P. Lu, L.Q. Men, K. Sooley, Q.Y. Chen, Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 94, 131110 (2009)

    Article  Google Scholar 

  91. D.W. Lubbers, Chemical in vivo monitoring by optical sensors in medicine. Sens. Actuators B Chem. 11, 253–262 (1993)

    Article  Google Scholar 

  92. E.C. Magi, L.B. Fu, H.C. Nguyen, M.R.E. Lamont, D.I. Yeom, B.J. Eggleton, Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Opt. Express 15, 10324–10329 (2007)

    Article  Google Scholar 

  93. R.N. Mahalati, R.Y. Gu, J.M. Kahn, Resolution limits for imaging through multi-mode fiber. Opt. Express 21(2), 1656–1668 (2013)

    Article  Google Scholar 

  94. M. Makiniemi, H. Kopola, K. Oikarinen, E. Herrala, A novel fibre optic dental pulp vitalometer, in Proceedings of Medical Sensors II and Fiber Optic Sensors, vol. 2331 (1995), pp. 140–148

    Google Scholar 

  95. H. Matsumoto, M. Saegusa, K. Saito, K. Mizoi, Development of a fiber optic catheter tip pressure transducer. J. Med. Eng. Technol. 2, 239–242 (1978)

    Article  Google Scholar 

  96. M.J. Milano, K.Y. Kim, Diode array spectrometer for the simultaneous determination of hemoglobin in whole blood. Anal. Chem. 49, 555–561 (1977)

    Article  Google Scholar 

  97. A. Mills, A. Lepre, L. Wild, Breath-by-breath measurement of carbon dioxide using a plastic film optical sensor. Sens. Actuators B Chem. 39, 419–425 (1997)

    Article  Google Scholar 

  98. K. Mito, Y. Ogasawara, O. Hiramatsu, K. Tsujioka, F. Kajiya, A laser Doppler catheter for monitoring both phase and mean coronary vein flow. Heart Vessels 6(1), 1–8 (1990)

    Article  Google Scholar 

  99. K. Mito, Y. Ogasawara, O. Hiramatsu, Y. Wada, K. Tsujioka, F. Kajiya, Evaluation of blood flow velocity waveforms in intramyocardial artery and vein by laser Doppler velocimeter with an optical fiber, in Microcirculation in Circulatory Disorders, ed. by H. Manabe, B.W. Zweifach, K. Messmer (Springer, Tokyo, 1988), pp. 525–528

    Chapter  Google Scholar 

  100. S. Morikawa, Fiberoptic catheter-tip pressure transducer. Iyodenshi To Seitai Kogaku 10(1), 36–39 (1972)

    Google Scholar 

  101. M. Nakhostine, J.R. Styf, S. van Leufen, A.R. Hargens, D.H. Gershuni, Intramuscular pressure varies with depth: the tibialis anterior muscle studied in 12 volunteers. Acta Orthop. Scand. 64(3), 377–381 (1993)

    Article  Google Scholar 

  102. A.S. Nain, J.C. Wong, C. Amon, M. Sitti, Drawing suspended polymer micro-/nanofibers using glass micropipettes. Appl. Phys. Lett. 89, 183105–183107 (2006)

    Article  Google Scholar 

  103. E.J. Netto, J.I. Peterson, M. Mcshane, V. Hampshire, A fiber-optic broad-range pH sensor system for gastric measurements. Sens. Actuators B Chem. 29, 157–163 (1995)

    Article  Google Scholar 

  104. M. Norgia, A. Pesatori, L. Rovati, Self-mixing laser Doppler: a model for extracorporeal blood flow measurement, in 2010 IEEE Instrumentation and Measurement Technology Conference (I2MTC), Austin, TX, pp. 304–307, 3–6 May 2010

    Google Scholar 

  105. M. Norgia, A. Pesatori, L. Rovati, Self-mixing laser Doppler spectra of extracorporeal blood flow: a theoretical and experimental study. IEEE Sens. J. 12, 552–557 (2012)

    Article  Google Scholar 

  106. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press Ed., 2000)

    Google Scholar 

  107. R.C. Ostrup, T.G. Luerssen, L.F. Marshall, M.H. Zornow, Continuous monitoring of intracranial pressure with a miniaturized fiberoptic device. J. Neurosurg. 67(2), 206–209 (1987)

    Article  Google Scholar 

  108. C. Ovren, M. Adolfsson, B. Hok, Fiberoptic systems for temperature and vibration measurements in industrial applications. Opt. Lasers Eng. 5 (1984)

    Google Scholar 

  109. J.I. Peterson, R.V. Fitzgerald, D.K. Buckhold, Fiber-optic probe for in vivo measurement of oxygen partial pressure. Anal. Chem. 56, 62–67 (1984)

    Article  Google Scholar 

  110. E. Pinet, A. Pham, S. Rioux, Miniature fiber optic pressure sensor for medical applications: an opportunity for intra-aortic balloon pum** (IABP) therapy, in Proceedings SPIE Volume 5855, 17th International Conference on Optical Fibre Sensors (2005). https://doi.org/10.1117/12.623806

  111. M. Plaschke, M. Geyer, J. Reichert, H.J. Ache, Submicron fiber-optic sensors for calcium-ions and pH with internal calibration. Chem. Biochem. Environ. Fiber Sens. IX 3105, 31–37 (1997)

    Article  Google Scholar 

  112. N. Pleros, G.T. Kanellos, G. Papaioannou, Optical fiber sensors in orthopedic biomechanics and rehabilitation, in 9th International Conference on Information Technology and Applications in Biomedicine, 2009. ITAB 2009 (2010). https://doi.org/10.1109/itab.2009.5394386

  113. S. Poeggel, D. Tosi, D. Duraibabu, G. Leen, D. McGrath, E. Lewis, Optical fibre pressure sensors in medical applications. Sensors 15, 17115–17148 (2015)

    Article  Google Scholar 

  114. G. Rajan, S. Mathews, G. Farrell, Y. Semenova, A liquid crystal coated tapered photonic crystal fiber interferometer. J. Opt. 13, 015403 (2011)

    Article  Google Scholar 

  115. Y.J. Rao, B. Hurle, D.J. Webb, D.A. Jackson, L. Zhang, I. Bennion, In-situ temperature monitoring in NMR machines with a prototype in-fiber Bragg grating sensor system, in 12th Optical Fiber Sensors (OFS-12), Williamsburg (1997)

    Google Scholar 

  116. L. Rindorf, J.B. Jensen, M. Dufva, L.H. Pedersen, P.E. Høiby, O. Bang, Photonic crystal fiber long-period gratings for biochemical sensing. Opt. Express 14, 8224–8231 (2006)

    Article  Google Scholar 

  117. L. Rindorf, O. Bang, Highly sensitive refractometer with a photonic-crystal-fiber long-period grating. Opt. Lett. 33, 563–565 (2008)

    Article  Google Scholar 

  118. P. Roriz, O. Frazao, A.B. Lobo-Ribeiro, J.L. Santos, J.A. Simoes, Review of fiber-optic pressure sensors for biomedical and biomechanical applications. J. Biomed. Opt. 18(5), 050903 (2013)

    Article  Google Scholar 

  119. Z. Rosenzweig, R. Kopelman, Development of a submicrometer optical-fiber oxygen sensor. Anal. Chem. 67, 2650–2654 (1995)

    Article  Google Scholar 

  120. P. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  Google Scholar 

  121. E. Samset, T. Mala, R. Ellingsen, I. Gladhaug, O. Søreide, E. Fosse, Temperature measurement in soft tissue using a distributed fibre Bragg-grating sensor system. Minim. Invasive Ther. Allied Technol. 10(2), 89–93 (2009)

    Article  Google Scholar 

  122. C. Scoggin, L. Nett, T.L. Petty, Clinical evaluation of a new ear oximeter. Heart Lung 6, 121–126 (1977)

    Google Scholar 

  123. A.B. Seddon, A prospective for new mid-infrared medical endoscopy using chalcogenide glasses. Int. J. Appl. Glass Sci. 2(3), 177–191 (2011)

    Article  Google Scholar 

  124. O.M. Sejersted, A.R. Hargens, K.R. Kardel, P. Blom, O. Jensen, L. Hermansen, Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J. Appl. Physiol. 56(2), 287–295 (1984)

    Article  Google Scholar 

  125. Y. Semenova, L. Bo, S. Mathews, P. Wang, Q. Wu, G. Farrell, Spectral tuning of a microfiber coupler with a liquid crystal overlay, in OFS 22nd International Conference on Optical Fiber Sensors (2012), p. 842184-1-4

    Google Scholar 

  126. R. Singh, A.J. Ranieri Jr., H.R. Vest Jr., D.L. Bowers, J.F. Dammann Jr., Simultaneous determinations of cardiac output by thermal dilution, fiberoptic and dye-dilution methods. Am. J. Cardiol. 25(5), 579–587 (1970)

    Article  Google Scholar 

  127. A.W. Snyder, Asymptotic expression for eigenfunctions and eigenvalues of dielectric optical waveguides. IEEE Trans. Microw. Theory Tech. MTT-17, 1130–1138 (1969)

    Google Scholar 

  128. A.W. Snyder, R.M. De La Rue, Asymptotic solution of eigenvalue equations for surface waveguide structures. IEEE Trans. MTT MTT-18, 650–651 (1970)

    Google Scholar 

  129. A.W. Snyder, J.D. Love, Optical Waveguide Theory (Springer ed., 1983)

    Google Scholar 

  130. A.B. Socorro, I. Del Villar, J.M. Corres, F.J. Arregui, I.R. Matias, Tapered single-mode optical fiber pH sensor based on lossy mode resonances generated by a polymeric thin-film. IEEE Sens. J. 12, 2598–2603 (2012)

    Article  Google Scholar 

  131. S. Sondergaard, S. Karason, A. Hanson, K. Nilsson, S. Hojer, S. Lundin, O. Stenqvist, Direct measurement of intratracheal pressure in pediatric respiratory monitoring. Pediatr. Res. 51(3), 339–345 (2002)

    Article  Google Scholar 

  132. S. Sondergaard, S. Karason, S. Lundin, O. Stenqvist, Fibre-optic measurement of tracheal pressure in paediatric endotracheal tubes. Eur. J. Anaesthesiol. 18, 24–25 (2001)

    Article  Google Scholar 

  133. E. Stefansson, J.I. Peterson, Y.H. Wang, Intraocular oxygen-tension measured with a fiber-optic sensor in normal and diabetic dogs. Am. J. Physiol. 256, H1127–H1133 (1989)

    Google Scholar 

  134. A. Stiebeiner, R. Garcia-Fernandez, A. Rauschenbeutel, Design and optimization of broadband tapered optical fibers with a nanofiber waist. Opt. Express 18, 22677–22685 (2010)

    Article  Google Scholar 

  135. A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, A. Rauschenbeutel, Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber. Opt. Express 17, 21704–21711 (2009)

    Article  Google Scholar 

  136. L. Svennningsen, J. Øystein, Application of fiberoptics to the clinical measurement of intra-uterine pressure in labor journal. Acta Obstet. Gynecol. Scand. 65(6), 551–555 (1985)

    Article  Google Scholar 

  137. L. Svennningsen, J. Øystein, M.S. Dodgson, A fibreoptic pressure transducer for intrauterine monitoring, in Fetal Physiological Measurements (1986), pp. 15–21

    Google Scholar 

  138. G.A. Tait, R.B. Young, G.J. Wilson, D.J. Steward, D.C. Macgregor, Myocardial pH during regional ischemia—evaluation of a fiber-optic photometric probe. Am. J. Physiol. 243, H027–H1031 (1982)

    Google Scholar 

  139. S. Takeuchi, H. Tohara, H. Kudo, K. Otsuka, H. Saito, H. Uematsu, K. Mitsubayashi, An optic pharyngeal manometric sensor for deglutition analysis. Biomed. Microdevice 9(6), 893–899 (2007)

    Article  Google Scholar 

  140. M. Takiguchi, Y. Yoshikawa, T. Yamamoto, K. Nakayama, T. Kuga, Saturated absorption spectroscopy of acetylene molecules with an optical nanofiber. Opt. Lett. 36, 1254–1256 (2011)

    Article  Google Scholar 

  141. W.H. Tan, Z.Y. Shi, S. Smith, D. Birnbaum, R. Kopelman, Submicrometer intracellular chemical optical fiber sensors. Science 258, 778–781 (1992)

    Article  Google Scholar 

  142. J.B. Taylor, B. Lown, M. Polanyi, In vivo monitoring with a fiber optic catheter. J. Am. Med. Assoc. 221(7), 667–673 (1972)

    Article  Google Scholar 

  143. K.F. Tham, S. Arulkumaran, S. Chua, C. Anandakumar, P. Singh, S.S. Ratnam, A comparison between fibreoptic and catheter-tip bridge strain gauge transducers for measurement of intrauterine pressure in labour. J. Obstet. Gynaecol. 17(1), 83–87 (1991)

    Google Scholar 

  144. Y. Tian, W.H. Wang, N. Wu, X.T. Zou, X.W. Wang, Tapered optical fiber sensor for label-free detection of biomolecules. Sensors 11, 3780–3790 (2011)

    Article  Google Scholar 

  145. A.K. Tomer, A. Singh, A. Gupta, Lasers in endoscopic surgery. Int. J. Prev. Clin. Dent. Res. 3(1), 55–57 (2015)

    Google Scholar 

  146. L.M. Tong, L.L. Hu, J.J. Zhang, J.R. Qiu, Q. Yang, J.Y. Lou, Y.H. Shen, J.L. He, Z.Z. Ye, Photonic nanowires directly drawn from bulk glasses. Opt. Express 14, 82–87 (2006)

    Article  Google Scholar 

  147. B.J. Tromberg, M.J. Sepaniak, T. Vo-Dinh, G.D. Griffin, Fiber-optic chemical sensors for competitive binding fluoroimmunoassay. Anal. Chem. 59, 1226–1230 (1987)

    Article  Google Scholar 

  148. C. Veilleux, R.J. Black, J. Lapierre, L.W. Reeves, Nematic liquid-crystal clad tapered optical fiber with temperature sensing properties. J. Appl. Phys. 67, 6648–6653 (1990)

    Article  Google Scholar 

  149. G. Vishnoi, T.C. Goel, P.K.C. Pillai, Spectrophotometric studies of chemical species using tapered core multimode optical fiber. Sens. Actuators B Chem. 45, 43–48 (1997)

    Article  Google Scholar 

  150. T. Vo-Dinh, Nanobiosensors: probing the sanctuary of individual living cells. J. Cell. Biochem. 154–161 (2002)

    Google Scholar 

  151. S. Voigt, M. Rothhardt, M. Becker, T. Lupke, C. Thieroff, A. Teubner, J. Mehner, Homogeneous catheter for esophagus high-resolution manometry using fiber Bragg gratings. Proc. SPIE 7559, 75590B (2010)

    Google Scholar 

  152. G.G. Wang, P.P. Shum, H.P. Ho, X. Yu, D.J.J. Hu, Y. Cui, L.M. Tong, C.L. Lin, Modeling and analysis of localized biosensing and index sensing by introducing effective phase shift in microfiber Bragg grating (mu FBG). Opt. Express 19, 8930–8938 (2011)

    Article  Google Scholar 

  153. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, A. Rauschenbeutel, Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. Opt. Express 15, 11952–11958 (2007)

    Article  Google Scholar 

  154. S.C. Warren, Y. Kim, J.M. Stone, C. Mitchell, J.C. Knight, M.A.A. Neil, C. Paterson, P.M.W. French, C. Dunsby, Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection. Opt. Express 24(19), 21474–21484 (2016)

    Article  Google Scholar 

  155. R.M. Watson, D.R. Markle, Y.M. Ro, S.R. Goldstein, D.A. Mcguire, J.I. Peterson, R.E. Patterson, Transmural pH gradient in canine myocardial ischemia. Am. J. Physiol. 246, H232–H238 (1984)

    Google Scholar 

  156. K.A. Wickersheim, M.H. Sun, Fiberoptic thermometry and its applications. J. Microw. Power Electromagn. Energy 22, 85–94 (1987)

    Article  Google Scholar 

  157. P.J. Wiejata, P.M. Shankar, R. Mutharasan, Fluorescent sensing using biconical tapers. Sens. Actuators B Chem. 96, 315–320 (2003)

    Article  Google Scholar 

  158. H.A.C. Wood, K. Harrington, T.A. Birks, J.C. Knight, J.M. Stone, High-resolution air-clad imaging fibers. Opt. Lett. 43(21), 5311–5314 (2018)

    Article  Google Scholar 

  159. X.B. **ng, Y.Q. Wang, B.J. Li, Nanofiber drawing and nanodevice assembly in poly(trimethylene terephthalate). Opt. Express 16, 10815–10822 (2008)

    Article  Google Scholar 

  160. B. Yang, W. Zhang, J. Zhou, H. Gui, L. Lu, B. Yu, Influence of external objects scattering property on self-mixing signal inside fiber laser. Opt. Int. J. Light Electron Opt. 125(9), 2160–2163 (2014)

    Article  Google Scholar 

  161. Y. Yang, Z. Ding, J. Meng, L. Wu, Z. He, T. Wu, M. Chen, Common path endoscopic optical coherence tomography with outside path length compensation. Proc. SPIE 6826, 68261S (2007)

    Google Scholar 

  162. F.J. Zhang, B. Wang, F.F. Pang, T.Y. Wang, A luminescent temperature sensor based on a tapered optical fiber coated with quantum dots. Opt. Sens. Biophotonics II 7990, 312–313 (2011)

    Google Scholar 

  163. L. Zhang, P. Wang, Y. **ao, H.K. Yu, L.M. Tong, Ultra-sensitive microfibre absorption detection in a microfluidic chip. Lab Chip 11, 3720–3724 (2011)

    Article  Google Scholar 

  164. X. Zhang, J. Li, Y. Li, W. Wang, F. Pang, Y. Liu, T. Wang, Sensing properties of intrinsic Fabry-Perot interferometers in fiber tapers, in OFS 22nd International Conference on Optical Fiber Sensors (2012), p. 842189-1-4

    Google Scholar 

  165. X.T. Zheng, C.M. Li, Single living cell detection of telomerase over-expression for cancer detection by an optical fiber nanobiosensor. Biosens. Bioelectron. 25, 1548–1552 (2010)

    Article  Google Scholar 

  166. S. Zhu, F.F. Pang, T.Y. Wang, Single-mode tapered optical fiber for temperature sensor based on multimode interference. Opt. Sens. Biophotonics III 8311, 83112B (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Brambilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, M., Brambilla, G. (2020). Optical Fiber Sensors. In: De La Rue, R., Herzig, H.P., Gerken, M. (eds) Biomedical Optical Sensors. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-48387-6_6

Download citation

Publish with us

Policies and ethics

Navigation