A Probabilistic Stress - Life Model for Fretting Fatigue of Aluminum Conductor Steel Reinforced Cable - Clamp Systems

  • Conference paper
  • First Online:
Engineering Assets and Public Infrastructures in the Age of Digitalization

Abstract

This paper presents a probabilistic analysis of a compilation of test data on the fatigue endurance of Aluminum Conductor Steel Reinforced (ACSR) cable–clamp systems. A brief review of the testing and measurement methods used to perform fatigue tests on conductors are described. Theoretical arguments based on the properties of extreme value distributions and random vibrations are presented which indicate that a Weibull S – N model is the most appropriate among models previously proposed in the literature for fatigue of ACSR cable – clamp systems. Predictions from the model are presented in terms of idealized stresses using bending amplitudes. Statistical tests are performed to verify that the Weibull distribution provides a good fit to the conductor fretting fatigue data. Validation datasets independent of the training dataset are used to evaluate the predictive ability of the model. The proposed probabilistic model is shown to be a reliable means of predicting the residual life of conductors subjected to aeolian vibrations for transmission line management and conductor replacement planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold, B.C., Castillo, E., Sarabia, J.M.: Conditional Specification of Statistical Models, 1st edn. Springer, New York (1999)

    MATH  Google Scholar 

  • Besag, J.: Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc.: Ser. B (Methodol.) 36(2), 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  • Bhattacharyya, A.: On some sets of sufficient conditions leading to the normal bivariate distribution. Sankhya: Indian J. Stat. (1933–1960) 6(4), 399–406 (1943)

    MathSciNet  MATH  Google Scholar 

  • Castillo, E.: Extreme value Theory in Engineering. Academic Press Inc., Carlifornia (1988)

    MATH  Google Scholar 

  • Castillo, E., Fernandez-Canteli, A.: A Unified Statistical Methodology for Modeling Fatigue Damage. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  • Castillo, E., Galambos, J.: Lifetime regression models based on a functional equation of physical nature. J. Appl. Probab. 24(1), 160–169 (1987)

    MathSciNet  MATH  Google Scholar 

  • CIGRE: Recommendation for the evaluation of the lifetime of transmission line conductors (Electra n 63) (1979)

    Google Scholar 

  • Cloutier, L., Goudrea, S., Cardou, A.: Fatigue of overhead conductors. In: Chan, J.K., Havard, D.G., Rawlins, C.B., Weisel, J. (eds.) EPRI Transmission Line Reference Book: Wind-induced Conductor Motion, 2nd edn. EPRI, Palo Alto (2006)

    Google Scholar 

  • Cousineau, D.: Fitting the three-parameter Weibull distribution: review and evaluation of existing and new methods. IEEE Trans. Dielectr. Electr. Insul. 16(1), 281–288 (2009). https://doi.org/10.1109/TDEI.2009.4784578

    Article  MathSciNet  Google Scholar 

  • Crowder, M.J., Kimber, A.C., Smith, R.L., Sweeting, T.J.: Statistical Analysis of Reliability Data. Springer Science+Business Media, Berlin (1991)

    Google Scholar 

  • D’Agostino, R.B., Stephens, M.A.: Goodnss of Fit Techniques. Marcel Dekker Inc., New York (1986)

    Google Scholar 

  • Fadel, A.A., Rosa, D., Murça, L.B., Fereira, J.L.A., Araújo, J.A.: Effect of high mean tensile stress on the fretting fatigue life of an Ibis steel reinforced aluminium conductor. Int. J. Fatigue 42, 24–34 (2012). https://doi.org/10.1016/j.ijfatigue.2011.03.007

    Article  Google Scholar 

  • Goudreau, S., Lévesque, F., Cardou, A., Cloutier, L.: Strain measurements on ACSR conductors during fatigue tests II - stress fatigue indicators. IEEE Trans. Power Delivery 25(4), 2997–3006 (2010). https://doi.org/10.1109/TPWRD.2010.2042083

    Article  Google Scholar 

  • Hanaki, S., Yamashita, M., Uchida, H., Zako, M.: On stochastic evaluation of S-N data based on fatigue strength distribution. Int. J. Fatigue 32(3), 605–609 (2010). https://doi.org/10.1016/j.ijfatigue.2009.06.001

    Article  Google Scholar 

  • Hardy, C., Leblond, A.: Statistical analysis of stranded conductor fatigue endurance data. Paper presented at the proceeding of the fourth international symposium on cable dynamics, Montreal, Canada (2001)

    Google Scholar 

  • Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications. Imperial Collge Press, London (2000)

    MATH  Google Scholar 

  • Marshall, A.W., Olkin, I.: Life Distributions. Springer, New York (2007)

    MATH  Google Scholar 

  • Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 3rd edn. Wiley, New York (2003)

    MATH  Google Scholar 

  • Noiseux, D.U., Hardy, C., Houle, S.: Statistical methods applied to aeolian vibrations of overhead conductors. J. Sound Vibr. 113(2), 245–255 (1986)

    Google Scholar 

  • Poffenberger, J.C., Swart, R.L.: Differential displacement and dynamic conductor strain. IEEE Trans. Power Apparatus Syst. 84(4), 281–289 (1965). https://doi.org/10.1109/TPAS.1965.4766192

    Article  Google Scholar 

  • Strohmeyer, C.E.: The determination of fatigue limits under alternating stress conditions. Paper presented at the proceedings of the Royal Society of London (1914)

    Google Scholar 

  • Suresh, S.: Fatigue of Materials, 2nd edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  • Thi-lien, D.: Analyse des essais a amplitudes variables realises sur le conducteur Aster 570, France (2015)

    Google Scholar 

  • Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

This research project was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada, Hydro – Quebec, Reseau de Transport d’Electricite and InnovEE Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwafemi O. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, O.O., Chouinard, L.E., Langlois, S. (2020). A Probabilistic Stress - Life Model for Fretting Fatigue of Aluminum Conductor Steel Reinforced Cable - Clamp Systems. In: Liyanage, J., Amadi-Echendu, J., Mathew, J. (eds) Engineering Assets and Public Infrastructures in the Age of Digitalization. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-48021-9_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48021-9_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48020-2

  • Online ISBN: 978-3-030-48021-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation