Dynamic Local Linear Neuro-Fuzzy Models

  • Chapter
Nonlinear System Identification
  • 3518 Accesses

Abstract

This chapter covers dynamic aspects specific to local model networks. The careful interpretation of the local model parameters, which can be understood as local gain and poles, is discussed. It is demonstrated that this interpretation might be dangerous in off-equilibrium regions. Also, the potentially strange effects of interpolating denominator polynomials are analyzed. It can be concluded that extreme care must be taken when models with output feedback are involved with local model architectures. Therefore, the author argues in favor of dynamics representations without output feedback such as NFIR or NOBF. Furthermore, the issue of stability is discussed where local model networks allow for a deeper analysis than alternative architectures. And finally, various more complex approaches known from linear system identification, such as the instrumental variable method or advanced noise models, are transferred to the nonlinear world via local model networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The offsets are not denoted as “c i” in order to avoid confusion with the validity function centers.

  2. 2.

    “Gain scheduling” is the commonly used terminology for parameter scheduling as well. The term “parameter scheduling” is seldom used although it is more exact.

  3. 3.

    The denominator polynomial is assumed to be N(q) = q n + a n−1 q n−1 + … + a 1 q + a 0 (by normalization a n = 1).

  4. 4.

    Approaches that are less sensitive to prior knowledge have been proposed. For example, the Laguerre pole can be estimated by nonlinear optimization, or from an initial NOBF model based on prior knowledge, a better choice for the pole can be found by model reduction techniques (this idea can be applied in an iterative manner). These ideas clearly require further investigation and are not pursued here because they are computationally more demanding than the calculation of a least squares solution.

References

  1. Ayoubi, M.: Nonlinear System Identification Based on Neural Networks with Locally Distributed Dynamics and Application to Technical Processes. Ph.D. Thesis, TU Darmstadt, Reihe 8: Mess-, Steuerungs- und Regelungstechnik, Nr. 591. VDI-Verlag, Düsseldorf (1996)

    Google Scholar 

  2. Ayoubi, M., Isermann, R.: Radial basis function networks with distributed dynamics for nonlinear dynamic system identification. In: European Congress on Intelligent Techniques and Soft Computing (EUFIT), pp. 631–635, Aachen, Germany (1995)

    Google Scholar 

  3. Ballé, P.: Methoden zur Fehlerdiagnose für nichtlineare Prozesse mit linearen parameterveränderlichen Modellen. Ph.D. Thesis, TU Darmstadt, Reihe 8: Mess-, Steuerungs- und Regelungstechnik. VDI-Verlag, Düsseldorf (2000)

    Google Scholar 

  4. Ballé, P., Fischer, M., Füssel, D., Nelles, O., Isermann, R.: Integrated control, diagnosis, and reconfiguration of a heat exchanger. IEEE Control Syst. Mag. 18(3), 52–63 (1998)

    Article  Google Scholar 

  5. Ballé, P., Nelles, O.: Fault detection for a heat exchanger based on a bank of local linear fuzzy models of subprocesses. In: IFAC Symposium on Artificial Intelligence in Real-Time Control (AIRTC), pp. 606–613, Kuala Lumpur, Malaysia (1997)

    Google Scholar 

  6. Ballé, P., Nelles, O., Füssel, D.: Fault detection on nonlinear processes based on local linear fuzzy models in parallel- and series-parallel mode. In: IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), pp. 1138–1143, Kingston upon Hull, UK (1997)

    Google Scholar 

  7. Baur, U.: On-line Parameterschätzverfahren zur Identifikation linearer, dynamischer Prozesse mit Prozeßrechner – Entwicklung, Vergleich, Erprobung. Ph.D. Thesis, Universität Stuttgart. KfK-PDV-Bericht-65, Kernforschungszentrum Karlsruhe (1976)

    Google Scholar 

  8. Belz, J., Münker, T., Heinz, T.O., Kampmann, G., Nelles, O.: Automatic modeling with local model networks for benchmark processes. In: Proceedings of the 20th IFAC World Congress, pp. 472–477, Toulouse, France (2017)

    Google Scholar 

  9. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics. SIAM, Philadelphia (1994)

    Google Scholar 

  10. Brown, M.D., Lightbody, D.G., Irwin, G.W.: Nonlinear internal model control using local model networks. IEE Proc. 144(6), 505–514 (1997)

    Google Scholar 

  11. Cao, S.G., Rees, N.W., Feng, G.: Analysis and design for a class of complex control systems – part I: fuzzy modelling and identification. Automatica 33(6), 1017–1028 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, T., Ljung, L.: Implementation of algorithms for tuning parameters in regularized least squares problems in system identification. Automatica 49(7), 2213–2220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chow, C.-M., Kuznetsov, A.G., Clarke, D.W.: Using multiple models in predictive control. In: European Control Conference (ECC), pp. 1732–1737, Rome, Italy (1995)

    Google Scholar 

  14. Fink, A., Fischer, M., Nelles, O.: Supervison of nonlinear adaptive controllers based on fuzzy models. In: IFAC World Congress, vol. Q, pp. 335–340, Bei**g, China (1999)

    Google Scholar 

  15. Fink, A., Nelles, O., Fischer, M.: Linearization based and local model based controller design. In: European Control Conference (ECC), Karlsruhe, Germany (1999)

    Google Scholar 

  16. Fischer, M.: Fuzzy-modellbasierte Regelung nichtlinearer Prozesse. Ph.D. Thesis, TU Darmstadt, Reihe 8: Mess-, Steuerungs- und Regelungstechnik, Nr. 750. VDI-Verlag, Düsseldorf (1999)

    Google Scholar 

  17. Fischer, M., Fink, A., Hecker, O., Pfeiffer, B.-M., Kofahl, R., Schumann, R.: Prädiktive Regelung eines Wärmetauschers auf der Basis on-line adaptierter Fuzzy-Modelle. Automatisierungstechnik 46(9), 426–434 (1998)

    Article  Google Scholar 

  18. Fischer, M., Isermann, R.: Neuro-Fuzzy-Modelle zur Integration theoretischer und experimenteller Modellbildung am Beispiel eines Kreuzstrom-Wärmeaustauschers. Automatisierungstechnik 47(5), 224–232 (1999)

    Article  Google Scholar 

  19. Fischer, M., Nelles, O.: Tuning of PID-controllers for nonlinear processes based on local linear fuzzy models. In: European Congress on Intelligent Techniques and Soft Computing (EUFIT), pp. 1891–1895, Aachen, Germany (1996)

    Google Scholar 

  20. Fischer, M., Nelles, O.: Fuzzy model-based predictive control of nonlinear processes with fast dynamics. In: International ICSC Symposium on Fuzzy Logic and Applications, pp. 57–63, Zürich, Switzerland (1997)

    Google Scholar 

  21. Fischer, M., Nelles, O., Fink, A.: Adaptive fuzzy model-based control. Journal A 39(3), 22–28 (1998)

    MATH  Google Scholar 

  22. Fischer, M., Nelles, O., Fink, A.: Predictive control based on local linear fuzzy models. Int. J. Syst. Sci. 28(7), 679–697 (1998)

    Article  MATH  Google Scholar 

  23. Fischer, M., Nelles, O., Isermann, R.: Adaptive predictive control based on local linear fuzzy models. In: IFAC Symposium on System Identification (SYSID), pp. 859–864, Kitakyushu, Fukuoka, Japan (1997)

    Google Scholar 

  24. Fischer, M., Nelles, O., Isermann, R.: Exploiting prior knowledge in fuzzy model identification of a heat exchanger. In: IFAC Symposium on Artificial Intelligence in Real-Time Control (AIRTC), pp. 445–450, Kuala Lumpur, Malaysia (1997)

    Google Scholar 

  25. Fischer, M., Nelles, O., Isermann, R.: Fuzzy model-based predictive control of a heat exchanger. In: IFAC Symposium on Artificial Intelligence in Real-Time Control (AIRTC), pp. 463–468, Kuala Lumpur, Malaysia (1997)

    Google Scholar 

  26. Fischer, M., Nelles, O., Isermann, R.: Adaptive predictive control of a heat exchanger based on a fuzzy model. Control Eng. Pract. (CEP) 6(6), 259–269 (1998)

    Google Scholar 

  27. Föllinger, O.: Nichtlineare Regelungen I, 7th edn. Oldenbourg-Verlag, München (1993)

    MATH  Google Scholar 

  28. Fortescue, T.R., Kershenbaum, L.S., Ydstie, B.E.: Implementation of self-tuning regulators with variable forgetting factor. Automatica 17, 831–835 (1981)

    Article  Google Scholar 

  29. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: MATLAB LMI Control Toolbox User’s Guide, Version 1.0. The MATHWORKS Inc., Natick, MA (1995)

    Google Scholar 

  30. Halfmann, C., Nelles, O., Holzmann, H.: Semi-physical modeling of the vertical vehicle dynamics. In: American Control Conference (ACC), pp. 1707–1711, San Diego, USA (1999)

    Google Scholar 

  31. He, X., Asada, H.: A new method for identifying orders of input-output models for nonlinear dynamic systems. In: American Control Conference (ACC), pp. 2520–2524, San Francisco, USA (1993)

    Google Scholar 

  32. Hecker, O., Nelles, O., Isermann, R.: Nonlinear system identification and predictive control of a heat exchanger based on local linear model trees. In: American Control Conference (ACC), pp. 3294–3299, Albuquerque, USA (1997)

    Google Scholar 

  33. Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: Modelling linear dynamical systems through generalized orthonormal basis functions. In: IFAC World Congress, vol. 5, pp. 19–22, Sydney, Australia (1993)

    Google Scholar 

  34. Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: A generalized orthonormal basis for linear dynamical systems. IEEE Trans. Autom. Control 40(3), 451–465 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Holzmann, H., Nelles, O., Halfmann, C., Isermann, R.: Vehicle dynamics simulation based on hybrid modeling. In: IEEE/ASME Conference on Advanced Intelligent Mechatronics, pp. 19–23, Atlanta, USA (1999)

    Google Scholar 

  36. Hunt, K.J., Kalkkuhl, J.C., Fritz, H., Johansen, T.A.: Constructive empirical modelling of longitudinal vehicle dynamics with local model networks. Control Eng. Pract. 4, 167–178 (1996)

    Article  Google Scholar 

  37. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for control systems: a survey. Automatica 28(6), 1083–1112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Isermann, R.: Identifikation dynamischer Syteme – Band 1, 2. ed. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  39. Isermann, R., Lachmann, K.-H., Matko, D.: Adaptive Control Systems. Prentice Hall, New York (1992)

    MATH  Google Scholar 

  40. Isermann, R., Ernst, S., Nelles, O.: Identification with dynamic neural networks – architectures, comparisons, applications –, plenary. In: IFAC Symposium on System Identification (SYSID), pp. 997–1022, Kitakyushu, Fukuoka, Japan (1997)

    Google Scholar 

  41. Johansen, T.A.: Fuzzy model based control: stability, robustness, and performance issues. IEEE Trans. Fuzzy Syst. 2, 221–234 (1994)

    Article  Google Scholar 

  42. Johansen, T.A.: Operating Regime Based Process Modeling and Identification. Ph.D. thesis, Dept. of Engineering Cybernetics, Norwegian Institute of Technology, Trondheim, Norway (1994)

    Google Scholar 

  43. Johansen, T.A., Hunt, K., Gawthrop, P.J., Fritz, H.: Off-equilibrium linearisation and design of gain scheduled control with application to vehicle speed control. Eng. Pract. 6, 167–180 (1998)

    Article  Google Scholar 

  44. Johansen, T.A., Hunt, K.J., Gawthrop, P.J.: Transient performance, robustness and off-equilibrium linearization in fuzzy gain scheduled control. In: Driankov, D., Palm, R. (eds.) Advances in Fuzzy Control, Studies in Fuzziness and Soft Computing, pp. 357–376. Physica-Verlag, Heidelberg (1998)

    MATH  Google Scholar 

  45. Kessel, J.A., Schmidt, M., Isermann, R.: Model-based control and monitoring of combustion engines. Motortechnische Zeitschrift MTZ Worldwide 7–9 (1998)

    Google Scholar 

  46. Kofahl, R.: Parameteradaptive Regelungen mit robusten Eigenschaften. Ph.D. Thesis, TU Darmstadt, FB MSR 39. Springer, Berlin (1988)

    Google Scholar 

  47. Lachmann, K.-H.: Parameteradaptive Regelalgorithmen für bestimmte Klassen nichtlinearer Prozesse mit eindeutigen Nichtlinearitäten. Ph.D. Thesis, TU Darmstadt, Reihe 8: Mess-, Steuerungs- und Regelungstechnik, Nr. 66. VDI-Verlag, Düsseldorf (1982)

    Google Scholar 

  48. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems, part 1: deterministic nonlinear systems. Int. J. Control 41, 303–344 (1985)

    Article  MATH  Google Scholar 

  49. Lindskog, P.: Methods, Algorithms and Tools for System Identification Based on Prior Knowledge. Ph.D. thesis, Linkö** University, Linkö**, Sweden (1996)

    Google Scholar 

  50. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  51. Martin, J.P.: Fuzzy stability analysis of fuzzy systems: a Lyapunov approach. In: Driankov, D., Palm, R. (eds.) Advances in Fuzzy Control, Studies in Fuzziness and Soft Computing, pp. 67–101. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  52. Miller, W.T., Sutton, R.S., Werbos, P.J.: Neural Networks for Control. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  53. Münker, T., Belz, J., Nelles, O.: Improved incorporation of prior knowledge for regularized FIR model identification. In: 2018 Annual American Control Conference (ACC), pp. 1090–1095, Milwaukee, WI. IEEE (2018)

    Google Scholar 

  54. Münker, T., Heinz, T.O., Nelles, O.: Regularized local FIR model networks for a Bouc-Wen and a Wiener-Hammerstein system. In: Workshop on Nonlinear System Identification Benchmarks, p. 33 (2017)

    Google Scholar 

  55. Münker, T., Nelles, O.: Local model network with regularized MISO finite impulse response models. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2016)

    Google Scholar 

  56. Münker, T., Nelles, O.: Nonlinear system identification with regularized local FIR model networks. In: 4th IFAC International Conference on Intelligent Control and Automation Science, pp. 61–66, Reims, France (2016)

    Google Scholar 

  57. Münker, T., Nelles, O.: Nonlinear system identification with regularized local fir model networks. Eng. Appl. Artif. Intell. 67, 345–354 (2018)

    Article  Google Scholar 

  58. Münker, T., Nelles, O.: Sensitive order selection via identification of regularized fir models with impulse response preservation. In: 2018 IFAC Symposium on System Identification (SYSID), vol. 51, pp. 197–202, Stockholm, Sweden. Elsevier (2018)

    Google Scholar 

  59. Münker, T., Peter, T., Nelles, O.: Gray-box identification with regularized FIR models. at-Automatisierungstechnik 66(9), 704–713 (2018)

    Google Scholar 

  60. Murray-Smith, R., Johansen, T.A. (eds.): Multiple Model Approaches to Modelling and Control. Taylor & Francis, London (1997)

    Google Scholar 

  61. Nelles, O.: On the identification with neural networks as series-parallel and parallel models. In: International Conference on Artificial Neural Networks (ICANN), pp. 255–260, Paris, France (1995)

    Google Scholar 

  62. Nelles, O.: Local linear model tree for on-line identification of time-variant nonlinear dynamic systems. In: International Conference on Artificial Neural Networks (ICANN), pp. 115–120, Bochum, Germany (1996)

    Google Scholar 

  63. Nelles, O.: LOLIMOT – Lokale, lineare Modelle zur Identifikation nichtlinearer, dynamischer Systeme. Automatisierungstechnik (at) 45(4), 163–174 (1997)

    Article  Google Scholar 

  64. Nelles, O.: Nonlinear system identification with neurofuzzy methods. In: Ruan, D. (ed.) Intelligent Hybrid Systems – Fuzzy Logic, Neural Networks, and Genetic Algorithms, chapter 12, pp. 283–310. Kluwer Academic Publishers, Boston, USA (1997)

    Google Scholar 

  65. Nelles, O.: Orthonormal basis functions for nonlinear system identification with local linear model trees (LOLIMOT). In: IFAC Symposium on System Identification (SYSID), pp. 667–672, Kitakyushu, Fukuoka, Japan (1997)

    Google Scholar 

  66. Nelles, O.: Structure optimization of Takagi-Sugeno fuzzy models. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 5(2), 161–170 (1998). Special Issue on Applications of New Functional Principles of Fuzzy Systems and Neural Networks within Computational Intelligence

    Google Scholar 

  67. Nelles, O.: Nonlinear System Identification with Local Linear Neuro-Fuzzy Models. Ph.D. Thesis, TU Darmstadt, Automatisierungstechnik series. Shaker Verlag, Aachen, Germany (1999)

    Google Scholar 

  68. Nelles, O., Ernst, S., Isermann, R.: Neuronale Netze zur Identifikation nichtlinearer, dynamischer Systeme: Ein Überblick. Automatisierungstechnik (at) 45(6), 251–262 (1997)

    Article  Google Scholar 

  69. Nelles, O., Fink, A., Isermann, R.: Local linear model trees (LOLIMOT) toolbox for nonlinear system identification. In: IFAC Symposium on System Identification (SYSID), Santa Barbara, USA (2000)

    Google Scholar 

  70. Nelles, O., Fischer, M.: Local linear model trees (LOLIMOT) for nonlinear system identification of a cooling blast. In: European Congress on Intelligent Techniques and Soft Computing (EUFIT), pp. 1187–1191, Aachen, Germany (1996)

    Google Scholar 

  71. Nelles, O., Fischer, M., Isermann, R.: Identification of fuzzy models for predictive control of nonlinear time-variant processes. In: IFAC Symposium on Artificial Intelligence in Real-Time Control (AIRTC), pp. 457–462, Kuala Lumpur, Malaysia (1997)

    Google Scholar 

  72. Nelles, O., Hecker, O., Isermann, R.: Automatic model selection in local linear model trees for nonlinear system identification of a transport delay process. In: IFAC Symposium on System Identification (SYSID), pp. 727–732, Kitakyushu, Fukuoka, Japan (1997)

    Google Scholar 

  73. Nelles, O., Hecker, O., Isermann, R.: Automatische Strukturselektion für Fuzzy-Modelle zur Identifikation nichtlinearer, dynamischer Prozesse. Automatisierungstechnik (at) 46(6), 302–312 (1998)

    Article  Google Scholar 

  74. Nelles, O., Isermann, R.: Identification of nonlinear dynamic systems – classical methods versus radial basis function networks. In: American Control Conference (ACC), pp. 3786–3790, Seattle, USA (1995)

    Google Scholar 

  75. Nelles, O., Isermann, R.: Basis function networks for interpolation of local linear models. In: IEEE Conference on Decision and Control (CDC), pp. 470–475, Kobe, Japan (1996)

    Google Scholar 

  76. Nelles, O., Sinsel, S., Isermann, R.: Local basis function networks for identification of a turbocharger. In: IEE UKACC International Conference on Control, pp. 7–12, Exeter, UK (1996)

    Google Scholar 

  77. Peter, T., Nelles, O.: Gray-box regularized fir modeling for linear system identification. In: Proceedings, 28th Workshop on Computational Intelligence, pp. 113–128, Dortmund, Germany (2018)

    Google Scholar 

  78. Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L.: Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50(3), 657–682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  79. Sbarbaro, D.: Context sensitive networks for modelling nonlinear dynamic systems. In: European Control Conference (ECC), pp. 2420–2425, Rome, Italy (1995)

    Google Scholar 

  80. Sbarbaro, D.: Local Laguerre models. In: Murray-Smith, R., Johansen, T.A. (eds.) Multiple Model Approaches to Modelling and Control, chapter 10, pp. 257–268. Taylor & Francis, London (1997)

    Google Scholar 

  81. Schmidt, C.: Digitale kurbelwinkelsynchrone Modellbildung und Drehschwingungsdämpfung eines Dieselmotors mit Last. Ph.D. Thesis, TU Darmstadt, Reihe 12: Verkehrstechnik/Fahrzeugtechnik, Nr. 253. VDI-Verlag, Düsseldorf (1995)

    Google Scholar 

  82. Schram, G., Krijgsman, A., Verhaegen, M.H.G.: System identification with orthogonal basis functions and neural networks. In: IFAC World Congress, pp. 221–226, San Francisco, USA (1996)

    Google Scholar 

  83. Shorten, R., Murray-Smith, R., Bjørgan, R., Gollee, G.: On the interpretation of local models in blended multiple model structures. Int. J. Control 72(7–8), 620–628 (1998). Special issue on Multiple Model approaches to modelling and control

    Google Scholar 

  84. Sinsel, S.: Echtzeitsimulation von Nutzfahrzeug-Dieselmotoren mit Turbolader zur Entwicklung von Motormanagementsystemen. Ph.D. Thesis, TU Darmstadt. Logos-Verlag, Berlin (2000)

    Google Scholar 

  85. Söderström, T., Stoica, P.: System Identification. Prentice Hall, New York (1989)

    MATH  Google Scholar 

  86. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  87. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based design. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)

    Article  Google Scholar 

  88. Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  89. Van den Hof, P.M.J., Heuberger, P.S.C., Bokor, J.: System identification with generalized orthonormal basis functions. Automatica 31(12), 1821–1834 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  90. Wahlberg, B.: System identification using Laguerre models. IEEE Trans. Autom. Control 36(5), 551–562 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  91. Wahlberg, B.: System identification using Kautz models. IEEE Trans. Autom. Control 39(6), 1276–1282 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Nelles, O. (2020). Dynamic Local Linear Neuro-Fuzzy Models. In: Nonlinear System Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-47439-3_22

Download citation

Publish with us

Policies and ethics

Navigation