Four Billion Years: The Story of an Ancient Protein Family

  • Chapter
  • First Online:
Theoretical Physics, Wavelets, Analysis, Genomics

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 459 Accesses

Abstract

Comparison of protein sequences has long been a very effective tool for producing biological knowledge. It was initially based on the alignment of sequences, that is to say organizing the set of sequences in columns (of a spreadsheet) of sites which have evolved from a common site of the ancestral sequence. Alignments are generally obtained by minimizing an evolution or an edition cost. Sequence comparisons are now often performed without alignments by comparing the N-mer compositions of the sequences. We present here the most popular methods used by biologists to compare sequences and place emphasis on an approach to augment the alphabet of a set of sequences in order to ease their comparison. The family of DNA topoisomerases, a set of ancient proteins whose history can be traced back 4 billion years, is used to illustrate this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Phylogeny is the study of the degree of relationship between living organisms, which enables to reconstruct their evolution. In a phylogenetic tree, the nodes represent the common ancestors. The greater the number of nodes between two taxa, the more ancient is their common ancestor and the farther they are in the tree of life—the length of the branches is approximately proportional to the time of divergence between the taxa [22, 40].

  2. 2.

    Proteins are macromolecules composed of a linear string of amino acids. They are generally made of several hundreds of the 20 different amino acids.

  3. 3.

    All the statements of this section still hold by replacing “sequence” with “set of sequences.”

  4. 4.

    The reverse gyrase exists mainly in bacteria and archaea whose growth optimum is above 80 C; it protects DNA from the denaturation that normally occurs at such high temperatures.

  5. 5.

    As an example, let us take the bias in the isotopic composition of carbon. Atmospheric CO2 is made up of a mixture of 12C and 13C. Since the photosynthetic organisms have a preference for the 12C-containing CO2, the biological fossil sediments will be richer in 12C than the abiotic sediments. This corresponds to the 13C depleted reduced carbon in Fig. 7.

References

  1. M. Ahmad, Y. Xue, S. Lee, J. Martindale, W. Shen, W. Li, S. Zou, M. Ciaramella, H. Debat, M. Nadal, F. Leng, H. Zhang, Q. Wang, G. Siaw, H. Niu, Y. Pommier, M. Gorospe, T.-S. Hsieh, Y.-C. Tse-Dinh, and W. Wang. RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res., 44:gkw508, 06 2016.

    Google Scholar 

  2. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. J. Mol. Biol., 215(3):403–410, 1990.

    Article  Google Scholar 

  3. P. Bawono, M. Dijkstra, W. Pirovano, K. A. Feenstra, and S. Abeln. Multiple Sequence Alignment, volume 1525, pages 167–189. Humana Press Inc, 11 2017.

    Google Scholar 

  4. A. H. Bizard and I. D. Hickson. The many lives of type IA topoisomerases. J. Biol. Chem., 295(20):7138–7153, 2020.

    Article  Google Scholar 

  5. R. J. Catchpole and P. Forterre. The evolution of reverse gyrase suggests a nonhyperthermophilic last universal common ancestor. Mol Biol Evol, 36(12):2737–2747, Dec. 2019.

    Article  Google Scholar 

  6. M. Chatzou, C. Magis, J.-M. Chang, C. Kemena, G. Bussotti, I. Erb, and C. Notredame. Multiple sequence alignment modeling: methods and applications. Briefings in Bioinformatics, 17(6):1009–1023, 11 2015.

    Google Scholar 

  7. J. Chen and S. W. I. Siu. Machine learning approaches for quality assessment of protein structures. Biomolecules, 10(4):626, Apr. 2020.

    Google Scholar 

  8. E. Corel, R. Fegalhi, F. Gérardin, M. Hoebeke, M. Nadal, A. Grossmann, and C. Landés-Devauchelle. Local similarities and clustering of biological sequences: New insights from N-local decoding. The First International Symposium on Optimization and Systems Biology, 01 2007.

    Google Scholar 

  9. E. Corel, F. Pitschi, I. Laprevotte, G. Grasseau, G. Didier, and C. Landès-Devauchelle. MS4- multi-scale selector of sequence signatures: An alignment-free method for classification of biological sequences. BMC Bioinf, 11:406, 07 2010.

    Google Scholar 

  10. G. E. Crooks, G. Hon, J.-M. Chandonia, and S. E. Brenner. Weblogo: A sequence logo generator. Genome Res., 14(6):1188–1190, 2004.

    Article  Google Scholar 

  11. C. Devauchelle, Y. Diaz, G. Didier, A. Hénaut, and B. Torrésani. Pseudo-rate matrices, beyond Dayhoff’s model. This volume, 2021.

    Google Scholar 

  12. G. Didier. Caractérisation des n-écritures et application à l’étude des suites de complexité ultimement n+ cste. Theoretical computer science, 215(1-2):31–49, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Didier, E. Corel, I. Laprevotte, A. Grossmann, and C. Landés-Devauchelle. Variable length local decoding and alignment-free sequence comparison. Theoretical Computer Science, 462:1–11, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Didier, L. Debomy, M. Pupin, M. Zhang, A. Grossmann, C. Devauchelle, and I. Laprevotte. Comparing sequences without using alignments: application to HIV/SIV subty**. BMC Bioinf., 8(1):1, Jan. 2007.

    Google Scholar 

  15. G. Didier, I. Laprevotte, M. Pupin, and A. Hénaut. Local decoding of sequences and alignment-free comparison. Journal of computational biology : a journal of computational molecular cell biology, 13:1465–76, 11 2006.

    Google Scholar 

  16. T. Farkaš, J. Sitarčík, B. Brejová, and M. Lucká. SWSPM: A novel alignment-free DNA comparison method based on signal processing approaches. Evolutionary bioinformatics online, 15:1176934319849071, 2019.

    Google Scholar 

  17. P. Forterre. The universal tree of life: an update. Front. Microbiol., 6:717, 2015.

    Article  Google Scholar 

  18. P. Forterre and D. Gadelle. Phylogenomics of DNA topoisomerases: Their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res, 37:679–92, 03 2009.

    Google Scholar 

  19. F. Garnier, M. Couturier, H. Débat, and M. Nadal. Archaea: a gold mine for topoisomerase diversity. Front. Microbiol., 2021. In press.

    Google Scholar 

  20. F. Garnier, H. Debat, and M. Nadal. Type IA DNA topoisomerases: A universal core and multiple activities. In M. Drolet, editor, DNA Topoisomerases, volume 1703 of Methods in Molecular Biology, chapter 1, page 1:20. Springer, 2018.

    Google Scholar 

  21. G. Z. Hertz and G. D. Stormo. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics, 15(7):563–577, 07 1999.

    Google Scholar 

  22. D. M. Hillis, C. Moritz, and B. K. Mable, editors. Molecular Systematics. Sinauer Associates Inc., 1996.

    Google Scholar 

  23. D. Huson. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol., 23(2):254–267, 01 2006.

    Google Scholar 

  24. L. Jaroszewski. Protein structure prediction based on sequence similarity. Methods in molecular biology (Clifton, N.J.), 569:129–56, 02 2009.

    Google Scholar 

  25. W. Just. Computational complexity of multiple sequence alignment with SP-Score. J. Comput. Biol., 8(6):615–623, 2001. PMID: 11747615.

    Article  Google Scholar 

  26. A. H. Knoll, K. D. Bergmann, and J. V. Strauss. Life: the first two billion years. Philos Trans R Soc Lond B Biol Sci, 371(1707):20150493, Nov. 2016.

    Google Scholar 

  27. C.-A. Leimeister, S. Sohrabi-Jahromi, and B. Morgenstern. Fast and accurate phylogeny reconstruction using filtered spaced-word matches. Bioinformatics, 33(7):971–979, 01 2017.

    Google Scholar 

  28. W. Ma. What does “the RNA world” mean to “the origin of life”? Life (Basel, Switzerland), 7(4):49, Nov. 2017.

    Google Scholar 

  29. F. MacLeod, G. S. Kindler, H. L. Wong, R. Chen, and B. P. Burns. Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes. AIMS microbiology, 5(1):48–61, Jan. 2019.

    Article  Google Scholar 

  30. W. F. Martin and F. L. Sousa. Early microbial evolution: The age of anaerobes. Cold Spring Harbor Perspect. Biol., 8(2), 2016.

    Google Scholar 

  31. S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48(3):443–453, 1970.

    Article  Google Scholar 

  32. L.-T. Nguyen, H. A. Schmidt, A. von Haeseler, and B. Q. Minh. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol., 32(1):268–274, 11 2014.

    Google Scholar 

  33. W. Pearson and D. Lipman. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A, 85:2444–8, 05 1988.

    Google Scholar 

  34. E. L. Peterson, J. Kondev, J. A. Theriot, and R. Phillips. Reduced amino acid alphabets exhibit an improved sensitivity and selectivity in fold assignment. Bioinformatics (Oxford, England), 25(11):1356–1362, June 2009.

    Google Scholar 

  35. V. Polyanovsky, A. Lifanov, N. Esipova, and V. Tumanyan. The ranging of amino acids substitution matrices of various types in accordance with the alignment accuracy criterion. BMC Bioinf., 21(11):294, Sept. 2020.

    Google Scholar 

  36. P. Puigbó, Y. I. Wolf, and E. V. Koonin. Seeing the tree of life behind the phylogenetic forest. BMC Biol., 11(1):46, Apr. 2013.

    Google Scholar 

  37. J. Risler, M. Delorme, H. Delacroix, and A. Henaut. Amino acid substitutions in structurally related proteins a pattern recognition approach: Determination of a new and efficient scoring matrix. J. Mol. Biol., 204(4):1019–1029, 1988.

    Article  Google Scholar 

  38. J. Rissanen. A universal data compression system. IEEE Transactions on Information Theory, 29(5):656–664, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeucht. Information content of binding sites on nucleotide sequences. J. Mol. Biol., 188(3):415–431, 1986.

    Article  Google Scholar 

  40. C. Semple and M. Steel. Phylogenetics, volume 24 of Oxford lecture series in mathematics and its applications. Oxford University Press, 2003.

    Google Scholar 

  41. T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147(1):195–197, 1981.

    Article  Google Scholar 

  42. D. Tagu and J.-L. Risler. Bioinformatique ; Principes d’utilisation des outils. Editions Quae, Paris, 2010.

    Google Scholar 

  43. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, Sept. 1995.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. C. Wang. DNA topoisomerases: why so many ? J Biol Chem, 266(11):6659–62, 1991.

    Article  Google Scholar 

  45. J. D. Watson and F. Crick. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171(4356):737–738, 1953.

    Article  Google Scholar 

  46. M. C. Weiss, M. Preiner, J. C. Xavier, V. Zimorski, and W. F. Martin. The last universal common ancestor between ancient earth chemistry and the onset of genetics. PLos Genet, 14(8):1–19, 08 2018.

    Google Scholar 

  47. A. Zielezinski, H. Z. Girgis, G. Bernard, C.-A. Leimeister, K. Tang, T. Dencker, A. K. Lau, S. Röhling, J. J. Choi, M. S. Waterman, M. Comin, S.-H. Kim, S. Vinga, J. S. Almeida, C. X. Chan, B. T. James, F. Sun, B. Morgenstern, and W. M. Karlowski. Benchmarking of alignment-free sequence comparison methods. Genome Biol., 20(1):144, July 2019.

    Google Scholar 

  48. A. Zielezinski, S. Vinga, J. Almeida, and W. M. Karlowski. Alignment-free sequence comparison: benefits, applications, and tools. Genome Biol., 18(1):186, Oct. 2017.

    Google Scholar 

  49. E. Zuckerlandl and L. Pauling. Evolutionary divergence and convergence in proteins. In V. Bryson and H. J. Vogel, editors, Evolving Genes and Proteins, pages 97–166. Academic Press, 1965.

    Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank Marc Nadal and Jean-Loup Risler for their constructive criticism and Alessandra Riva for proofreading the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Torrésani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Didier, G., Landès, C., Hénaut, A., Torrésani, B. (2023). Four Billion Years: The Story of an Ancient Protein Family. In: Flandrin, P., Jaffard, S., Paul, T., Torresani, B. (eds) Theoretical Physics, Wavelets, Analysis, Genomics. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-45847-8_25

Download citation

Publish with us

Policies and ethics

Navigation