Application of Cathode Spot Theory for Arcs Formed in Technical Devices

  • Chapter
  • First Online:
Plasma and Spot Phenomena in Electrical Arcs

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 113))

  • 669 Accesses

Abstract

One of the important issues is the electrical arc initiation and development in devices with flowing plasmas or in high-pressure systems. Such arcing occurred in generators of low-temperature plasmas, in plasma accelerators, in plasma of products of combustion, and in a rail gun [1,2,3,4,5,6,7,8]. The plasma devices consist of complicated designs and different types of electrode assemblies. In this case, different problems arise by the projection of the assemblies and their optimization

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorodnov, A. M. (1974). Some applications of plasma accelerators in a technology. In A. I. Morosov (Ed.), Physics and applications of plasma accelerators (pp. 330–365). Minsk: Nauka & Technika Publisher.

    Google Scholar 

  2. Dorodnov, A. M., & Petrosov, B. A. (1981). Physical principals and types of technological vacuum plasma devices. Soviet Physics - Technical Physics, 26, 304–315.

    Google Scholar 

  3. Coombe, R. A. (1964). Magnetohydrodinamic generation of electrical power. London: Chapman and Hall.

    Google Scholar 

  4. Heywood, J. B., & Womack, G. J. (1969). Open-cycle MHD power generation results of research carried out by members of the British MHD collaborative committee. London: Pergamon Press.

    Google Scholar 

  5. Zhukov, M. F. (Ed.). (1993). Low temperature plasma (Vol. 11). Novosibirsk: Nauka.

    Google Scholar 

  6. Waymouth, I. J. (1971). Electrical discharge lamps. London: MIT Press.

    Google Scholar 

  7. Raizer, Yu P. (1991). Gas discharge physics. Berlin: Springer-Verlag.

    Book  Google Scholar 

  8. Benilov, M. S. (2008). Understanding and modelling plasma–electrode interaction in high-pressure arc discharges: a review. Journal of Physics. D Applied Physics, 41, 144001.

    Article  ADS  Google Scholar 

  9. Beilis, I. I., & Kirillov, V. V. (1986). The heat regime of ceramic elements of electrically loaded electrodes. High Temperature, 24(4), 616–621.

    Google Scholar 

  10. Beilis, I. I., & Kirillov, V. V. (1988). Investigation of the heat and electrical characteristic of two-layer ceramics electrodes. High Temperature, 26(2), 287–293.

    Google Scholar 

  11. Kaufman, W. (1900). Elektrodynamiche eigentumlichkeiten leitender gase. Annalen der Physik, 2(4), 158–178.

    Article  ADS  MATH  Google Scholar 

  12. Kapzov N.A. Electrical phenomena in gases and in vacuum. Gostekhisdat. M. (1947), p. 500 (in Russian).

    Google Scholar 

  13. Khait, V. D. (1980). Stability of electric discharge in a dense plasma. High Temperature, 18(3), 386–392.

    Google Scholar 

  14. Khait, V. D. (1986). Theory of thermal contraction of the current at the anode in a turbulent flow of thermal plasma. High Temperature, 24(2), 149–157.

    Google Scholar 

  15. Skanavi, G. I. (1958). Physics of dielectrics. Moscow: Gosfizmatizdat.

    Google Scholar 

  16. Nedocpasov, A. V., & Khait, V. D. (1991). Basic of physic processes in devices with low temperature plasma. Moscow: Energoatomisdat. In Russian.

    Google Scholar 

  17. Sinkevich, O. A., & Stakhanov, I. P. (1991). Physics of plasma. Moscow: High School.

    Google Scholar 

  18. Zelikson, Yu M, Ivanov, A. B., Kirillov, V. V., Reshetov, E. P., & Flid, B. D. (1971). Electrode potential falls and resistance of zirconium oxide—base electrodes in a flow of ionized gas. High Temperature, 9(3), 425–429.

    Google Scholar 

  19. Beilis, I. I., Zalkind, V. I., Kirillov, V. V., & Zshigel, S. S. (1990). 2D analysis of Joule energy dissipation in a combined electrodes of MHDG. High Temperature, 28(6), 938–944.

    Google Scholar 

  20. Beilis, I. I. (1986). Thermal conditions for the metal framework of a combined MHDG electrode in a contracted discharge. High Temperature, 24(6), 881–889.

    Google Scholar 

  21. Beilis, I. I. (1991). Thermal and electrical characteristic of electrode-plasma system in an channel MHD generator. High Temperature, 29(2), 281–284.

    Google Scholar 

  22. Beilis, I. I., Zalkind, V. I., & Tikhotsky, A. S. (1977). Cathode spot on metallic electrodes under the conditions of the channel of an MHDG. High Temperature, 15(1), 131–135.

    ADS  Google Scholar 

  23. Beilis, I. I. (1977). The near cathode region of contracted discharge at MHDG metallic electrodes. High Temperature, 15(6), 1088–1094.

    ADS  Google Scholar 

  24. Adams, R. C., & Robinson, E. (1968). Processes on electrodes of a MHDG. Proceedings of the IEEE, 56, 1519–1535.

    Article  Google Scholar 

  25. Dicks J.B., Wu, J.C.L., Crawoford, J., Chang, P., Stephens, J.W. ()1970. The performance of a family of diagonal conducting wall MHD open-cycle generators. In Proceedings of XI Symposium on Engineering Aspects of MHD, pp. 16–28.

    Google Scholar 

  26. Muchlhauser, J.W., Dicks, J.B. (1974). Arc spot and voltage losses in a hall generator. In: Proceedings of XIV Symposium on Engineering Aspects of MHD, pp. VIII.2.1–VIII.2.8.

    Google Scholar 

  27. Beilis, I. I., & Lyubimov, G. A. (1976). Theory of the arc spot on a film cathode. Soviet Physics—Technical Physics, 21(6), 698–703.

    Google Scholar 

  28. Beilis, I. I. (1974). Analysis of the cathode in a vacuum arc. Soviet Physics—Technical Physics, 19(2), 251–256.

    ADS  Google Scholar 

  29. McDaniel, E. W. (1964). Collision phenomena in ionized gases. London: Wiley.

    Google Scholar 

  30. Beilis, I. I., & Sevalnikov, A Yu. (1991). Column of an electrical arc of atmospheric pressure. High Temperature, 29(5), 669–675.

    Google Scholar 

  31. Engel, A., & Steenbeck, M. (1934). Electrische gasentladungen ihre physic und technik. Zweiter band: Berlin, Verlag von Julius Springer.

    MATH  Google Scholar 

  32. Finkelnburg, W., & Maecker, H. (1956). Electrische Bogen and thermishes plasma. In S. Flugge (Ed.), Handbuch der, Physik (Vol. 22, pp. 254–444). Berlin: Springer.

    Google Scholar 

  33. Steenbeck, M. (1932). Energetik der Gasentladungen. Zeitschrift f. Physik, 33(21), 809–815.

    Google Scholar 

  34. Peter, Th. (1956). Uber den Zusammenhang des Steenbeckschen minimumprinzips mit dem thermodynamischen prinzip der minimalen Entropieerzeugung. Zeitschrift f. Physik, 144, 612–631.

    Article  ADS  MATH  Google Scholar 

  35. Raizer, Yu P. (1972). About the missing channel equation an arc model that replaces the minimum condition voltage. High Temperature, 10(6), 1152–1155.

    Google Scholar 

  36. Raizer, Yu P. (1979). On the channel arc model. High Temperature, 17(5), 1096–1098.

    Google Scholar 

  37. Khait, V. D. (1979). About the channel model of electric arcs and the principle of minimum power. High Temperature, 17(5), 1094–1095.

    Google Scholar 

  38. Rutkevich, I. M., & Sinkevich, O. A. (1980). Properties of nonstationary modes of Joule heating of a low temperature plasma. High Temperature, 18(1), 24–36.

    Google Scholar 

  39. Leper, D. N. (1973). Variation principle and Steenbeck’s principle for a theory of cylindrical arc. Soviet Physics—Technical Physics, 43(7), 1501–1506.

    Google Scholar 

  40. Zhukov, M. F., Koroteev, A. S., & Uryukov, B. A. (1975). Applied dynamics of a thermal plasma. Novosibirsk: Nauka.

    Google Scholar 

  41. Benilov, M. S. (1986). Asymptotic calculation of the characteristics of a cylindrical arc. High Temperature, 24(41:N1), 45–51.

    Google Scholar 

  42. Zarudi, M. E. (1968). Methods for calculating the arc characteristics in a channel. High Temperature, 6(1), 35–43.

    Google Scholar 

  43. Asinovskii, E. I., & Kirillin, A. V. (1965). Experimental definition thermal conductivity of argon plasma. High Temperature, 3(5), 677–685.

    Google Scholar 

  44. Asinovskii, E. I., Drokhanova, E. V., Kirillin, V. A., & Lagar’kov, A. N. (1967). Experimental and theoretical study of the heat conductivity coefficient and total radiation in a nitrogen plasma. High Temperature, 5(5), 739–750.

    Article  Google Scholar 

  45. Dorodnov, A. M., Kozlov, H. P., & Pomelov, Ya. A. (1971). Anomalously high emission of a thermionic cathode in an arc discharge in inert-gas media. High Temperature, 9(3), 442–445.

    Google Scholar 

  46. Anikeev, V. N. (1981). Investigation of thermal cathodes of an electrical arc in a low pressure inert gases. Bulletin of the Academy of the Science Siberian branch, 3(N4), 60–67.

    Google Scholar 

  47. Dorodnov, A. M., Kozlov, H. P., & Pomelov, Ya. A. (1973). on the effect of “electron” cooling of a thermionic arc cathode. High Temperature, 11(4), 724–727.

    Google Scholar 

  48. Dorodnov, A. M., Kozlov, H. P., & Pomelov, Ya. A. (1974). Arc regimes of a thermionic cathode with nomalously high current density. High Temperature, 12(1), 10–16.

    Google Scholar 

  49. Nemchinsky, V. (1974). On the problem of anomalous high emission ability of a non-vaporizing cathode in an arc discharge. Zhurnal Tekhnicheskoi Fiziki, 44(12), 2548–2550.

    Google Scholar 

  50. Zektser, M. P. (1975). On the problem of anomalous high emission ability of a thermo-cathode in an inert-gas arc discharge. Teplofizika Vysokikh Temperatur, 13(3), 491–494.

    Google Scholar 

  51. Kerrebrock, J. L. (1964). Nonequilibrium ionization due to electron heating. AIAA Journal, 2(N6), 1072–1080.

    Article  ADS  Google Scholar 

  52. Vasin, A. I., Dorodnov, A. M., & Petrsov, V. A. (1979). Vacuum arc with distributed discharge on an expendable cathode. Technical Physics Letters, 5, 634–636.

    ADS  Google Scholar 

  53. Porotnikov, A. A., Petrosov, V. A., & Octrezov, I. A. (1974). Near electrode processes. In A. I. Morosov (Ed.), Physics and applications of plasma accelerators (pp. 239–261). Minsk: Nauka & Technika Publisher.

    Google Scholar 

  54. Dorodnov, A. M., Davydov, V. B., Kozyrev, A. V., & Pomelov, Ya. A. (1974). Effect of ion microfields on emission of an arc cathode. Soviet Physics —Technical Physics, 19(3), 390–393.

    ADS  Google Scholar 

  55. Baksht, F. G. (1994). Rybakov, The fraction of ion current at the cathode of an arc discharge. Journal of Technical Physics, 39(8), 769–772.

    ADS  Google Scholar 

  56. Beilis, I. I. (1990). The nature of an arc discharge with a mercury cathode in vacuum. Journal of Technical Physics Letters, 16(5), 390–391.

    Google Scholar 

  57. Beilis, I. I., & Ostashev, E. (1989). Model for a high current dischargemoving between parallel electrodes. High Temperature, 27(6), 817–821.

    Google Scholar 

  58. Artsimovich, L. A., Lukyanov, S Yu., Podgorny, I. M., & Chuvatin, S. A. (1957). Electrodynamic acceleration of plasma blob. JETP, 33(1), 3–8.

    Google Scholar 

  59. Brast, D. E., & Sawle, D. R. (1964). Study of a rail-type MHD hypervelocity projectile accelerator. Proceedings VII Hypervelocity Impact Symposium, 1, 187.

    Google Scholar 

  60. Boxman, R. L. (1977). High current vacuum arc column motion on rail electrodes. Journal of Applied Physics, 48(5), 1885–1889.

    Article  ADS  Google Scholar 

  61. Roshleigh, S. C., & Marshall, M. A. (1978). Electromagnetic acceleration of macroparticles to high velocities. Journal of Applied Physics, 49(4), 2540–2542.

    Article  ADS  Google Scholar 

  62. McNab, J. R. (1980). Electromagnetic macroparticle acceleration by a high pressure plasma. Journal of Applied Physics, 51(5), 2549–2551.

    Article  ADS  Google Scholar 

  63. Powel, J. D., & Batteh, J. H. (1982). Arc dynamics in the rail gun. IEEE Trans. on magn., 18(1), 7–10.

    Article  ADS  Google Scholar 

  64. Powel, J. D., & Batteh, J. H. (1983). Two-dimensional plasma model for the arc-driven rail gun. Journal of Applied Physics, 54(5), 2242–2254.

    Article  ADS  Google Scholar 

  65. Powel, J. D., & Batteh, J. H. (1984). Analysis of plasma arcs in arc-driven rail guns. IEEE Transactions on Magnetics, 20(N2), 336–339.

    Article  ADS  Google Scholar 

  66. Marshall, M. A. (1986). Structure of plasma armature of a railgun. IEEE Transactions on Magnetics, 22(N6), 1609–1612.

    Article  ADS  Google Scholar 

  67. Kondratenko, M. M., Lebedev, E. F., Ostashev, B. E., Safonov, V. I., Fortov, B. I., & Ul’yanov, A. V. (1988). Experimental investigation of magnetoplasma acceleration of dielectric projectiles in a rail gun. High Temperature, 26(N1), 139–144.

    ADS  Google Scholar 

  68. D’yakov BB, B. B., & Reznikov, B. I. (1987). Computer-model of an electromagnetic accelerator. High Temperature, 25(N1), 128–136.

    Google Scholar 

  69. Clark, G. A., & Bedford, A. J. (1984). Performance results of a small-calibre electromagnetic launcher. IEEE Transactions on Magnetics, 20(2), 276–279.

    Article  ADS  Google Scholar 

  70. Parker, J.V., Parsons,W.M., Cummings, C.E., Fox, W. (1985). Performance loss due to wall ablation in plasma armature railguns. In Proceedings of AIAA 18th Fluid dynamics and plasmadynamics and laser conference Cincinnati, Ohio, July, pp 1575–1584.

    Google Scholar 

  71. Zhukov, M. F., Reznikov, B. I., Kurakin, P. O., & Rosov, S. I. (2007). About influence of the gas density on motion of free plasma piston in channel of a rail gun. Soviet Physics—Technical Physics, 77(7), 43–49.

    Google Scholar 

  72. Beilis, I. I. (1979). Normal distributed heat source moving on lateral side of a thin semi-infinite plate. Physics Chemistry of a Material Treatment, 13(N4), 32–36.

    Google Scholar 

  73. Beilis, I. I., Lubimov, G. A., & Rakhovskii, V. I. (1972). Diffusion model of the near cathode region of a high current arc discharge. Soviet Physics Doklady, 17(1), 225–228.

    ADS  Google Scholar 

  74. Spitzer, L. (1962). Physics of fully ionized gases. NY-London: Willey.

    MATH  Google Scholar 

  75. Ostashev, V. E., Lebedev, E. F., & Fortov, V. E. (1993). Reasons for limiting the acceleration speed of macrobodies in a magnetoplasma accelerator. High Temperature, 31(2), 274–281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak Beilis .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beilis, I. (2020). Application of Cathode Spot Theory for Arcs Formed in Technical Devices. In: Plasma and Spot Phenomena in Electrical Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-030-44747-2_25

Download citation

Publish with us

Policies and ethics

Navigation