Cathode Spot Motion in a Transverse and in an Oblique Magnetic Field

  • Chapter
  • First Online:
Plasma and Spot Phenomena in Electrical Arcs

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 113))

  • 684 Accesses

Abstract

Different aspects of experimental investigation of cathode spot motion in a vacuum arc under transverse- and oblique-oriented magnetic fields will be reviewed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boxman, R. L., Sanders, D. M., & Martin, P. J. (Eds.). (1996). Handbook of vacuum arc science & technology: Fundamentals and applications. Park Ridge New Jersey: Noyes Publications

    Google Scholar 

  2. Anders, A. (2009). Cathodic arcs: From fractal spots to energetic condensation (Vol. 50). Springer Science & Business Media.

    Google Scholar 

  3. Keidar, M., & Beilis, I. I. (2018). Plasma engineering. London, New York: Academic Press, Elsevier.

    Google Scholar 

  4. Kesaev, I. G. (1968). Cathode processes in electric arcs. Moscow: Nauka Publishers. (in Russian).

    Google Scholar 

  5. Rakhovskii, V. I. (1976). Experimental study of the dynamics of cathode spots development. IEEE Transactions on Plasma Science, 4(2), 81–102.

    Google Scholar 

  6. Juttner, B. (1997). The dynamics of arc cathode spots in vacuum: new measurements. Journal of Physics D: Applied Physics, 30, 221–229.

    Article  ADS  Google Scholar 

  7. Juttner, B. (1987). Characterization of the cathode spot. IEEE Transactions on Plasma Science, PS-15(5), 474–480.

    Google Scholar 

  8. Djakov, B. E., & Holmes, R. (1974). Cathode spot structure and dynamics in low current vacuum arcs. Journal of Physics D: Applied Physics, 7, 569–580.

    Article  ADS  Google Scholar 

  9. Beilis, I. I., Djakov, B. E., Juttner, B., & Pursch, H. (1997). Structure and dynamics of high-current arc cathode spots in vacuum. Journal of Physics D: Applied Physics, 30, 119–130.

    Article  ADS  Google Scholar 

  10. Beilis, I. I. (2002). Vacuum arc cathode spot grou** and motion in magnetic fields. IEEE Transactions on Plasma Science, 30(6), 2124–2132.

    Article  ADS  Google Scholar 

  11. Stark, J. (1903). Induktionsercheinungen am Quecksilber-lichtungen im Magnetfield. Physikalische Zeitschrift, 4, 440–443.

    Google Scholar 

  12. Stark, J., & Reich, M. (1903). Druckbeobachtungen am Quecksilberlichtbogen. Physikalische Zeitschrift, 4, 321–324.

    Google Scholar 

  13. Stark, J. (1904). Quecksilber als kathodische basis des lichtbogens. Physikalische Zeitschrift, 5, 750–751.

    Google Scholar 

  14. Weintraub, E. (1904). Investigation of the arc in metallic vapours in an exhausted space. Philosophical Magazine, 7(of Series 6), 95–124.

    Google Scholar 

  15. Minorsky, N. (1928). Rotation of the electric arc in a radial magnetic field. Journal of Physical Radium, 9(4), 127–136.

    Article  Google Scholar 

  16. Tanberg, R. (1929). Motion of an electric arc in a magnetic field under low gas pressure. Nature, 124(3123), 371–372.

    Google Scholar 

  17. Froome, K. D. (1949). The behaviour of the cathode on an undisturbed mercury surface. Proceedings of the Physical Society. Section B, 62(12), 805–812.

    Article  ADS  Google Scholar 

  18. Smith, C. G. (1942, July). The mercury arc cathode. Physical Review, 62(1–2), 48.

    Google Scholar 

  19. Smith, C. G. (1943). Motion of the copper arc in transverse magnetic field.Physical Review, 63(5–6), 217.

    Google Scholar 

  20. Smith, C. G. (1943). Erratum: The mercury arc cathode. Physical Review, 64, 40.

    Article  ADS  Google Scholar 

  21. Smith, C. G. (1957). Motion of an arc in a magnetic field. Journal of Applied Physics, 28(11), 1328–1331.

    Article  ADS  Google Scholar 

  22. Smith, C. G. (1951, January). A new cold electric arc. Physical Review, 83(1), 194–194.

    Google Scholar 

  23. Smith, C. G. (1951, January). Motion of an anchored arc impelled by a magnetic field. Physical Review, 82(4), 570–570.

    Google Scholar 

  24. Smith, C. G. (1951, January). Retrograde arc motion of supersonic speed. Physical Review, 84(5), 1075–1075.

    Google Scholar 

  25. Gallagher, C. J., & Cobine, J. D. (1947). Retrograde motion of an ac cathode spot in a magnetic field. Physical Review, 71(7), 481.

    Google Scholar 

  26. Gallagher, C. J. (1950). The retrograde motion of the arc cathode spot. Journal of Applied Physics, 21(8), 768–771.

    Article  ADS  Google Scholar 

  27. John R. M. St., & Winans, J. G. (1954). Motion of arc cathode spot in a magnetic field. Physical Review, 94(5), 1097.

    Google Scholar 

  28. John, R. M. St., & Winans, J. G. (1955). Motion and spectrum of arc cathode spot in a magnetic field. Physical Review, 98(6), 1664.

    Google Scholar 

  29. Zei, D., & Winans, J. G. (1959). Motion of high speed arc spots in magnetic fields. Journal of Applied Physics, 30(11), 1813–1819.

    Google Scholar 

  30. Zei, D., John, R. M. St., & Winans, J. G. (1955, January). Some properties of arc cathode spots in magnetic fields. In Physical Review (Vol. 100, No. 4, pp. 1232–1232). One Physics Ellipse, College Pk, Md 20740-3844 USA: American Physical Soc.

    Google Scholar 

  31. Hernqvist, K. G., & Johnson, E. O. (1955). Retrograde motion in gas discharge plasmas. Physical Review, 98(5), 1576–1583.

    Article  ADS  Google Scholar 

  32. Eidinger, A., & Rieder, W. (1957). Das Verhalten des Lichtbogens im transversalen Magnetfeld Magnetische Blasung. Archiv für Elektrotechnik, 43(2), 94–114.

    Article  Google Scholar 

  33. Robson, A. E., & Engel, A. (1954). Origin of retrograde motion of arc cathode spots. Physical Review, 93(6), 1121–1122.

    Article  ADS  Google Scholar 

  34. Farrall, G. A. (1962). A review of reverse motion in magnetically driven arcs. Seminar on electrical contacts (pp. 1–34). USA: University of Maine.

    Google Scholar 

  35. Gundlach, H. C. W. (1972). Experimental study of retrograde motion of the arc cathode spot in high vacuum.

    Google Scholar 

  36. Seidel, S., & Stefaniak, K. (1972). Retrograde motion of the electric arc in vacuum and its mechanism on the solid electrodes. Proc. Vth ISDEIV, 237–247.

    Google Scholar 

  37. Daalder, J. E. (1978). Cathode erosion of metal vapor arcs in vacuum. Thesis: Eindhoven Univ. Tech.

    Google Scholar 

  38. Emtage, P. R., Kimblin, C. W., Gorman, J. G., Holmes, F. A., Heberlein, J. V. R., Voshal, R. E., et al. (1980). Interaction between vacuum arcs and transverse magnetic fields with application to current limitation. IEEE Transactions on Plasma Sciences, 8(4), 314–319.

    Article  ADS  Google Scholar 

  39. Kimblin, C. W., & Voshall, R. E. (1972). Interruption ability of vacuum interrupters subjected to axial magnetic fields. Proceeding of Institution of Electrical Engineers, 119(12), 1754–1758.

    Article  Google Scholar 

  40. Sethuraman, S. K., & Barrault, M. R. (1980). Study of the motion of vacuum arcs in high magnetic field. Journal of Nuclear Materials, 93, 791–798.

    Google Scholar 

  41. Sethuraman, S. K., Chatterton, P. A., & Barrault, M. R. (1982). A study of the erosion rate of vacuum arcs in a transverse magnetic field. Journal of Nuclear Materials, 111, 510–516.

    Google Scholar 

  42. Nurnberg, A. W., Bauder, U. H., Mooser, C., & Behrisch, R. (1981). Cathode erosion in vacuum arcs and unipolar arcs. Contributions to Plasma Physics, 21(2), 127–134.

    Google Scholar 

  43. Fang, D. Y. (1982). Cathode spot velocity of vacuum arcs. Journal of Physics D: Applied Physics, 15(4), 833–844.

    Article  ADS  Google Scholar 

  44. Djakov, B. E., & Holmes, R. (1970, September). Cathode spot motion in a vacuum arc under the influence of the inherent magnetic field. In Proceedings of international conference on gas discharges (pp. 468–472).

    Google Scholar 

  45. Djakov, B. E., & Holmes, R. (1972, September). Retrograde motion of a cathode spot and conduction of heat in the cathode. In Proceedings of 2nd International Conference on Gas Discharges (pp. 183-185).

    Google Scholar 

  46. Sherman, J. C., Webster, R., Jenkins, J. E., & Holmes, R. (1975). Cathode spot motion in high-current vacuum arcs on copper electrodes. Journal of Physics D: Applied Physics, 8, 696–702.

    Article  ADS  Google Scholar 

  47. Webster, R., Holmes, R., Jenkins, J. E., & Sherman, J. C. (1975). The characteristic behaviour of a high current vacuum arc (No. ULAP-T-41). Liverpool University.

    Google Scholar 

  48. Bushik, A. I., Juttner, B., & Pusch, H. (1979). On the nature and the motion of arc cathode spots in UHV. Beitrage Plasma Physical, 19(3), 177–188.

    Article  ADS  Google Scholar 

  49. Agarwal, M. S., & Holmes, R. (1984). Cathode spot motion in high-current vacuum arcs under self-generated azimuthal and applied axial magnetic fields. Journal of Physics D: Applied Physics, 17(4), 743–756.

    Article  ADS  Google Scholar 

  50. Drouet, M. G. (1981). The physics of the retrograde motion of the electric arc. Japanese Journal Applied Physics, 20(6), 1027–1036.

    Article  ADS  Google Scholar 

  51. Drouet, M. G. (1985). The physics of the retograde motion of the electric arc. IEEE transactions on plasma science, 13(5), 235–241.

    Google Scholar 

  52. Song, X., Wang, Q., Lin, Z., Zhang, P., & Wang, S. (2018). Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field. Plasma Science and Technology, 20(2), 025402.

    Google Scholar 

  53. Swift, P. D., McKenzie, D. R., Falconer, I. S., & Martin, P. J. (1989). Cathode spot phenomena in titanium vacuum arcs. Journal of Applied Physics, 66(2), 505–512.

    Article  ADS  Google Scholar 

  54. Swift, P. D. (1990). Cathode- & anode-spot tracks in a closed magnetic field. Journal of Applied Physics, 67(4), 1720–1724.

    Article  ADS  Google Scholar 

  55. Klajn, A. (1999). Switching vacuum arc in a pulsed transverse magnetic field. IEEE Transactions on Plasma Sciences, 27(4), 977–983.

    Article  ADS  Google Scholar 

  56. Jüttner, B., & Kleberg, I. (2000). The retrograde motion of arc cathode spots in vacuum. Journal of Physics D: Applied Physics, 33, 2025–2036.

    Article  ADS  Google Scholar 

  57. Kleberg, I. (2001). Dynamic of cathode spot in external magnetic field. Berlin, Germany: Humboldt University.

    Google Scholar 

  58. Jüttner, B., & Kleberg, I. (2000). Retrograde arc spot motion in vacuum (pp. 188–191). **an, Cina p: Proceedings XIXth International Symposium on Discharges and Electrical Insulation in Vacuum.

    Google Scholar 

  59. Juttner, B. (2001). Cathode spots of electric arcs. Journal of Physics D: Applied Physics, 34(17), R103–R123.

    Article  ADS  Google Scholar 

  60. Dukhopel’nikov, D. V., Zhukov, A. V., Kirillov, D. V., & Marakhtanov, M. K. (2005). Structure and features of the motion of a cathode spot on a continuous titanium cathode. Measurement Techniques, 48(10), 995–999.

    Google Scholar 

  61. Smith, C. G. (1948, January). Arc motion reversal in transverse magnetic field by heating cathode. Physical Review, 73(5), 543–543)

    Google Scholar 

  62. Gallagher, C., & Cobine, J. D. (1949). Reverse blowout effect. Electrical Engineering., 68, 469.

    Google Scholar 

  63. Nürnberg, A. W., Fang, D. Y., Bauder, U. H., Behrisch, R., & Brossa, F. (1981). Temperature dependence of the erosion of A1 and TiC by vacuum arcs in a magnetic field. Journal of Nuclear Materials, 103, 305–308.

    Google Scholar 

  64. Fang, D. Y., Nurnberg, A., & Bauder, U. H. (1982). Arc velocity and erosion for stainless steel and aluminum cathodes. Journal of Nuclear Materials, 111&112, 517–521.

    Article  Google Scholar 

  65. Fang, D. Y. (1983). Temperature dependence of retrograde velocity of vacuum arcs in magnetic fields. IEEE Transactions on Plasma Science, 11(3), 110–114.

    Google Scholar 

  66. Puchkarev, V. F., & Murzakayev, A. M. (1990). Current density and the cathode spot lifetime in a vacuum arc at threshold currents. Journal of Physics D: Applied Physics, 23(1), 26.

    Google Scholar 

  67. Himler, G. J., & Cohn, G. I. (1948). The reverse blowout effect. Electrical Engineering, 67(12), 1148–1152.

    Google Scholar 

  68. Yamamura, S. (1950). Immobility phenomena and reverse driving phenomena of the electric arc. Journal of Applied Physics, 21(3), 193–196.

    Article  ADS  Google Scholar 

  69. Dallas, J. P. (1953). Arc interruption phenomena in a magnetic field at altitude. American Institute of Electrical Engineers Part II Applications & Industry., 71(6), 419–422.

    Google Scholar 

  70. Dunkerley, H. C., & Schaefer, D. L. (1955). Observations of cathode arc tracks. Journal of Applied Physics, 26(11), 1384–1385.

    Article  ADS  Google Scholar 

  71. Robson, A. E., & Engel, A. (1956). Motion of a short arc in a magnetic field. Physicl Review, 104(1), 15–16.

    Article  ADS  Google Scholar 

  72. Robson, A. E. (1978). The motion of low-pressure arc in a strong magnetic field. Journal of Physics D: Applied Physics, 11, 1917–1923.

    Article  ADS  Google Scholar 

  73. Guile, A. E., & Mehta, S. F. (1957). Arc movement due to the magnetic field of current flowing in the electrodes. Proceedings of the IEE-Part A: Power Engineering, 104(18), 533–540.

    Google Scholar 

  74. Secker, P. E. (1960). Explanation of the enhanced arc velocity on magnetic electrodes. British Journal of Applied Physics, 11(8), 385–388.

    Article  ADS  Google Scholar 

  75. Guile, A. E., Lewis, T. J., & Menta, S. F. (1957). Arc motion with magnetized electrodes. British Journal of Applied Physics, 8(11), 444–448.

    Article  ADS  Google Scholar 

  76. Guile, A. E., & Secker, P. E. (1958). Arc cathode movement in a magnetic field. JJournal of Applied Physics, 29(12), 1662–1667.

    Article  ADS  Google Scholar 

  77. Lewis, T. J., & Secker, P. E. (1961). Influence of the cathode surface on arc velocity. Journal of Applied Physics, 32(1), 54–63.

    Article  ADS  Google Scholar 

  78. Guile, A. E., Lewis, T. J., & Secker, P. E. (1961). The motion of cold-cathode arcs in magnetic fields. Proceedings of the IEE-Part C Monographs, 108(14), 463–470.

    Article  Google Scholar 

  79. Guile, A. E., & Secker, P. E. (1965). Retrograde running of the arc cathode spot. British Journal of Applied Physics, 16(130), 1595–1597.

    Article  ADS  Google Scholar 

  80. Yamamura, S. (1957). Journal of the Faculty of Engineering, Tokyo, 25, 57–145.

    Google Scholar 

  81. Kigdon, K. H. (1965). The arc cathode spot and its relation to the diffusion of ions within the Cathode Metal. Journal of Applied Physics, 36(4), 1351–1360.

    Article  ADS  Google Scholar 

  82. Guile, A. E., Adams, V. W., Lord, W. T., & Naylor, K. A. (1969). High current arcs in transverse magnetic fields in air at atmospheric pressure. Proceedings of the Institution of Electrical Engineers, 116(4), 645–652.

    Article  Google Scholar 

  83. Guile, A. E. (1971, September). Arc-electrode phenomena. In Proceedings of the Institution of Electrical Engineers (Vol. 118, No. 9R, pp. 1131-1154). IET Digital Library.

    Google Scholar 

  84. Chaudhry, N. R., Lewis, T. J., Newton, R. H., & Secker, P. E. (1968). Gas-space and electrode effects in the motion of low-current arcs. Journal of Physics D: Applied Physics, 1, 1163–1169.

    Article  ADS  Google Scholar 

  85. Secker, P. E., Sanger, C. C., & Lewis, T. J. (1972). Behaviour of low current arcs on moving electrodes. JJournal of Physics D: Applied Physics, 5, 580–588.

    Article  ADS  Google Scholar 

  86. Hermoch, V., & Teichmann, J. (1966). Cathode jets and the retrograde motion of arcs in magnetic fields. Zeitschrift f. Phys., 195, 125–145.

    Article  ADS  Google Scholar 

  87. Hermoch, V. (1973). On the retrograde motion of arcs in magnetic fields. IEEE Transactions on Plasma Science, 1(3), 62–64.

    Google Scholar 

  88. Murphree, R. P., & Carter, D. L. (1969). Low-pressure arc discharge motion between concentric cylindrical electrodes in a transverse magnetic field. AIAA, 7(8), 1430–1437.

    Article  Google Scholar 

  89. Murphree, D. L., & Carter, R. P. (1970). Photographic observations of the retrograde rotation of an arc discharge. Physical Fluids, 13(7), 1747–1750.

    Article  ADS  Google Scholar 

  90. Zykova, N. M., Kantsel, V. V., Rakhovsky, V. I., Seliverstova, I. F., & Ustimets, A. P. (1971). The dynamics of the development of cathode and anode regions of electric arcs I. Soviet Physics Technical Physics, 15(11), 1844–1849.

    ADS  Google Scholar 

  91. Bushik, A. I., Shilov, V. A., Juttner, B., & Pursh, H. (1986). Spot behaviour and cathode surface local heating. High Temperature, 24(3), 445–452.

    Google Scholar 

  92. Khromoi, Y. D., Zemskova, L. K., & Korchagina, Y. (1978). Cathode spot anchoring in a pulsed vacuum discharge current I. Soviet Physics Technical Physics, 23, N8.

    Google Scholar 

  93. Khromoi, Y. D., & Sysun, V. I. (1984). Cathode spot anchoring in a pulsed vacuum discharge current II. Soviet Physics Technical Physics, 29(7), 774–776.

    Google Scholar 

  94. Gura, P. S., Sysun, V. I., & Khromoi, Yu D. (1984). Motion of the channel of a pulsed high current vacuum discharge in a magnetic field. High Temperature, 22(2), 200–204.

    Google Scholar 

  95. Sysun, V. I., & Khromoi, Yu D. (1984). Plasma parameters of a pulsed vacuum discharge. High Temperature, 22(3), 366–371.

    Google Scholar 

  96. Perskii, N. E., Sysun, V. I., & Khromoi, Yu D. (1985). Magnetic field dependence of the current through multiple spots on a molybdenum cathode. Soviet Physics Technical Physics, 30(11), 1358–1359.

    Google Scholar 

  97. Perskii, N. E., Sysun, V. I., & Khromoi, Y. D. (1989). Dynamics of vacuum discharge cathode spots. High Temperature, 27(6), 832–839.

    Google Scholar 

  98. Chaly, A. M., Barinov, Y. A., Minaev, V. S., Myatovich, S. U., Zabello, K. K., & Shkol’nik, S. M. (2013). Characteristics of vacuum-arc cathode spots on the refractory metal electrodes. IEEE Transactions on Plasma Science, 41(8), 1917–1922.

    Google Scholar 

  99. Smith, C. G. (1946). Cathode dark space and negative glow of a mercury arc. Physical Review, 69(3–4), 96–100.

    ADS  Google Scholar 

  100. Kesaev, I. G. (1957, January). On the Causes of Retrograde Arc Cathode Spot Motion in a Magnetic Field. In Soviet Physics Doklady (Vol. 2, p. 60).

    Google Scholar 

  101. Kesaev, I. G., & Pashkova, V. V. (1959). The electromagnetic anchoring of the cathode spot. Soviet Physics Technical Physics, 4(3), 254–264.

    Google Scholar 

  102. Wroe, H. (1958). The magnetic stabilization of low pressure dc arcs. British Journal of Applied Physics, 9(12), 488.

    Google Scholar 

  103. Robson, A. E. (1960). The motion of an arc in a magnetic field. In Ionization Phenomena in Gases, Volume I (p. 346).

    Google Scholar 

  104. Lang, W. C., **ao, J. Q., Gong, J., Sun, C., Huang, R. F., & Wen, L. S. (2010). Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition. Vacuum, 84, 1111–1117.

    Article  ADS  Google Scholar 

  105. Chaly, A. M., Logatchev, A. A., & Shkol’nik, S. M. (1999). Cathode processes in free burning and stabilized by axial magnetic field vacuum arcs. IEEE transactions on plasma science, 27(4), 827–835.

    Google Scholar 

  106. Song, X., & Shi, Z. (2012). Experimental investigation on the expansion speed of cathode spots in high-current triggered vacuum arc (pp. 301–304). Tomsk: Proceedings XXV International Symposium on Discharges and Electrical Insulation in Vacuum.

    Google Scholar 

  107. Yanabu, S., & Souma, S. (1979). Vacuum arc under an axial magnetic field and its interrupting ability. Proceedings of IEEE, 126(4), 313–320.

    Google Scholar 

  108. Chaly, A. M. (2005). Magnetic control of high current vacuum arcs with the aid of an axial magnetic field: A review. IEEE transactions on plasma science, 33(5), 1497–1503.

    Google Scholar 

  109. Zabello, K. K., Barinov, Yu A, Chaly, A. M., Logatchev, A. A., & Shkol’nik, S. M. (2005). Experimental study of cathode spot motion and burning voltage of low current vacuum arc in magnetic field. IEEE Transactions on Plasma Science, 33(5), 1553–1559.

    Article  ADS  Google Scholar 

  110. Li, L., Zhu, Y., He, F., Dun, D., Li, F., Chu, P. K., et al. (2013). Control of cathodic arc spot motion under external magnetic field. Vacuum, 91, 20–23.

    Article  ADS  Google Scholar 

  111. Beilis, I. I., Sagi, B., Zhitomirsky, V., & Boxman, R. L. (2015). Cathode spot motion in a vacuum arc with a long roof-shaped cathode under magnetic field. In XXVIth Intranational Symposium on Discharges and Electrical Insulation in Vacuum (pp. 213–216). India, Mumbai.

    Google Scholar 

  112. Beilis, I. I., Sagi, B., Zhitomirsky, V., & Boxman, R. L. (2015). Cathode spot motion in a vacuum arc with a long roof-shaped cathode under magnetic field. Journal of Applied Physics, 117(23), 233303.

    Google Scholar 

  113. Chaly, A. M., Logatchev, A., Zabello, K., & Shkol’nik, S. M. (2007). Effect of amplitude and inclination of magnetic field on low current vacuum arc. IEEE Transactions on Plasma Science, 35(4), 946–952.

    Article  ADS  Google Scholar 

  114. Chaly, A. M., & Shkol’nik, S. M. (2011). Low current vacuum arc with short arc length in magnetic fields of different orientations: A review. IEEE Transactions on Plasma Science, 39(6), 1311–1318.

    Article  ADS  Google Scholar 

  115. Ma, H., Wang, J., Liu, Z., Geng, Y., Wang, Z., & Yan, J. (2016). Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field. Physical Plasmas, 23, 063517.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak Beilis .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beilis, I. (2020). Cathode Spot Motion in a Transverse and in an Oblique Magnetic Field. In: Plasma and Spot Phenomena in Electrical Arcs. Springer Series on Atomic, Optical, and Plasma Physics, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-030-44747-2_13

Download citation

Publish with us

Policies and ethics

Navigation