Missing-Level Statistics in Chaotic Microwave Networks Versus Level Statistics of Partially Chaotic Systems

  • Chapter
  • First Online:
Discrete and Continuous Models in the Theory of Networks

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 281))

  • 457 Accesses

Abstract

We present experimental and numerical studies of level statistics in incomplete spectra obtained with fully connected microwave networks simulating quantum chaotic graphs with preserved time reversal symmetry. We demonstrate that, if resonance frequencies are randomly removed from the spectra, the experimental results for the short-range and long-range spectral fluctuations are in good agreement with theoretical predictions of the missing-level statistics for the systems with preserved time reversal symmetry. The same behavior of the short-range spectral fluctuations, e.g., the nearest-neighbor spacing distribution and the integrated nearest-neighbor spacing distribution may be also observed for complete spectra in partially chaotic systems. Using the Rosenzweig-Porter model which interpolates between the chaotic and regular behavior we demonstrate that in a such case the long-range spectral fluctuations differ significantly from the ones predicted by the missing-level statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. G. Gómez, K. Kar, V. K. B. Kota, R. A. Molina, A. Relaño, and J. Retamosa, (doi.org/10.1016/j.physrep.2010.11.003.) Phys. Rep. 499, 103 (2011).

    Google Scholar 

  2. H. A. Weidenmüller and G. E. Mitchell, (doi.org/10.1103/RevModPhys.81.539) Rev. Mod. Phys. 81, 539 (2009).

    Google Scholar 

  3. F. Haake, (ISBN 3-540-67723-2) Quantum Signatures of Chaos (Springer-Verlag, Heidelberg, 2001).

    Book  Google Scholar 

  4. O. Bohigas, M. J. Giannoni, and C. Schmit, (doi.org/10.1103/PhysRevLett.52.1) Phys. Rev. Lett. 52, 1 (1984).

    Google Scholar 

  5. M. L. Mehta, (ISBN 0124880517) Random Matrices (Academic Press, London, 1990).

    Google Scholar 

  6. M.V. Berry and M. Tabor, (10.1098/rspa.1977.0140) Proc. R. Soc. A 356, 375 (1977).

    Google Scholar 

  7. L. Sirko, P.M. Koch, and R. Blümel, (doi:10.1103/PhysRevLett.78.2940) Phys. Rev. Lett. 78, 2940 (1997).

    Google Scholar 

  8. H.-J. Stöckmann, (ISBN-10 0521027152) Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  9. Y. Hlushchuk, A. Błȩdowski, N. Savytskyy, L. Sirko, (PACS Ref: 05.45.Mt) Physica Scripta 64, 192 (2001).

    Google Scholar 

  10. R. Blümel, P.M. Koch, L. Sirko, (doi:10.1023/A:1017590503566) Found. Phys. 31, 269 (2001).

    Google Scholar 

  11. N. Savytskyy, A. Kohler, S. Bauch, R. Blümel, and L. Sirko, (doi.org/10.1103/PhysRevE.64.036211) Phys. Rev. E 64, 036211 (2001).

    Google Scholar 

  12. S. Hemmady, X. Zheng, E. Ott, T. M. Antonsen and S. M. Anlage, (doi.org/10.1103/PhysRevLett.94.014102) Phys. Rev. Lett. 94, 014102 (2005).

    Google Scholar 

  13. B. Dietz and A. Richter, (doi.org/10.1063/1.4915527) CHAOS 25, 097601 (2015).

    Google Scholar 

  14. M. Ławniczak, M. Białous, V. Yunko, S. Bauch, and L. Sirko, (doi.org/10.1103/PhysRevE.91.032925) Phys. Rev. E 91, 032925 (2015).

    Google Scholar 

  15. O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, and L. Sirko, (doi:10.1103/PhysRevE.69.056205) Phys. Rev. E 69, 056205 (2004).

    Google Scholar 

  16. M. Ławniczak, S. Bauch, O. Hul, and L. Sirko, (doi:10.1103/PhysRevE.81.046204) Phys. Rev. E 81, 046204 (2010).

    Google Scholar 

  17. T. Kottos, U. Smilansky, (doi.org/10.1103/PhysRevLett.79.4794) Phys. Rev. Lett. 79, 4794 (1997).

    Google Scholar 

  18. T. Kottos, U. Smilansky, (doi.org/10.1006/aphy.1999.5904) Ann. Phys. 274, 76 (1999).

    Google Scholar 

  19. P. Pakoński, K. Życzkowski, M. Kuś (PACS numbers: 04.45.Mt, 02.10.Yn) J. Phys. A 34 9303 (2001).

    Google Scholar 

  20. R. Blümel, A. Buchleitner, R. Graham, L. Sirko, U. Smilansky, and H. Walther, (doi.org/10.1103/PhysRevA.44.4521) Phys. Rev. A 44, 4521 (1991).

    Google Scholar 

  21. M. Bellermann, T. Bergemann, A. Haffmann, P. M. Koch, and L. Sirko, (doi:10.1103/PhysRevA.46.5836) Phys. Rev. A 46, 5836 (1992).

    Google Scholar 

  22. L. Sirko, S. Yoakum, A. Haffmans, and P. M. Koch, (doi:10.1103/PhysRevA.47.R782) Phys. Rev. A 47, R782 (1993).

    Google Scholar 

  23. L. Sirko and P. M. Koch, Appl. Phys. B 60, S195 (1995)

    Google Scholar 

  24. L. Sirko, A. Haffmans, M. R. W. Bellermann, and P. M. Koch, (doi:10.1209/epl/i1996-00318-5) Europhysics Letters 33, 181 (1996).

    Google Scholar 

  25. L. Sirko, S.A. Zelazny, and P. M. Koch, (doi.org/10.1103/PhysRevLett.87.043002) Phys. Rev. Lett. 87, 043002 (2001).

    Google Scholar 

  26. L. Sirko and P. M. Koch, (doi:10.1103/PhysRevLett.89.274101) Phys. Rev. Lett. 89, 274101 (2002).

    Google Scholar 

  27. S. Deus, P. M. Koch, and L. Sirko, (doi.org/10.1103/PhysRevE.52.1146) Phys. Rev. E 52, 1146 (1995).

    Google Scholar 

  28. L. J. Pauling, Chem. Phys. 4, 673 (1936).

    Google Scholar 

  29. J. A. Sanchez-Gil, V. Freilikher, I. Yurkevich, and A. A. Maradudin, Phys. Rev. Lett. 80, 948 (1998).

    Article  Google Scholar 

  30. R. Mittra, S. W. Lee, (ASIN: B0006C0E1M) Analytical Techniques in the Theory of Guided Waves (Macmillan, NY, 1971).

    Google Scholar 

  31. D. Kowal, U. Sivan, O. Entin-Wohlman, and Y. Imry, (doi.org/10.1103/PhysRevB.42.9009) Phys. Rev. B 42, 9009 (1990).

    Google Scholar 

  32. Y. Imry, Introduction to Mesoscopic Physics (Oxford, NY, 1996).

    Google Scholar 

  33. S. Gnutzmann and A. Altland, (DOI:10.1103/PhysRevLett.93.194101) Phys. Rev. Lett. 93, 194101 (2004).

    Google Scholar 

  34. Z. Pluhař and H. A. Weidenmüller, (doi.org/10.1103/PhysRevLett.112.144102) Phys. Rev. Lett. 12, 144102 (2014).

    Google Scholar 

  35. M. Ławniczak, O. Hul, S. Bauch, P. Seba, and L. Sirko, (doi.org/10.1103/PhysRevE.77.056210) Phys. Rev. E 77, 056210 (2008).

    Google Scholar 

  36. M. Ławniczak, S. Bauch, O. Hul, and L. Sirko, (doi: 10.1088/0031-8949/2011/T143/014014) Phys. Scr. T143, 014014 (2011).

    Google Scholar 

  37. O. Hul, M. Ławniczak, S. Bauch, A. Sawicki, M. Kuś, L. Sirko, (doi.org/10.1103/PhysRevLett.109.040402) Phys. Rev. Lett 109, 040402 (2012).

    Google Scholar 

  38. M. Ławniczak, A. Sawicki, S. Bauch, M. Kuś, and L. Sirko, (doi:10.1103/PhysRevE.89.032911) Phys. Rev E 89, 032911 (2014).

    Google Scholar 

  39. M. Allgaier, S. Gehler, S. Barkhofen, H.-J. Stöckmann, and U. Kuhl, (doi:10.1103/PhysRevE.89.022925) Phys. Rev. E 89, 022925 (2014).

    Google Scholar 

  40. M. Ławniczak, S. Bauch, and L. Sirko, in ( ISBN-10: 1466590432) Handbook of Applications of Chaos Theory, eds. Christos Skiadas and Charilaos Skiadas (CRC Press, Boca Raton, USA, 2016), p. 559.

    Google Scholar 

  41. O. Bohigas, R. U. Haq, and A. Pandey, (doi.org/10.1007/978-94-009-7099-1-179) in Nuclear Data for Science and Technology, ed. by K. H. Böckhoff (Reidel, Dordrecht, 1983).

    Google Scholar 

  42. M. Białous, V. Yunko, S. Bauch, M. Ławniczak, B. Dietz, and L. Sirko, (DOI:10.1103/PhysRevLett.117.144101) Phys. Rev. Lett. 117, 144101 (2016).

    Google Scholar 

  43. B. Dietz, V. Yunko, M. Białous, S. Bauch, M. Ławniczak, and L. Sirko, (doi.org/10.1103/PhysRevE.95.052202) Phys. Rev. E 95, 052202 (2017).

    Google Scholar 

  44. M. Ławniczak, M. Białous, V. Yunko, S. Bauch, B. Dietz, and L. Sirko, Acta Phys. Pol. A 132, 1672 (2017).

    Article  Google Scholar 

  45. A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. Bohn, C. Makrides, A. Petrov, and S. Kotochigova, (DOI:10.1038/nature13137) Nature (London) 507, 475 (2014).

    Google Scholar 

  46. J. Mur-Petit and R. A. Molina, (DOI:10.1103/PhysRevE.92.042906) Phys. Rev. E 92, 042906 (2015).

    Google Scholar 

  47. H. I. Liou, H. S. Camarda, and F. Rahn, Phys. Rev. C 5, 1002 (1972).

    Article  Google Scholar 

  48. T. Zimmermann, H. Köppel, L. S. Cederbaum, G. Persch, and W. Demtröder, (PACS numbers: 03.65.6e, 05.40.+j, 05.45.+b, 33.20.Kf) Phys. Rev. Lett. 61, 3 (1988).

    Google Scholar 

  49. U. Agvaanluvsan, G. E. Mitchell, J. F. Shriner Jr., M. Pato, (doi.org/10.1103/PhysRevC.67.064608) Phys. Rev. C 67, 064608 (2003).

    Google Scholar 

  50. O. Bohigas and M. P. Pato, (doi.org/10.1016/j.physletb.2004.05.065) Phys. Lett. B 595, 171 (2004).

    Google Scholar 

  51. R.A. Molina, J. Retamosa, L. Muñoz, A. Relaño, and E. Faleiro, (doi.org/10.1016/j.physletb.2006.10.058) Phys. Lett. B 644, 25 (2007).

    Google Scholar 

  52. A. Relaño, J.M.G. Gómez, R. A. Molina, J. Retamosa, and E. Faleiro, (doi.org/10.1103/PhysRevLett.89.244102) Phys. Rev. Lett. 89, 244102 (2002).

    Google Scholar 

  53. E. Faleiro, J. M. G. Gómez, R. A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, (DOI:10.1103/PhysRevLett.93.244101) Phys. Rev. Lett. 93, 244101 (2004).

    Google Scholar 

  54. J. M. G. Gómez, A. Relaño, J. Retamosa, E. Faleiro, L. Salasnich, M. Vraničar, and M. Robnik, (DOI: 10.1103/PhysRevLett.94.084101) Phys. Rev. Lett. 94, 084101 (2005).

    Google Scholar 

  55. E. Faleiro, U. Kuhl, R.A. Molina, L. Muñoz, A. Relaño, and J. Retamosa, (doi:10.1016/j.physleta.2006.05.029) Phys. Lett. A 358, 251 (2006).

    Google Scholar 

  56. R. Riser, V. Al. Osipov, E. Kanzieper, (DOI:10.1103/PhysRevLett.118.204101) Phys. Rev. Lett. 118, 204101 (2017).

    Google Scholar 

  57. D. S. Jones, (Library of Congress Catalogue Card Number 62-19277) Theory of Electromagnetism (Pergamon Press, Oxford, 1964), p. 254.

    Google Scholar 

  58. M. Ławniczak, S. Bauch, and L. Sirko, in Handbook of Applications of Chaos Theory, eds. Christos Skiadas and Charilaos Skiadas (CRC Press, Boca Raton, USA, 2016), p. 559.

    Google Scholar 

  59. B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, J. Verbaarschot, and H. A. Weidenmüller, (PACS numbers: 24.60.Ky, 05.45.Mt, 11.30.Er, 85.70.Ge) Phys. Rev. Lett. 103, 064101 (2009).

    Google Scholar 

  60. B. Dietz, T. Friedrich, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer and H. A. Weidenmüller, (doi:10.1103/PhysRevE.81.036205) Phys. Rev. E 81, 036205 (2010).

    Google Scholar 

  61. L. Salasnich, Phys. Rev. E 71, 047202 (2005).

    Article  Google Scholar 

  62. M. S. Santhanam and J. N. Bandyopadhyay, Phys. Rev. Lett. 95, 114101 (2005).

    Article  Google Scholar 

  63. A. Relaño, Phys. Rev. Lett. 100, 224101 (2008).

    Article  Google Scholar 

  64. N. Rosenzweig and C. E. Porter, Phys. Rev. 120, 1698 (1960).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Ławniczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ławniczak, M., Białous, M., Yunko, V., Bauch, S., Sirko, L. (2020). Missing-Level Statistics in Chaotic Microwave Networks Versus Level Statistics of Partially Chaotic Systems. In: Atay, F., Kurasov, P., Mugnolo, D. (eds) Discrete and Continuous Models in the Theory of Networks. Operator Theory: Advances and Applications, vol 281. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-44097-8_12

Download citation

Publish with us

Policies and ethics

Navigation