Retinal Bioengineering

  • Chapter
  • First Online:
Neural Engineering

Abstract

The retina is a small piece of the central nervous system responsible for the first steps in vision, so understanding how it works has great importance for daily life. In addition, features of the retina make it attractive as a model neural system. The only input to the retina is light, which can be easily manipulated, and recordings have been made for many decades from individual output cells of the retina, the retinal ganglion cells (RGCs), allowing application of linear (and to some extent nonlinear) systems analysis methods that define the transfer functions of the retina. The small, non-spiking photoreceptors and retinal interneurons make recordings from these earlier stages difficult in mammals, but this has been partially surmounted by the ability to record massed activity of some types of retinal neurons, including photoreceptors and bipolar cells, in the electroretinogram (ERG) in humans as well as animals. ERG analyses have led to models of signal processing prior to the RGCs. Engineering methods in combination with physiology have thus elucidated the basic features of the retinal network that allow the convergence of signals from many millions of photoreceptors to yield the center-surround organization and response properties of the primary types of RGCs in cats and primates. However, some of the approximately 20 types of RGCs that send parallel signals to the brain are still poorly understood. Recent work has used isolated retinas and multielectrode arrays to record from many retinal ganglion cells simultaneously. Specific contributions of interneurons to the retinal circuits have also been addressed with new methods, some of which are reviewed here. Another aspect of retinal bioengineering concerns the retinal microenvironment. Diffusion models and spatially precise intraretinal measurements of oxygen and pH provide information about retinal metabolism that is useful in understanding dysfunction of the retina in some diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C.A. Curcio, K.A. Allen, Topography of ganglion cells in human retina. J. Comp. Neurol. 300(1), 5–25 (1990). https://doi.org/10.1002/cne.903000103

    Article  CAS  Google Scholar 

  2. H. Benav, K.U. Bartz-Schmidt, D. Besch, A. Bruckmann, F. Gekeler, U. Greppmaier, A. Harscher, S. Kibbel, A. Kusnyerik, T. Peters, H. Sachs, A. Stett, K. Stingl, B. Wilhelm, R. Wilke, W. Wrobel, E. Zrenner, Restoration of useful vision up to letter recognition capabilities using subretinal microphotodiodes. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010, 5919–5922 (2010). https://doi.org/10.1109/IEMBS.2010.5627549

    Article  Google Scholar 

  3. J. Dowling, Current and future prospects for optoelectronic retinal prostheses. Eye (Lond.) 23(10), 1999–2005. doi:eye2008385 [pii] (2009). https://doi.org/10.1038/eye.2008.385

    Article  CAS  Google Scholar 

  4. C.M. Rountree, J.B. Troy, L. Saggere, Microfluidics-based subretinal chemical Neuromodulation of photoreceptor degenerated retinas. Invest. Ophthalmol. Vis. Sci. 59(1), 418–430 (2018). https://doi.org/10.1167/iovs.17-23142

    Article  CAS  Google Scholar 

  5. E.J. Tehovnik, W.M. Slocum, S.M. Smirnakis, A.S. Tolias, Microstimulation of visual cortex to restore vision. Prog. Brain Res. 175, 347–375. doi:S0079-6123(09)17524-6 [pii] (2009). https://doi.org/10.1016/S0079-6123(09)17524-6

    Article  Google Scholar 

  6. J.D. Weiland, M.S. Humayun, Retinal prosthesis. I.E.E.E. Trans. Biomed. Eng. 61(5), 1412–1424 (2014). https://doi.org/10.1109/TBME.2014.2314733

    Article  Google Scholar 

  7. J.D. Weiland, S.T. Walston, M.S. Humayun, Electrical stimulation of the retina to produce artificial vision. Annu. Rev. Vis. Sci. 2, 273–294 (2016). https://doi.org/10.1146/annurev-vision-111815-114425

    Article  Google Scholar 

  8. T.Y. Chui, H. Song, S.A. Burns, Adaptive-optics imaging of human cone photoreceptor distribution. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 25(12), 3021–3029 (2008). doi:174847 [pii]

    CAS  Google Scholar 

  9. Y. Kitaguchi, S. Kusaka, T. Yamaguchi, T. Mihashi, T. Fujikado, Detection of photoreceptor disruption by adaptive optics fundus imaging and Fourier-domain optical coherence tomography in eyes with occult macular dystrophy. Clin. Ophthalmol. 5, 345–351 (2011). https://doi.org/10.2147/OPTH.S17335

    Article  Google Scholar 

  10. A. Roorda, D.R. Williams, The arrangement of the three cone classes in the living human eye. Nature 397(6719), 520–522 (1999). https://doi.org/10.1038/17383

    Article  CAS  Google Scholar 

  11. J. Fujimoto, E. Swanson, The development, commercialization, and impact of optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 57(9), OCT1–OCT13 (2016). https://doi.org/10.1167/iovs.16-19963

    Article  Google Scholar 

  12. M.L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J.A. Xu, L.S. Folio, J.S. Schuman, Optical coherence tomography: History, current status, and laboratory work. Invest. Ophthalmol. Vis. Sci. 52(5), 2425–2436 (2011). https://doi.org/10.1167/iovs.10-6312

    Article  Google Scholar 

  13. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)

    CAS  Google Scholar 

  14. V.J. Srinivasan, B.K. Monson, M. Wojtkowski, R.A. Bilonick, I. Gorczynska, R. Chen, J.S. Duker, J.S. Schuman, J.G. Fujimoto, Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 49(4), 1571–1579. doi:49/4/1571 [pii] (2008). https://doi.org/10.1167/iovs.07-0838

    Article  Google Scholar 

  15. A. Kanamori, A. Nagai-Kusuhara, M.F. Escano, H. Maeda, M. Nakamura, A. Negi, Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage. Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006). https://doi.org/10.1007/s00417-005-0029-0

    Article  Google Scholar 

  16. A. Roorda, Applications of adaptive optics scanning laser ophthalmoscopy. Optom. Vis. Sci. 87(4), 260–268 (2010). https://doi.org/10.1097/OPX.0b013e3181d39479

    Article  Google Scholar 

  17. P.F. Sharp, A. Manivannan, H. Xu, J.V. Forrester, The scanning laser ophthalmoscope--a review of its role in bioscience and medicine. Phys. Med. Biol. 49(7), 1085–1096 (2004)

    CAS  Google Scholar 

  18. A.S. Neubauer, M.W. Ulbig, Laser treatment in diabetic retinopathy. Ophthalmologica 221(2), 95–102. doi:000098254 [pii] (2007). https://doi.org/10.1159/000098254

    Article  Google Scholar 

  19. C.D. Regillo, Update on photodynamic therapy. Curr. Opin. Ophthalmol. 11(3), 166–170 (2000)

    CAS  Google Scholar 

  20. J.L. Dumouchel, N. Chemuturi, M.N. Milton, G. Camenisch, J. Chastain, M. Walles, V. Sasseville, M. Gunduz, G.R. Iyer, U.A. Argikar, Models and approaches describing the metabolism, transport, and toxicity of drugs administered by the ocular route. Drug Metab. Dispos. 46(11), 1670–1683 (2018). https://doi.org/10.1124/dmd.118.082974

    Article  CAS  Google Scholar 

  21. G.A. Rodrigues, D. Lutz, J. Shen, X.D. Yuan, H. Shen, J. Cunningham, H.M. Rivers, Topical drug delivery to the posterior segment of the eye: Addressing the challenge of preclinical to clinical translation. Pharm. Res. 35(12) (2018). https://doi.org/10.1007/s11095-018-2519-x

  22. A.M. Maguire, K.A. High, A. Auricchio, J.F. Wright, E.A. Pierce, F. Testa, F. Mingozzi, J.L. Bennicelli, G.S. Ying, S. Rossi, A. Fulton, K.A. Marshall, S. Banfi, D.C. Chung, J.I. Morgan, B. Hauck, O. Zelenaia, X. Zhu, L. Raffini, F. Coppieters, E. De Baere, K.S. Shindler, N.J. Volpe, E.M. Surace, C. Acerra, A. Lyubarsky, T.M. Redmond, E. Stone, J. Sun, J.W. McDonnell, B.P. Leroy, F. Simonelli, J. Bennett, Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: A phase 1 dose-escalation trial. Lancet 374(9701), 1597–1605. doi:S0140-6736(09)61836-5 [pii] (2009). https://doi.org/10.1016/S0140-6736(09)61836-5

    Article  CAS  Google Scholar 

  23. K. Stieger, B. Lorenz, Gene therapy for vision loss – Recent developments. Discov. Med. 10(54), 425–433 (2010)

    Google Scholar 

  24. K. Deisseroth, G. Feng, A.K. Majewska, G. Miesenbock, A. Ting, M.J. Schnitzer, Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26(41), 10380–10386. doi:26/41/10380 [pii] (2006). https://doi.org/10.1523/JNEUROSCI.3863-06.2006

    Article  CAS  Google Scholar 

  25. M.M. Doroudchi, K.P. Greenberg, J. Liu, K.A. Silka, E.S. Boyden, J.A. Lockridge, A.C. Arman, R. Janani, S.E. Boye, S.L. Boye, G.M. Gordon, B.C. Matteo, A.P. Sampath, W.W. Hauswirth, A. Horsager, Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther.doi:mt201169 [pii] (2011). https://doi.org/10.1038/mt.2011.69

  26. B. Lin, A. Koizumi, N. Tanaka, S. Panda, R.H. Masland, Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl. Acad. Sci. U. S. A. 105(41), 16009–16014. doi:0806114105 [pii] (2008). https://doi.org/10.1073/pnas.0806114105

    Article  Google Scholar 

  27. J. Dowling, The Retina: An Approachable Part of the Brain (Belknap PRess, Cambridge, MA, 1987)

    Google Scholar 

  28. R.H. Masland, The neuronal organization of the retina. Neuron 76(2), 266–280 (2012). https://doi.org/10.1016/j.neuron.2012.10.002

    Article  CAS  Google Scholar 

  29. R.W. Rodieck, First Steps in Seeing (Sinauer Associates, Sunderland, 1998)

    Google Scholar 

  30. B.A. Wandell, Foundations of Vision (Sinauer Associates, Sunderland, 1995)

    Google Scholar 

  31. H. Kolb, R. Nelson, E. Fernandez, B.W. Jones, Webvision: The organization of the retina and visual system (2019). http://webvision.med.utah.edu. Accessed 24 Jan 2019

  32. P.H. Schiller, The ON and OFF channels of the visual system. Trends Neurosci. 15(3), 86–92 (1992). doi:0166-2236(92)90017-3 [pii]

    CAS  Google Scholar 

  33. H. Wassle, B.B. Boycott, Functional architecture of the mammalian retina. Physiol. Rev. 71(2), 447–480 (1991)

    CAS  Google Scholar 

  34. R.M. Shapley, C. Enroth-Cugell, Visual adaptation and retinal gain controls. Prog. Retin. Res. 3, 263–346 (1984)

    Google Scholar 

  35. D.M. Dacey, B.B. Peterson, F.R. Robinson, P.D. Gamlin, Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37(1), 15–27 (2003). doi:S0896627302011431 [pii]

    CAS  Google Scholar 

  36. R.M. Shapley, B.B. Lee, E. Kaplan, New views of primate retinal function. Prog. Retin. Res. 9, 273–336 (1990)

    Google Scholar 

  37. J.B. Troy, T. Shou, The receptive fields of cat retinal ganglion cells in physiological and pathological states: Where we are after half a century of research. Prog. Retin. Eye Res. 21(3), 263–302 (2002). doi:S1350946202000022 [pii]

    CAS  Google Scholar 

  38. J.L. Gauthier, G.D. Field, A. Sher, M. Greschner, J. Shlens, A.M. Litke, E.J. Chichilnisky, Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biol. 7(4), e1000063. doi:08-PLBI-RA-0586 [pii] (2009). https://doi.org/10.1371/journal.pbio.1000063

    Article  CAS  Google Scholar 

  39. S.A. Bloomfield, Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. J. Neurophysiol. 75(5), 1878–1893 (1996)

    CAS  Google Scholar 

  40. S. Hattar, H.W. Liao, M. Takao, D.M. Berson, K.W. Yau, Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295(5557), 1065–1070 (2002). https://doi.org/10.1126/science.1069609. 295/5557/1065 [pii]

    Article  CAS  Google Scholar 

  41. A. Sand, T.M. Schmidt, P. Kofuji, Diverse types of ganglion cell photoreceptors in the mammalian retina. Prog. Retin. Eye Res. 31(4), 287–302 (2012). https://doi.org/10.1016/j.preteyeres.2012.03.003

    Article  CAS  Google Scholar 

  42. T.M. Schmidt, S.K. Chen, S. Hattar, Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions. Trends Neurosci. 34(11), 572–580 (2011). https://doi.org/10.1016/j.tins.2011.07.001

    Article  CAS  Google Scholar 

  43. R. Nelson, E.V. Famiglietti Jr., H. Kolb, Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J. Neurophysiol. 41(2), 472–483 (1978)

    CAS  Google Scholar 

  44. J.H. Belgum, D.R. Dvorak, J.S. McReynolds, Sustained and transient synaptic inputs to on-off ganglion cells in the mudpuppy retina. J. Physiol. 340, 599–610 (1983)

    CAS  Google Scholar 

  45. E.P. Chen, R.A. Linsenmeier, Centre components of cone-driven retinal ganglion cells: Differential sensitivity to 2-amino-4-phosphonobutyric acid. J. Physiol. 419, 77–93 (1989)

    CAS  Google Scholar 

  46. E.J. Chichilnisky, R.S. Kalmar, Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 22(7), 2737–2747 (2002). doi:20026215 22/7/2737 [pii]

    CAS  Google Scholar 

  47. H. Kolb, E.V. Famiglietti, Rod and cone pathways in the inner plexiform layer of cat retina. Science 186(4158), 47–49 (1974)

    CAS  Google Scholar 

  48. S.A. Bloomfield, R.F. Dacheux, Rod vision: Pathways and processing in the mammalian retina. Prog. Retin. Eye Res. 20(3), 351–384 (2001). doi:S1350-9462(00)00031-8 [pii]

    CAS  Google Scholar 

  49. M.B. Manookin, D.L. Beaudoin, Z.R. Ernst, L.J. Flagel, J.B. Demb, Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J. Neurosci. 28(16), 4136–4150. doi:28/16/4136 [pii] (2008). https://doi.org/10.1523/JNEUROSCI.4274-07.2008

    Article  CAS  Google Scholar 

  50. R.G. Smith, M.A. Freed, P. Sterling, Microcircuitry of the dark-adapted cat retina: Functional architecture of the rod-cone network. J. Neurosci. 6(12), 3505–3517 (1986)

    CAS  Google Scholar 

  51. T.N. Cornsweet, Visual Perception (Academic Press, New York, 1970)

    Google Scholar 

  52. C. Enroth-Cugell, J.G. Robson, Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. Invest. Ophthalmol. Vis. Sci. 25(3), 250–267 (1984)

    CAS  Google Scholar 

  53. S.W. Kuffler, Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16(1), 37–68 (1953)

    CAS  Google Scholar 

  54. G.D. Field, J.L. Gauthier, A. Sher, M. Greschner, T.A. Machado, L.H. Jepson, J. Shlens, D.E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A.M. Litke, E.J. Chichilnisky, Functional connectivity in the retina at the resolution of photoreceptors. Nature 467(7316), 673–677 (2010). https://doi.org/10.1038/nature09424

    Article  CAS  Google Scholar 

  55. L.E. Wool, J.D. Crook, J.B. Troy, O.S. Packer, Q. Zaidi, D.M. Dacey, Nonselective wiring accounts for red-green opponency in midget ganglion cells of the primate retina. J. Neurosci. 38(6), 1520–1540 (2018). https://doi.org/10.1523/JNEUROSCI.1688-17.2017

    Article  CAS  Google Scholar 

  56. D.M. Dacey, Circuitry for color coding in the primate retina. Proc. Natl. Acad. Sci. U. S. A. 93(2), 582–588 (1996)

    CAS  Google Scholar 

  57. D.M. Dacey, Parallel pathways for spectral coding in primate retina. Annu. Rev. Neurosci. 23, 743–775 (2000). https://doi.org/10.1146/annurev.neuro.23.1.743

    Article  CAS  Google Scholar 

  58. R.W. Rodieck, J. Stone, Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28(5), 832–849 (1965)

    Google Scholar 

  59. R.W. Rodieck, Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis. Res. 5(11), 583–601 (1965)

    CAS  Google Scholar 

  60. J.J. Nassi, E.M. Callaway, Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10(5), 360–372 (2009). https://doi.org/10.1038/nrn2619

    Article  CAS  Google Scholar 

  61. N. Babai, W.B. Thoreson, Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina. J. Physiol. 587(Pt 10), 2353–2364. doi:jphysiol.2009.169656 [pii] (2009). https://doi.org/10.1113/jphysiol.2009.169656

    Article  CAS  Google Scholar 

  62. J.D. Crook, M.B. Manookin, O.S. Packer, D.M. Dacey, Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. J. Neurosci. 31(5), 1762–1772 (2011). https://doi.org/10.1523/JNEUROSCI.4385-10.2011

    Article  CAS  Google Scholar 

  63. A. Drinnenberg, F. Franke, R.K. Morikawa, J. Juttner, D. Hillier, P. Hantz, A. Hierlemann, R.A. da Silveira, B. Roska, How diverse retinal functions arise from feedback at the first visual synapse. Neuron 99(1), 117 (2018). https://doi.org/10.1016/j.neuron.2018.06.001

    Article  CAS  Google Scholar 

  64. S.C. Mangel, Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. J. Physiol. 442, 211–234 (1991)

    CAS  Google Scholar 

  65. M.J. McMahon, O.S. Packer, D.M. Dacey, The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. J. Neurosci. 24(15), 3736–3745 (2004). https://doi.org/10.1523/JNEUROSCI.5252-03.2004

    Article  CAS  Google Scholar 

  66. O.S. Packer, J. Verweij, P.H. Li, J.L. Schnapf, D.M. Dacey, Blue-yellow opponency in primate S cone photoreceptors. J. Neurosci. 30(2), 568–572. doi:30/2/568 [pii] (2010). https://doi.org/10.1523/JNEUROSCI.4738-09.2010

    Article  CAS  Google Scholar 

  67. S.A. Bloomfield, D. **n, Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina. J. Physiol. 523(Pt 3), 771–783 (2000)

    CAS  Google Scholar 

  68. C.W. Oyster, The Human Eye: Structure and Function (Sinauer Associates, Sunderland, 1999)

    Google Scholar 

  69. R.W. Rodieck, The Vertebrate Retina (Freeman, San Francisco, 1973)

    Google Scholar 

  70. A. Bill, G.O. Sperber, Control of retinal and choroidal blood flow. Eye 4(Pt 2), 319–325 (1990)

    Google Scholar 

  71. J.W. Kiel, The Ocular Circulation, Integrated Systems Physiology: From Molecule to Function to Disease (Morgan & Claypool Life Sciences, San Rafael, 2010)

    Google Scholar 

  72. C.J. Pournaras, E. Rungger-Brandle, C.E. Riva, S.H. Hardarson, E. Stefansson, Regulation of retinal blood flow in health and disease. Prog. Retin. Eye Res. 27(3), 284–330 (2008). https://doi.org/10.1016/j.preteyeres.2008.02.002

    Article  CAS  Google Scholar 

  73. L. Schmetterer, J. W. Kiel (eds.), Ocular Blood Flow (Springer, Berlin/Heidelberg, 2012)

    Google Scholar 

  74. A. Alm, A. Bill, The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol. Scand. 84(3), 306–319 (1972)

    CAS  Google Scholar 

  75. G. Birol, S. Wang, E. Budzynski, N.D. Wangsa-Wirawan, R.A. Linsenmeier, Oxygen distribution and consumption in the macaque retina. Am. J. Physiol. 293(3), H1696–H1704 (2007)

    CAS  Google Scholar 

  76. R.A. Linsenmeier, R.D. Braun, Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J. Gen. Physiol. 99(2), 177–197 (1992)

    CAS  Google Scholar 

  77. O. Strauss, The retinal pigment epithelium in visual function. Physiol. Rev. 85(3), 845–881 (2005). https://doi.org/10.1152/physrev.00021.2004

    Article  CAS  Google Scholar 

  78. J. Ahmed, M.K. Pulfer, R.A. Linsenmeier, Measurement of blood flow through the retinal circulation of the cat during normoxia and hypoxemia using fluorescent microspheres. Microvasc. Res. 62(2), 143–153 (2001)

    CAS  Google Scholar 

  79. J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker. Invest. Ophthalmol. Vis. Sci. 36(7), 1240–1246 (1995)

    CAS  Google Scholar 

  80. T. Vo Van, C.E. Riva, Variations of blood flow at optic nerve head induced by sinusoidal flicker stimulation in cats. J. Physiol. 482(Pt 1), 189–202 (1995)

    Google Scholar 

  81. N. Congdon, B. O’Colmain, C.C. Klaver, R. Klein, B. Munoz, D.S. Friedman, J. Kempen, H.R. Taylor, P. Mitchell, Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122(4), 477–485 (2004). https://doi.org/10.1001/archopht.122.4.477

    Article  Google Scholar 

  82. J.R. Heckenlively, J. Bouchman, L. Friedman, Diagnosis and classification of retinitis pigmentosa, in Retinitis pigmentosa, ed. by J. R. Heckenlively, (J.B. Lippincott, Philadelphia, 1988)

    Google Scholar 

  83. R.A. Saleem, M.A. Walter, The complexities of ocular genetics. Clin. Genet. 61(2), 79–88 (2002)

    CAS  Google Scholar 

  84. M.S. Humayun, M. Prince, E. de Juan Jr., Y. Barron, M. Moskowitz, I.B. Klock, A.H. Milam, Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 40(1), 143–148 (1999)

    CAS  Google Scholar 

  85. R.E. Marc, B.W. Jones, J.R. Anderson, K. Kinard, D.W. Marshak, J.H. Wilson, T. Wensel, R.J. Lucas, Neural reprogramming in retinal degeneration. Invest. Ophthalmol. Vis. Sci. 48(7), 3364–3371 (2007). https://doi.org/10.1167/iovs.07-0032

    Article  Google Scholar 

  86. M.M. LaVail, Analysis of neurological mutants with inherited retinal degeneration. Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 21(5), 638–657 (1981)

    CAS  Google Scholar 

  87. M. Menotti-Raymond, K.H. Deckman, V. David, J. Myrkalo, S.J. O’Brien, K. Narfstrom, Mutation discovered in a feline model of human congenital retinal blinding disease. Invest. Ophthalmol. Vis. Sci. 51(6), 2852–2859 (2010). https://doi.org/10.1167/iovs.09-4261

    Article  Google Scholar 

  88. G.M. Acland, G.D. Aguirre, J. Bennett, T.S. Aleman, A.V. Cideciyan, J. Bennicelli, N.S. Dejneka, S.E. Pearce-Kelling, A.M. Maguire, K. Palczewski, W.W. Hauswirth, S.G. Jacobson, Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol. Ther. 12(6), 1072–1082 (2005). https://doi.org/10.1016/j.ymthe.2005.08.008

    Article  CAS  Google Scholar 

  89. K. Narfstrom, M.L. Katz, M. Ford, T.M. Redmond, E. Rakoczy, R. Bragadottir, In vivo gene therapy in young and adult RPE65-/- dogs produces long-term visual improvement. J. Hered. 94(1), 31–37 (2003)

    CAS  Google Scholar 

  90. J.W.B. Bainbridge, M.S. Mehat, V. Sundaram, S.J. Robbie, S.E. Barker, C. Ripamonti, A. Georgiadis, F.M. Mowat, S.G. Beattie, P.J. Gardner, K.L. Feathers, V.A. Luong, S. Yzer, K. Balaggan, A. Viswanathan, T.J.L. de Ravel, I. Casteels, G.E. Holder, N. Tyler, F.W. Fitzke, R.G. Weleber, M. Nardini, A.T. Moore, D.A. Thompson, S.M. Petersen-Jones, M. Michaelides, L.I. van den Born, A. Stockman, A.J. Smith, G. Rubin, R.R. Ali, Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med. 372(20), 1887–1897 (2015). https://doi.org/10.1056/NEJMoa1414221

    Article  Google Scholar 

  91. M.E. Pennesi, R.G. Weleber, P. Yang, C. Whitebirch, B. Thean, T.R. Flotte, M. Humphries, E. Chegarnov, K.N. Beasley, J.T. Stout, J.D. Chulay, Results at 5 years after gene therapy for RPE65-deficient retinal dystrophy. Hum. Gene Ther. 29(12), 1428–1437 (2018). https://doi.org/10.1089/hum.2018.014

    Article  CAS  Google Scholar 

  92. S. Russell, J. Bennett, J.A. Wellman, D.C. Chung, Z.F. Yu, A. Tillman, J. Wittes, J. Pappas, O. Elci, S. McCague, D. Cross, K.A. Marshall, J. Walshire, T.L. Kehoe, H. Reichert, M. Davis, L. Raffini, L.A. George, F.P. Hudson, L. Dingfield, X.S. Zhu, J.A. Haller, E.H. Sohn, V.B. Mahajan, W. Pfeifer, M. Weckmann, C. Johnson, D. Gewaily, A. Drack, E. Stone, K. Wachtel, F. Simonelli, B.P. Leroy, J.F. Wright, K.A. High, A.M. Maguire, Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 390(10097), 849–860 (2017). https://doi.org/10.1016/s0140-6736(17)31868-8

    Article  CAS  Google Scholar 

  93. G.J. Chader, J. Weiland, M.S. Humayun, Artificial vision: Needs, functioning, and testing of a retinal electronic prosthesis. Prog. Brain Res. 175, 317–332. doi:S0079-6123(09)17522-2 [pii] (2009). https://doi.org/10.1016/S0079-6123(09)17522-2

    Article  Google Scholar 

  94. H. Tomita, E. Sugano, H. Isago, M. Tamai, Channelrhodopsins provide a breakthrough insight into strategies for curing blindness. J. Genet. 88(4), 409–415 (2009)

    CAS  Google Scholar 

  95. R. Klein, B.E. Klein, M.D. Knudtson, S.M. Meuer, M. Swift, R.E. Gangnon, Fifteen-year cumulative incidence of age-related macular degeneration: The beaver dam eye study. Ophthalmology 114(2), 253–262. doi:S0161-6420(06)01478-3 [pii] (2007). https://doi.org/10.1016/j.ophtha.2006.10.040

    Article  Google Scholar 

  96. C.A. Curcio, M. Johnson, J.D. Huang, M. Rudolf, Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog. Retin. Eye Res. 28(6), 393–422. doi:S1350-9462(09)00057-3 [pii] (2009). https://doi.org/10.1016/j.preteyeres.2009.08.001

    Article  CAS  Google Scholar 

  97. P.T. Johnson, G.P. Lewis, K.C. Talaga, M.N. Brown, P.J. Kappel, S.K. Fisher, D.H. Anderson, L.V. Johnson, Drusen-associated degeneration in the retina. Invest. Ophthalmol. Vis. Sci. 44(10), 4481–4488 (2003)

    Google Scholar 

  98. A. Abdelsalam, L. Del Priore, M.A. Zarbin, Drusen in age-related macular degeneration: Pathogenesis, natural course, and laser photocoagulation-induced regression. Surv. Ophthalmol. 44(1), 1–29 (1999). doi:S0039625799000727 [pii]

    CAS  Google Scholar 

  99. C. Campa, S.P. Harding, Anti-VEGF compounds in the treatment of neovascular age related macular degeneration. Curr. Drug Targets 12(2), 173–181 (2011). doi:BSP/CDT/E-Pub/00173 [pii]

    CAS  Google Scholar 

  100. R.L. Stamper, S.S. Sanghvi, Intraocular pressure: Measurement, regulation, and flow relationships, in Duane’s Foundations of Clinical Ophthalmology, ed. by W. Tasman, E. A. Jaeger, vol. 2, (Lippincott-Raven, Philadelphia, 1996), pp. 1–31

    Google Scholar 

  101. J.W. Sassani, Glaucoma, in Duane’s Foundations of Clinical Ophthalmology, ed. by W. Tasman, E. A. Jaeger, vol. 3, (Lippincott-Raven, Philadelphia, 1996), pp. 1–30

    Google Scholar 

  102. G. Garhofer, G. Fuchsjager-Mayrl, C. Vass, B. Pemp, A. Hommer, L. Schmetterer, Retrobulbar blood flow velocities in open angle glaucoma and their association with mean arterial blood pressure. Invest. Ophthalmol. Vis. Sci. 51(12), 6652–6657. doi:iovs.10-5490 [pii] (2010). https://doi.org/10.1167/iovs.10-5490

    Article  Google Scholar 

  103. H.A. Quigley, S.J. McKinnon, D.J. Zack, M.E. Pease, L.A. Kerrigan-Baumrind, D.F. Kerrigan, R.S. Mitchell, Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest. Ophthalmol. Vis. Sci. 41(11), 3460–3466 (2000)

    CAS  Google Scholar 

  104. C.B. Toris, Pharmacotherapies for glaucoma. Curr. Mol. Med. 10(9), 824–840 (2010). doi:CMM # 79 [pii]

    CAS  Google Scholar 

  105. C. Camras, C. Toris, Advances in glaucoma management: Risk factors, diagnostic tools, therapies and the role of prostaglandin analogs. Foreword. Surv. Ophthalmol. 53(Suppl 1), S1–S2. doi:S0039-6257(08)00138-0 [pii] (2008). https://doi.org/10.1016/j.survophthal.2008.08.013

    Article  Google Scholar 

  106. D.S. Minckler, R.A. Hill, Use of novel devices for control of intraocular pressure. Exp. Eye Res. 88(4), 792–798. doi:S0014-4835(08)00390-4 [pii] (2009). https://doi.org/10.1016/j.exer.2008.11.010

    Article  CAS  Google Scholar 

  107. S. Mosaed, L. Dustin, D.S. Minckler, Comparative outcomes between newer and older surgeries for glaucoma. Trans. Am. Ophthalmol. Soc. 107, 127–133 (2009)

    Google Scholar 

  108. R. Engerman, D. Finkelstein, G. Aguirre, K.R. Diddie, R.R. Fox, R.N. Frank, S.D. Varma, Ocular complications. Diabetes 31(Suppl 1 Pt 2), 82–88 (1982)

    CAS  Google Scholar 

  109. T.S. Kern, R.L. Engerman, Capillary lesions develop in retina rather than cerebral cortex in diabetes and experimental galactosemia. Arch. Ophthalmol. 114(3), 306–310 (1996)

    CAS  Google Scholar 

  110. R. Chibber, B.M. Ben-Mahmud, S. Chibber, E.M. Kohner, Leukocytes in diabetic retinopathy. Curr. Diabetes Rev. 3(1), 3–14 (2007)

    CAS  Google Scholar 

  111. D.L. Hatchell, S.H. Sinclair, Role of leukocytes in diabetic retinopathy, in Physiology and Pathophysiology of Leukocyte Adhesion, ed. by D. N. Granger, G. W. Schmid-Schonbein, (Oxford University Press, New York, 1995), pp. 458–466

    Google Scholar 

  112. S. Schroder, W. Palinski, G.W. Schmid-Schonbein, Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am. J. Pathol. 139(1), 81–100 (1991)

    CAS  Google Scholar 

  113. A. Harris, O. Arend, R.P. Danis, D. Evans, S. Wolf, B.J. Martin, Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br. J. Ophthalmol. 80(3), 209–213 (1996)

    CAS  Google Scholar 

  114. T.N. Crawford, D.V. Alfaro 3rd, J.B. Kerrison, E.P. Jablon, Diabetic retinopathy and angiogenesis. Curr. Diabetes Rev. 5(1), 8–13 (2009)

    CAS  Google Scholar 

  115. R.N. Frank, Diabetic retinopathy. N. Engl. J. Med. 350(1), 48–58 (2004)

    CAS  Google Scholar 

  116. P. Mitchell, F. Bandello, U. Schmidt-Erfurth, G.E. Lang, P. Massin, R.O. Schlingemann, F. Sutter, C. Simader, G. Burian, O. Gerstner, A. Weichselberger, The RESTORE study Ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118(4), 615–625 (2011). https://doi.org/10.1016/j.ophtha.2011.01.031

    Article  Google Scholar 

  117. A. Salam, R. Mathew, S. Sivaprasad, Treatment of proliferative diabetic retinopathy with anti-VEGF agents. Acta Ophthalmol. (2011). https://doi.org/10.1111/j.1755-3768.2010.02079.x

  118. D.A. Antonetti, A.J. Barber, S.K. Bronson, W.M. Freeman, T.W. Gardner, L.S. Jefferson, M. Kester, S.R. Kimball, J.K. Krady, K.F. LaNoue, C.C. Norbury, P.G. Quinn, L. Sandirasegarane, I.A. Simpson, Diabetic retinopathy: Seeing beyond glucose-induced microvascular disease. Diabetes 55(9), 2401–2411 (2006)

    CAS  Google Scholar 

  119. A.J. Barber, E. Lieth, S.A. Khin, D.A. Antonetti, A.G. Buchanan, T.W. Gardner, Penn State Retina Res G, Neural apoptosis in the retina during experimental and human diabetes – Early onset and effect of insulin. J. Clin. Invest. 102(4), 783–791 (1998)

    CAS  Google Scholar 

  120. G.C. Brown, Arterial occlusive disease, in Vireoretinal Disease: The Essentials, ed. by C. D. Regillo, G. C. Brown, H. W. Flynn, (Thieme, New York, 1999), pp. 97–115

    Google Scholar 

  121. S.S. Hayreh, T.A. Weingeist, Experimental occlusion of the central artery of the retina. IV: Retinal tolerance time to acute ischaemia. Br. J. Ophthalmol. 64(11), 818–825 (1980)

    CAS  Google Scholar 

  122. J.G. Clarkson, Central retinal vein occlusion, in Retina, ed. by S. J. Ryan, vol. 2, 2nd edition edn. (Mosby, St. Louis, 1994), pp. 1379–1385

    Google Scholar 

  123. S.S. Hayreh, P. Rojas, P. Podhajsky, P. Montague, R.F. Woolson, Ocular neovascularization with retinal vascular occlusion-III. Incidence of ocular neovascularization with retinal vein occlusion. Ophthalmology 90(5), 488–506 (1983)

    CAS  Google Scholar 

  124. C.J. Pournaras, Retinal oxygen distribution. Its role in the physiopathology of vasoproliferative microangiopathies. Retina 15(4), 332–347 (1995)

    CAS  Google Scholar 

  125. A.P. Adamis, D.T. Shima, M.J. Tolentino, E.S. Gragoudas, N. Ferrara, J. Folkman, P.A. D’Amore, J.W. Miller, Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch. Ophthalmol. 114(1), 66–71 (1996)

    CAS  Google Scholar 

  126. P.A. Keane, S.R. Sadda, Retinal vein occlusion and macular edema – Critical evaluation of the clinical value of ranibizumab. Clin. Ophthalmol. 5, 771–781 (2011). https://doi.org/10.2147/OPTH.S13774. opth-5-771 [pii]

    Article  Google Scholar 

  127. A.M. Shah, N.M. Bressler, L.M. Jampol, Does laser still have a role in the management of retinal vascular and neovascular diseases? Am J. Ophthalmol. doi:S0002-9394(11)00326-6 [pii] (2011). https://doi.org/10.1016/j.ajo.2011.04.015

  128. R. Michels, C. Wilkinson, T. Rice, Retinal Detachment (Mosby, St. Louis, 1990)

    Google Scholar 

  129. R.A. Linsenmeier, L. Padnick-Silver, Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest. Ophthalmol. Vis. Sci. 41(10), 3117–3123 (2000)

    CAS  Google Scholar 

  130. S. Wang, R.A. Linsenmeier, Hyperoxia improves oxygen consumption in the detached feline retina. Invest. Ophthalmol. Vis. Sci. 48(3), 1335–1341 (2007)

    Google Scholar 

  131. P.Z. Marmarelis, K. Naka, Experimental analysis of a neural system: Two modeling approaches. Kybernetik 15(1), 11–26 (1974)

    CAS  Google Scholar 

  132. P.Z. Marmarelis, K.I. Naka, Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. 3. Two-input white-noise analysis. J. Neurophysiol. 36(4), 634–648 (1973a). https://doi.org/10.1152/jn.1973.36.4.634

    Article  CAS  Google Scholar 

  133. P.Z. Marmarelis, K.I. Naka, Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. I. Horizontal cell leads to ganglion cell chain. J. Neurophysiol. 36(4), 605–618 (1973b). https://doi.org/10.1152/jn.1973.36.4.605

    Article  CAS  Google Scholar 

  134. P.Z. Marmarelis, K.I. Naka, Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. II. One-input white-noise analysis. J Neurophysiol. 36(4), 619–633 (1973c). https://doi.org/10.1152/jn.1973.36.4.619

    Article  CAS  Google Scholar 

  135. G.P. Das, P.J. Vance, D. Kerr, S.A. Coleman, T.M. McGinnity, J.K. Liu, Computational modelling of salamander retinal ganglion cells using machine learning approaches. Neurocomputing 325, 101–112 (2019)

    Google Scholar 

  136. M.N. Geffen, S.E. de Vries, M. Meister, Retinal ganglion cells can rapidly change polarity from off to on. PLoS Biol. 5(3), e65. doi:06-PLBI-RA-1074R3 [pii] (2007). https://doi.org/10.1371/journal.pbio.0050065

    Article  Google Scholar 

  137. B. Roska, E. Nemeth, L. Orzo, F.S. Werblin, Three levels of lateral inhibition: A space-time study of the retina of the tiger salamander. J. Neurosci. 20(5), 1941–1951 (2000)

    CAS  Google Scholar 

  138. M.C. Citron, V.Z. Marmarelis, Applications of minimum-order wiener modeling to retinal ganglion cell spatiotemporal dynamics. Biol. Cybern. 57(4–5), 241–247 (1987)

    CAS  Google Scholar 

  139. M.N. Oguztoreli, Modelling and simulation of vertebrate retina. Biol. Cybern. 37(1), 53–61 (1980)

    CAS  Google Scholar 

  140. M.H. Foerster, W.A. van de Grind, O.J. Grusser, Frequency transfer properties of three distinct types of cat horizontal cells. Exp. Brain Res. 29(3–4), 347–366 (1977)

    CAS  Google Scholar 

  141. D. Tranchina, J. Gordon, R. Shapley, Spatial and temporal properties of luminosity horizontal cells in the turtle retina. J. Gen. Physiol. 82(5), 573–598 (1983)

    CAS  Google Scholar 

  142. P. Antinucci, R. Hindges, Orientation-selective retinal circuits in vertebrates. Front. Neural Circuit. 12, 11 (2018). https://doi.org/10.3389/fncir.2018.00011

    Article  CAS  Google Scholar 

  143. W. Wei, Neural mechanisms of motion processing in the mammalian retina. Annu. Rev. Vis. Sci. 4, 165–192 (2018). https://doi.org/10.1146/annurev-vision-091517-034048

    Article  Google Scholar 

  144. J. Chen, M.L. Woodruff, T. Wang, F.A. Concepcion, D. Tranchina, G.L. Fain, Channel modulation and the mechanism of light adaptation in mouse rods. J. Neurosci. 30(48), 16232–16240. doi:30/48/16232 [pii] (2010). https://doi.org/10.1523/JNEUROSCI.2868-10.2010

    Article  CAS  Google Scholar 

  145. D.A. Baylor, Photoreceptor signals and vision. Proctor lecture. Invest. Ophthalmol. Vis. Sci. 28(1), 34–49 (1987)

    CAS  Google Scholar 

  146. T.D. Lamb, E.N. Pugh Jr., Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. Invest. Ophthalmol. Vis. Sci. 47(12), 5137–5152 (2006)

    Google Scholar 

  147. K.W. Yau, Phototransduction mechanism in retinal rods and cones. The Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 35(1), 9–32 (1994)

    CAS  Google Scholar 

  148. X. Zhang, R.H. Cote, cGMP signaling in vertebrate retinal photoreceptor cells. Front Biosci 10, 1191–1204 (2005)

    CAS  Google Scholar 

  149. K.I. Naka, W.A. Rushton, S-potentials from luminosity units in the retina of fish (Cyprinidae). J. Physiol. 185(3), 587–599 (1966)

    CAS  Google Scholar 

  150. W.A. Hagins, R.D. Penn, S. Yoshikami, Dark current and photocurrent in retinal rods. Biophys. J. 10(5), 380–412 (1970). https://doi.org/10.1016/S0006-3495(70)86308-1

    Article  CAS  Google Scholar 

  151. D.A. Baylor, T.D. Lamb, K.W. Yau, The membrane current of single rod outer segments. J. Physiol. 288, 589–611 (1979)

    CAS  Google Scholar 

  152. R. Granit, The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J. Physiol. 77(3), 207–239 (1933)

    CAS  Google Scholar 

  153. D.C. Hood, D.G. Birch, Computational models of rod-driven retinal activity. IEEE Engineering in Medicine and Biology Magazine (February 1995), pp. 59–66

    Google Scholar 

  154. D.A. Baylor, B.J. Nunn, J.L. Schnapf, The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J. Physiol. 357, 575–607 (1984)

    CAS  Google Scholar 

  155. D.C. Hood, D.G. Birch, A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis. Neurosci. 5(4), 379–387 (1990)

    CAS  Google Scholar 

  156. T.D. Lamb, E.N. Pugh Jr., A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J. Physiol. 449, 719–758 (1992)

    CAS  Google Scholar 

  157. M.E. Breton, A.W. Schueller, T.D. Lamb, E.N. Pugh Jr., Analysis of ERG a-wave amplification and kinetics in terms of the G-protein cascade of phototransduction. Invest. Ophthalmol. Vis. Sci. 35(1), 295–309 (1994)

    CAS  Google Scholar 

  158. W.H. Cobbs, E.N. Pugh Jr., Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamander, Ambystoma tigrinum. J. Physiol. 394, 529–572 (1987)

    CAS  Google Scholar 

  159. S. Forti, A. Menini, G. Rispoli, V. Torre, Kinetics of phototransduction in retinal rods of the newt Triturus cristatus. J. Physiol. 419, 265–295 (1989)

    CAS  Google Scholar 

  160. A.V. Cideciyan, S.G. Jacobson, An alternative phototransduction model for human rod and cone ERG a-waves: Normal parameters and variation with age. Vis. Res. 36(16), 2609–2621 (1996)

    CAS  Google Scholar 

  161. R.D. Hamer, S.C. Nicholas, D. Tranchina, T.D. Lamb, J.L. Jarvinen, Toward a unified model of vertebrate rod phototransduction. Vis. Neurosci. 22(4), 417–436. doi:S0952523805224045 [pii] (2005). https://doi.org/10.1017/S0952523805224045

    Article  CAS  Google Scholar 

  162. R.D. Hamer, S.C. Nicholas, D. Tranchina, P.A. Liebman, T.D. Lamb, Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses. J. Gen. Physiol. 122(4), 419–444 (2003). https://doi.org/10.1085/jgp.200308832

    Article  CAS  Google Scholar 

  163. D.R. Pepperberg, D.G. Birch, D.C. Hood, Electroretinographic determination of human rod flash response in vivo. Methods Enzymol. 316, 202–223 (2000)

    CAS  Google Scholar 

  164. D.G. Birch, D.C. Hood, S. Nusinowitz, D.R. Pepperberg, Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. Invest. Ophthalmol. Vis. Sci. 36(8), 1603–1614 (1995)

    CAS  Google Scholar 

  165. D.R. Pepperberg, D.G. Birch, K.P. Hofmann, D.C. Hood, Recovery kinetics of human rod phototransduction inferred from the two-branched alpha-wave saturation function. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13(3), 586–600 (1996)

    CAS  Google Scholar 

  166. D.R. Pepperberg, D.G. Birch, D.C. Hood, Photoresponses of human rods in vivo derived from paired-flash electroretinograms. Vis. Neurosci. 14(1), 73–82 (1997)

    CAS  Google Scholar 

  167. J.J. Kang Derwent, S.M. Saszik, H. Maeda, D.M. Little, M.T. Pardue, L.J. Frishman, D.R. Pepperberg, Test of the paired-flash electroretinographic method in mice lacking b-waves. Vis. Neurosci. 24(2), 141–149. doi:S0952523807070162 [pii] (2007). https://doi.org/10.1017/S0952523807070162

    Article  Google Scholar 

  168. J.R. Hetling, D.R. Pepperberg, Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired-flash electroretinograms. J. Physiol. 516(Pt 2), 593–609 (1999)

    CAS  Google Scholar 

  169. A. Gal, E. ApfelstedtSylla, A.R. Janecke, E. Zrenner, Rhodopsin mutations in inherited retinal dystrophies and dysfunctions. Prog. Retin. Eye Res. 16(1), 51–79 (1997). https://doi.org/10.1016/s1350-9462(96)00021-3

    Article  CAS  Google Scholar 

  170. J.J. Kang Derwent, D.J. Derlacki, J.R. Hetling, G.A. Fishman, D.G. Birch, S. Grover, E.M. Stone, D.R. Pepperberg, Dark adaptation of rod photoreceptors in normal subjects, and in patients with Stargardt disease and an ABCA4 mutation. Invest. Ophthalmol. Vis. Sci. 45(7), 2447–2456 (2004)

    Google Scholar 

  171. J.G. Robson, L.J. Frishman, Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram. Vis. Neurosci. 12(5), 837–850 (1995)

    CAS  Google Scholar 

  172. D.C. Hood, D.G. Birch, A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis. Neurosci. 8(2), 107–126 (1992)

    CAS  Google Scholar 

  173. G.B. Arden, Voltage gradients across the receptor layer of the isolated rat retina. J. Physiol. 256(2), 333–360 (1976)., 331

    CAS  Google Scholar 

  174. J.J. Kang Derwent, R.A. Linsenmeier, Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina. Vis. Neurosci. 18(3), 353–363 (2001)

    CAS  Google Scholar 

  175. D.M. Schneeweis, J.L. Schnapf, Photovoltage of rods and cones in the macaque retina. Science 268(5213), 1053–1056 (1995)

    CAS  Google Scholar 

  176. S. Barnes, B. Hille, Ionic channels of the inner segment of tiger salamander cone photoreceptors. J. Gen. Physiol. 94(4), 719–743 (1989)

    CAS  Google Scholar 

  177. G.L. Fain, F.N. Quandt, B.L. Bastian, H.M. Gerschenfeld, Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature 272(5652), 466–469 (1978)

    CAS  Google Scholar 

  178. Y. Kamiyama, T. Ogura, S. Usui, Ionic current model of the vertebrate rod photoreceptor. Vis. Res. 36(24), 4059–4068 (1996)

    CAS  Google Scholar 

  179. J.G. Robson, L.J. Frishman, The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Prog. Retin. Eye Res. 39, 1–22 (2014). https://doi.org/10.1016/j.preteyeres.2013.12.003

    Article  Google Scholar 

  180. J.G. Robson, L.J. Frishman, Corrigendum to “The rod-driven a-wave of the dark-adapted mammalian electroretinogram” [Progress in retinal and eye research, volume 39, march 2014, pages 1–22]. Prog. Retin. Eye Res. 59, 202 (2017). https://doi.org/10.1016/j.preteyeres.2017.05.002

    Article  Google Scholar 

  181. J.G. Robson, L.J. Frishman, Photoreceptor and bipolar cell contributions to the cat electroretinogram: A kinetic model for the early part of the flash response. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13(3), 613–622 (1996)

    CAS  Google Scholar 

  182. J.G. Robson, L.J. Frishman, Dissecting the dark-adapted electroretinogram. Doc. Ophthalmol. 95(3–4), 187–215 (1998)

    Google Scholar 

  183. P.A. Sieving, L.J. Frishman, R.H. Steinberg, Scotopic threshold response of proximal retina in cat. J. Neurophysiol. 56(4), 1049–1061 (1986)

    CAS  Google Scholar 

  184. P.A. Sieving, C. Nino, Scotopic threshold response (STR) of the human electroretinogram. Invest. Ophthalmol. Vis. Sci. 29(11), 1608–1614 (1988)

    CAS  Google Scholar 

  185. J.G. Robson, S.M. Saszik, J. Ahmed, L.J. Frishman, Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J. Physiol. 547(Pt 2), 509–530 (2003). https://doi.org/10.1113/jphysiol.2002.030304

    Article  CAS  Google Scholar 

  186. V. Porciatti, Electrophysiological assessment of retinal ganglion cell function. Exp. Eye Res. 141, 164–170 (2015). https://doi.org/10.1016/j.exer.2015.05.008

    Article  CAS  Google Scholar 

  187. R.M. Boynton, L.A. Riggs, The effect of stimulus area and intensity upon the human retinal response. J. Exp. Psychol. 42(4), 217–226 (1951)

    CAS  Google Scholar 

  188. E.E. Sutter, D. Tran, The field topography of ERG components in man – I. The photopic luminance response. Vis. Res. 32(3), 433–446 (1992). doi:0042-6989(92)90235-B [pii]

    CAS  Google Scholar 

  189. T.Y. Lai, W.M. Chan, R.Y. Lai, J.W. Ngai, H. Li, D.S. Lam, The clinical applications of multifocal electroretinography: A systematic review. Surv. Ophthalmol. 52(1), 61–96. doi:S0039-6257(06)00174-3 [pii] (2007). https://doi.org/10.1016/j.survophthal.2006.10.005

    Article  Google Scholar 

  190. E.E. Sutter, Imaging visual function with the multifocal m-sequence technique. Vis. Res. 41(10–11), 1241–1255 (2001). doi:S0042-6989(01)00078-5 [pii]

    CAS  Google Scholar 

  191. Z. Derafshi, B.E. Kunzer, E.M. Mugler, N. Rokhmanova, D.W. Park, H. Tajalli, K. Shetty, Z. Ma, J.C. Williams, J.R. Hetling, Corneal potential maps measured with multi-electrode electroretinography in rat eyes with experimental lesions. Invest. Ophthalmol. Vis. Sci. 58(7), 2863–2873 (2017). https://doi.org/10.1167/iovs.16-20726

    Article  Google Scholar 

  192. A.N. Selner, Z. Derafshi, B.E. Kunzer, J.R. Hetling, Three-dimensional model of electroretinogram field potentials in the rat eye. I.E.E.E. Trans. Biomed. Eng. 65(12), 2781–2789 (2018). https://doi.org/10.1109/TBME.2018.2816591

    Article  Google Scholar 

  193. E.M. Callaway, Structure and function of parallel pathways in the primate early visual system. J. Physiol. 566(Pt 1), 13–19 (2005). https://doi.org/10.1113/jphysiol.2005.088047

    Article  CAS  Google Scholar 

  194. D.M. Dacey, Primate retina: Cell types, circuits and color opponency. Prog. Retin. Eye Res. 18(6), 737–763 (1999)

    CAS  Google Scholar 

  195. E. Kaplan, The receptive-field structure of retinal ganglion cells in cat and monkey, in Vision and Visual Dysfunction, The Neural Basis of Visual Function, ed. by G. Leventhal, vol. IV, (CRC Press, Boca Raton, 1991), pp. 10–40

    Google Scholar 

  196. M. Meister, M.J. Berry 2nd, The neural code of the retina. Neuron 22(3), 435–450 (1999). doi:S0896-6273(00)80700-X [pii]

    CAS  Google Scholar 

  197. P.J. Vance, G.P. Das, D. Kerr, S.A. Coleman, T.M. McGinnity, T. Gollisch, J.K. Liu, Bioinspired approach to modeling retinal ganglion cells using system identification techniques. IEEE Trans. Neural Netw. Learn. Sys. 29(5), 1796–1808 (2018). https://doi.org/10.1109/tnnls.2017.2690139

    Article  Google Scholar 

  198. S. Wienbar, G.W. Schwartz, The dynamic receptive fields of retinal ganglion cells. Prog. Retin. Eye Res. 67, 102–117 (2018). https://doi.org/10.1016/j.preteyeres.2018.06.003

    Article  Google Scholar 

  199. C. Enroth-Cugell, J.G. Robson, The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187(3), 517–552 (1966)

    CAS  Google Scholar 

  200. R.A. Linsenmeier, H.G. Jakiela, Non-linear spatial summation in cat retinal ganglion cells at different background levels. Exp. Brain Res. 36(2), 301–309 (1979)

    CAS  Google Scholar 

  201. R. Shapley, P. Lennie, Spatial frequency analysis in the visual system. Annu. Rev. Neurosci. 8, 547–583 (1985). https://doi.org/10.1146/annurev.ne.08.030185.002555

    Article  CAS  Google Scholar 

  202. R.M. Shapley, J.D. Victor, The effect of contrast on the transfer properties of cat retinal ganglion cells. J. Physiol. 285, 275–298 (1978)

    CAS  Google Scholar 

  203. E.J. Chichilnisky, A simple white noise analysis of neuronal light responses. Network 12(2), 199–213 (2001)

    CAS  Google Scholar 

  204. M.C. Citron, R.C. Emerson, W.R. Levick, Nonlinear measurement and classification of receptive fields in cat retinal ganglion cells. Ann. Biomed. Eng. 16(1), 65–77 (1988)

    CAS  Google Scholar 

  205. B.G. Cleland, W.R. Levick, Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. J. Physiol. 240(2), 421–456 (1974)

    CAS  Google Scholar 

  206. R.A. Linsenmeier, L.J. Frishman, H.G. Jakiela, C. Enroth-Cugell, Receptive field properties of x and y cells in the cat retina derived from contrast sensitivity measurements. Vis. Res. 22(9), 1173–1183 (1982)

    CAS  Google Scholar 

  207. B.B. Boycott, H. Wassle, The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol. 240(2), 397–419 (1974)

    CAS  Google Scholar 

  208. L. Peichl, H. Wassle, Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. J. Physiol. 291, 117–141 (1979)

    CAS  Google Scholar 

  209. J. Stone, Y. Fukuda, Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. J. Neurophysiol. 37(4), 722–748 (1974)

    CAS  Google Scholar 

  210. S. Hochstein, R.M. Shapley, Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J. Physiol. 262(2), 265–284 (1976a)

    CAS  Google Scholar 

  211. S. Hochstein, R.M. Shapley, Quantitative analysis of retinal ganglion cell classifications. J. Physiol. 262(2), 237–264 (1976b)

    CAS  Google Scholar 

  212. G.W. Schwartz, H. Okawa, F.A. Dunn, J.L. Morgan, D. Kerschensteiner, R.O. Wong, F. Rieke, The spatial structure of a nonlinear receptive field. Nat. Neurosci. 15(11), 1572–1580 (2012). https://doi.org/10.1038/nn.3225

    Article  CAS  Google Scholar 

  213. L.J. Frishman, R.A. Linsenmeier, Effects of picrotoxin and strychnine on non-linear responses of Y-type cat retinal ganglion cells. J. Physiol. 324, 347–363 (1982)

    CAS  Google Scholar 

  214. C. Enroth-Cugell, J.G. Robson, D.E. Schweitzer-Tong, A.B. Watson, Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. J. Physiol. 341, 279–307 (1983)

    CAS  Google Scholar 

  215. F.M. de Monasterio, Properties of concentrically organized X and Y ganglion cells of macaque retina. J. Neurophysiol. 41(6), 1394–1417 (1978b)

    Google Scholar 

  216. F.M. de Monasterio, Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. J. Neurophysiol. 41(6), 1418–1434 (1978a)

    Google Scholar 

  217. F.M. De Monasterio, P. Gouras, Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. 251(1), 167–195 (1975)

    Google Scholar 

  218. L.J. Croner, E. Kaplan, Receptive fields of P and M ganglion cells across the primate retina. Vis. Res. 35(1), 7–24 (1995). doi:0042698994E0066T [pii]

    CAS  Google Scholar 

  219. E. Kaplan, R.M. Shapley, X and Y cells in the lateral geniculate nucleus of macaque monkeys. J. Physiol. 330, 125–143 (1982)

    CAS  Google Scholar 

  220. Y.T. So, R. Shapley, Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction velocities of their inputs. Exp. Brain Res. 36(3), 533–550 (1979)

    CAS  Google Scholar 

  221. S. Dawis, R. Shapley, E. Kaplan, D. Tranchina, The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry. Vis. Res. 24(6), 549–564 (1984). doi:0042-6989(84)90109-3 [pii]

    CAS  Google Scholar 

  222. A.M. Derrington, P. Lennie, The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat. J. Physiol. 333, 343–366 (1982)

    CAS  Google Scholar 

  223. L.J. Frishman, A.W. Freeman, J.B. Troy, D.E. Schweitzer-Tong, C. Enroth-Cugell, Spatiotemporal frequency responses of cat retinal ganglion cells. J. Gen. Physiol. 89(4), 599–628 (1987)

    CAS  Google Scholar 

  224. E.P. Chen, A.W. Freeman, A model for spatiotemporal frequency responses in the X cell pathway of the cat’s retina. Vis. Res. 29(3), 271–291 (1989). doi:0042-6989(89)90076-X [pii]

    CAS  Google Scholar 

  225. L.H. Chan, A.W. Freeman, B.G. Cleland, The rod-cone shift and its effect on ganglion cells in the cat’s retina. Vis. Res. 32(12), 2209–2219 (1992). doi:0042-6989(92)90085-W [pii]

    CAS  Google Scholar 

  226. J.B. Troy, D.L. Bohnsack, L.C. Diller, Spatial properties of the cat X-cell receptive field as a function of mean light level. Vis. Neurosci. 16(6), 1089–1104 (1999)

    CAS  Google Scholar 

  227. J.B. Troy, J.K. Oh, C. Enroth-Cugell, Effect of ambient illumination on the spatial properties of the center and surround of Y-cell receptive fields. Vis. Neurosci. 10(4), 753–764 (1993)

    CAS  Google Scholar 

  228. J.D. Victor, R.M. Shapley, Receptive field mechanisms of cat X and Y retinal ganglion cells. J. Gen. Physiol. 74(2), 275–298 (1979)

    CAS  Google Scholar 

  229. J.D. Victor, R.M. Shapley, B.W. Knight, Nonlinear analysis of cat retinal ganglion cells in the frequency domain. Proc. Natl. Acad. Sci. U. S. A. 74(7), 3068–3072 (1977)

    CAS  Google Scholar 

  230. D.N. Mastronarde, Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol. 49(2), 303–324 (1983a)

    CAS  Google Scholar 

  231. D.N. Mastronarde, Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. J. Neurophysiol. 49(2), 325–349 (1983b)

    CAS  Google Scholar 

  232. D.N. Mastronarde, Interactions between ganglion cells in cat retina. J. Neurophysiol. 49(2), 350–365 (1983c)

    CAS  Google Scholar 

  233. M. Meister, J. Pine, D.A. Baylor, Multi-neuronal signals from the retina: Acquisition and analysis. J. Neurosci. Methods 51(1), 95–106 (1994). doi:0165-0270(94)90030-2 [pii]

    CAS  Google Scholar 

  234. A.M. Litke, N. Bezayiff, E.J. Chichilnisky, W. Cunningham, W. Dabrowski, A.A. Grillo, M. Grivich, P. Grybos, P. Hottowy, S. Kachiguine, R.S. Kalmar, K. Mathieson, D. Petrusca, M. Rahman, A. Sher, What does the eye tell the brain?: Development of a system for the large-scale recording of retinal output activity. IEEE Trans. Nucl. Sci. 51, 1434–1440 (2004)

    Google Scholar 

  235. M. Greschner, J. Shlens, C. Bakolitsa, G.D. Field, J.L. Gauthier, L.H. Jepson, A. Sher, A.M. Litke, E.J. Chichilnisky, Correlated firing among major ganglion cell types in primate retina. J. Physiol. 589(Pt 1), 75–86. doi:jphysiol.2010.193888 [pii] (2011). https://doi.org/10.1113/jphysiol.2010.193888

    Article  CAS  Google Scholar 

  236. J. Shlens, G.D. Field, J.L. Gauthier, M.I. Grivich, D. Petrusca, A. Sher, A.M. Litke, E.J. Chichilnisky, The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266. doi:26/32/8254 [pii] (2006). https://doi.org/10.1523/JNEUROSCI.1282-06.2006

    Article  CAS  Google Scholar 

  237. J.W. Pillow, J. Shlens, L. Paninski, A. Sher, A.M. Litke, E.J. Chichilnisky, E.P. Simoncelli, Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454(7207), 995–U937 (2008). https://doi.org/10.1038/nature07140

    Article  CAS  Google Scholar 

  238. D.K. Warland, P. Reinagel, M. Meister, Decoding visual information from a population of retinal ganglion cells. J. Neurophysiol. 78(5), 2336–2350 (1997)

    CAS  Google Scholar 

  239. D. Dacey, Origins of perception: Retinal ganglion cell diversity and the creation of parallel visual pathways, in The Cognitive Neurosciences, ed. by M. Gazzaniga, (MIT Press, Cambridge, MA, 2004), pp. 281–301

    Google Scholar 

  240. J.B. Troy, D.E. Schweitzer-Tong, C. Enroth-Cugell, Receptive-field properties of Q retinal ganglion cells of the cat. Vis. Neurosci. 12(2), 285–300 (1995)

    CAS  Google Scholar 

  241. M.H. Rowe, J.F. Cox, Spatial receptive-field structure of cat retinal W cells. Vis. Neurosci. 10(4), 765–779 (1993)

    CAS  Google Scholar 

  242. J.B. Troy, G. Einstein, R.P. Schuurmans, J.G. Robson, C. Enroth-Cugell, Responses to sinusoidal gratings of two types of very nonlinear retinal ganglion cells of cat. Vis. Neurosci. 3(3), 213–223 (1989)

    CAS  Google Scholar 

  243. N.M. Grzywacz, F.R. Amthor, Robust directional computation in on-off directionally selective ganglion cells of rabbit retina. Vis. Neurosci. 24(4), 647–661. doi:S0952523807070666 [pii] (2007). https://doi.org/10.1017/S0952523807070666

    Article  Google Scholar 

  244. J.D. Crook, B.B. Peterson, O.S. Packer, F.R. Robinson, P.D. Gamlin, J.B. Troy, D.M. Dacey, The smooth monostratified ganglion cell: Evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. J. Neurosci. 28(48), 12654–12671. doi:28/48/12654 [pii] (2008). https://doi.org/10.1523/JNEUROSCI.2986-08.2008

    Article  CAS  Google Scholar 

  245. G.D. Field, A. Sher, J.L. Gauthier, M. Greschner, J. Shlens, A.M. Litke, E.J. Chichilnisky, Spatial properties and functional organization of small bistratified ganglion cells in primate retina. J. Neurosci. 27(48), 13261–13272. doi:27/48/13261 [pii] (2007). https://doi.org/10.1523/JNEUROSCI.3437-07.2007

    Article  CAS  Google Scholar 

  246. D. Petrusca, M.I. Grivich, A. Sher, G.D. Field, J.L. Gauthier, M. Greschner, J. Shlens, E.J. Chichilnisky, A.M. Litke, Identification and characterization of a Y-like primate retinal ganglion cell type. J. Neurosci. 27(41), 11019–11027. doi:27/41/11019 [pii] (2007). https://doi.org/10.1523/JNEUROSCI.2836-07.2007

    Article  CAS  Google Scholar 

  247. G.M. Zeck, Q. **ao, R.H. Masland, The spatial filtering properties of local edge detectors and brisk-sustained retinal ganglion cells. Eur. J. Neurosci. 22(8), 2016–2026. doi:EJN4390 [pii] (2005). https://doi.org/10.1111/j.1460-9568.2005.04390.x

    Article  Google Scholar 

  248. G.D. Field, E.J. Chichilnisky, Information processing in the primate retina: Circuitry and coding. Annu. Rev. Neurosci. 30, 1–30 (2007). https://doi.org/10.1146/annurev.neuro.30.051606.094252

    Article  CAS  Google Scholar 

  249. T. Baden, P. Berens, K. Franke, M. Roman Roson, M. Bethge, T. Euler, The functional diversity of retinal ganglion cells in the mouse. Nature 529(7586), 345–350 (2016). https://doi.org/10.1038/nature16468

    Article  CAS  Google Scholar 

  250. J.R. Sanes, R.H. Masland, The types of retinal ganglion cells: Current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015). https://doi.org/10.1146/annurev-neuro-071714-034120

    Article  CAS  Google Scholar 

  251. G.D. Field, M. Greschner, J.L. Gauthier, C. Rangel, J. Shlens, A. Sher, D.W. Marshak, A.M. Litke, E.J. Chichilnisky, High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nat. Neurosci. 12(9), 1159–1164 (2009). https://doi.org/10.1038/nn.2353

    Article  CAS  Google Scholar 

  252. E. Real, H. Asari, T. Gollisch, M. Meister, Neural circuit inference from function to structure. Curr. Biol. 27(2), 189–198 (2017). https://doi.org/10.1016/j.cub.2016.11.040

    Article  CAS  Google Scholar 

  253. C. Caprara, C. Grimm, From oxygen to erythropoietin: Relevance of hypoxia for retinal development, health and disease. Prog. Retin. Eye Res. 31(1), 89–119 (2012). https://doi.org/10.1016/j.preteyeres.2011.11.003

    Article  CAS  Google Scholar 

  254. R.A. Linsenmeier, H.F. Zhang, Retinal oxygen: From animals to humans. Prog. Retin. Eye Res. 58, 115–151 (2017). https://doi.org/10.1016/j.preteyeres.2017.01.003

    Article  CAS  Google Scholar 

  255. P.A. Roberts, E.A. Gaffney, P.J. Luthert, A.J.E. Foss, H.M. Byrne, Mathematical and computational models of the retina in health, development and disease. Prog. Retin. Eye Res. 53, 48–69 (2016b). https://doi.org/10.1016/j.preteyeres.2016.04.001

    Article  Google Scholar 

  256. D.Y. Yu, S.J. Cringle, Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 20(2), 175–208 (2001)

    CAS  Google Scholar 

  257. G. Schneiderman, T.K. Goldstick, Oxygen electrode design criteria and performance characteristics: Recessed cathode. J. Appl. Physiol. 45(1), 145–154 (1978)

    CAS  Google Scholar 

  258. C.T. Dollery, C.J. Bulpitt, E.M. Kohner, Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Investig. Ophthalmol. 8(6), 588–594 (1969)

    CAS  Google Scholar 

  259. V.A. Alder, S.J. Cringle, I.J. Constable, The retinal oxygen profile in cats. Invest. Ophthalmol. Vis. Sci. 24(1), 30–36 (1983)

    CAS  Google Scholar 

  260. W. Sickel, Retinal metabolism in dark and light, in Physiology of Photoreceptor Organs. Handbook of Sensory Physiology, ed. by F. MGF, vol. VII/2, (Springer, Berlin, 1972), pp. 227–727

    Google Scholar 

  261. R. Zuckerman, J.J. Weiter, Oxygen transport in the bullfrog retina. Exp. Eye Res. 30(2), 117–127 (1980)

    CAS  Google Scholar 

  262. R.A. Linsenmeier, Effects of light and darkness on oxygen distribution and consumption in the cat retina. J. Gen. Physiol. 88(4), 521–542 (1986)

    CAS  Google Scholar 

  263. L.M. Haugh, R.A. Linsenmeier, T.K. Goldstick, Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination. Ann. Biomed. Eng. 18(1), 19–36 (1990)

    CAS  Google Scholar 

  264. R. Linsenmeier, C. Pournaras, Consommation et diffusion de l’oxygene retinien, in Pathologies Vasculaires Oculaires, ed. by C. Pournaras, (Masson, Paris, 2008), pp. 99–107

    Google Scholar 

  265. R. Avtar, D. Tandon, Mathematical modelling of intraretinal oxygen partial pressure. Trop. J. Pharm. Res. 7(4), 1107–1116 (2008)

    Google Scholar 

  266. R.D. Braun, R.A. Linsenmeier, T.K. Goldstick, Oxygen consumption in the inner and outer retina of the cat. Invest. Ophthalmol. Vis. Sci. 36(3), 542–554 (1995)

    CAS  Google Scholar 

  267. P. Causin, G. Guidoboni, F. Malgaroli, R. Sacco, A. Harris, Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: Multiscale mathematical modeling and numerical simulation. Biomech. Model. Mechanobiol. 15(3), 525–542 (2016). https://doi.org/10.1007/s10237-015-0708-7

    Article  Google Scholar 

  268. S.J. Cringle, D.Y. Yu, P.K. Yu, E.N. Su, Intraretinal oxygen consumption in the rat in vivo. Invest. Ophthalmol. Vis. Sci. 43(6), 1922–1927 (2002)

    Google Scholar 

  269. J.L. Olson, M. Asadi-Zeydabadi, R. Tagg, Theoretical estimation of retinal oxygenation in chronic diabetic retinopathy. Comput. Biol. Med. 58, 154–162 (2015). https://doi.org/10.1016/j.compbiomed.2014.12.021

    Article  Google Scholar 

  270. P.A. Roberts, E.A. Gaffney, P.J. Luthert, A.J. Foss, H.M. Byrne, Retinal oxygen distribution and the role of neuroglobin. J. Math. Biol. 73(1), 1–38 (2016a). https://doi.org/10.1007/s00285-015-0931-y

    Article  Google Scholar 

  271. M.W. Roos, Theoretical estimation of retinal oxygenation during retinal artery occlusion. Physiol. Meas. 25(6), 1523–1532 (2004)

    Google Scholar 

  272. M.W. Roos, Theoretical estimation of retinal oxygenation during retinal detachment. Comput. Biol. Med. 37(6), 890–896 (2007). https://doi.org/10.1016/j.compbiomed.2006.09.005

    Article  Google Scholar 

  273. D.Y. Yu, S.J. Cringle, Outer retinal anoxia during dark adaptation is not a general property of mammalian retinas. Comp. Biochem. Physiol. 132(1), 47–52 (2002)

    Google Scholar 

  274. Q.V. Hoang, R.A. Linsenmeier, C.K. Chung, C.A. Curcio, Photoreceptor inner segments in monkey and human retina: Mitochondrial density, optics, and regional variation. Vis. Neurosci. 19(4), 395–407 (2002)

    CAS  Google Scholar 

  275. D.D. Clarke, L. Sokoloff, Circulation and energy metabolism of the brain, in Basic Neurochemistry: Molecular, Cellular and Medical Aspects, ed. by G. J. Siegel, B. W. Agranoff, R. W. Albers, S. K. Fisher, M. D. Uhler, 6th edn., (Lippincott-Raven, Philadelphia, 1999), pp. 637–669

    Google Scholar 

  276. D.Y. Yu, S.J. Cringle, E.N. Su, Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia. Invest. Ophthalmol. Vis. Sci. 46(12), 4728–4733 (2005)

    Google Scholar 

  277. J.C. Lau, R.A. Linsenmeier, Oxygen consumption and distribution in the Long-Evans rat retina. Exp. Eye Res. 102, 50–58 (2012). https://doi.org/10.1016/j.exer.2012.07.004

    Article  CAS  Google Scholar 

  278. C.M. Yancey, R.A. Linsenmeier, Oxygen distribution and consumption in the cat retina at increased intraocular pressure. Invest. Ophthalmol. Vis. Sci. 30(4), 600–611 (1989)

    CAS  Google Scholar 

  279. S.J. Cringle, D.Y. Yu, A multi-layer model of retinal oxygen supply and consumption helps explain the muted rise in inner retinal PO2 during systemic hyperoxia. Comp. Biochem. Physiol. 132(1), 61–66 (2002)

    Google Scholar 

  280. S. Cringle, D.Y. Yu, V. Alder, E.N. Su, P. Yu, Oxygen consumption in the avascular guinea pig retina. Am. J. Phys. 271(3 Pt 2), H1162–H1165 (1996)

    CAS  Google Scholar 

  281. D.Y. Yu, S.J. Cringle, V.A. Alder, E.N. Su, P.K. Yu, Intraretinal oxygen distribution and choroidal regulation in the avascular retina of guinea pigs. Am. J. Phys. 270(3 Pt 2), H965–H973 (1996)

    CAS  Google Scholar 

  282. S.J. Cringle, D.Y. Yu, Intraretinal oxygenation and oxygen consumption in the rabbit during systemic hyperoxia. Invest. Ophthalmol. Vis. Sci. 45(9), 3223–3228 (2004)

    Google Scholar 

  283. L.J. Frishman, R.H. Steinberg, Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina. J. Neurophysiol. 61(6), 1233–1243 (1989)

    CAS  Google Scholar 

  284. L.J. Frishman, F. Yamamoto, J. Bogucka, R.H. Steinberg, Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. J. Neurophysiol. 67(5), 1201–1212 (1992)

    CAS  Google Scholar 

  285. C.J. Karwoski, H.K. Lu, E.A. Newman, Spatial buffering of light-evoked potassium increases by retinal Muller (glial) cells. Science 244(4904), 578–580 (1989)

    CAS  Google Scholar 

  286. C.J. Karwoski, L.M. Proenza, Relationship between Muller cell responses, a local transretinal potential, and potassium flux. J. Neurophysiol. 40(2), 244–259 (1977)

    CAS  Google Scholar 

  287. E.A. Newman, D.A. Frambach, L.L. Odette, Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225(4667), 1174–1175 (1984)

    CAS  Google Scholar 

  288. B. Oakley 2nd, Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J. Gen. Physiol. 70(4), 405–425 (1977)

    CAS  Google Scholar 

  289. H. Shimazaki, B. Oakley 2nd, Reaccumulation of [K+]o in the toad retina during maintained illumination. J. Gen. Physiol. 84(3), 475–504 (1984)

    CAS  Google Scholar 

  290. R.H. Steinberg, B. Oakley 2nd, G. Niemeyer, Light-evoked changes in [K+]o in retina of intact cat eye. J. Neurophysiol. 44(5), 897–921 (1980)

    CAS  Google Scholar 

  291. R. Wen, B. Oakley 2nd, K+-evoked Muller cell depolarization generates b-wave of electroretinogram in toad retina. Proc. Natl. Acad. Sci. U. S. A. 87(6), 2117–2121 (1990)

    CAS  Google Scholar 

  292. A.V. Dmitriev, V.I. Govardovskii, H.N. Schwahn, R.H. Steinberg, Light-induced changes of extracellular ions and volume in the isolated chick retina-pigment epithelium preparation. Vis. Neurosci. 16(6), 1157–1167 (1999)

    CAS  Google Scholar 

  293. R.P. Gallemore, J.D. Li, V.I. Govardovskii, R.H. Steinberg, Calcium gradients and light-evoked calcium changes outside rods in the intact cat retina. Vis. Neurosci. 11(4), 753–761 (1994)

    CAS  Google Scholar 

  294. G.H. Gold, J.I. Korenbrot, Light-induced calcium release by intact retinal rods. Proc. Natl. Acad. Sci. U. S. A. 77(9), 5557–5561 (1980)

    CAS  Google Scholar 

  295. G. Birol, E. Budzynski, N.D. Wangsa-Wirawan, R.A. Linsenmeier, Retinal arterial occlusion leads to acidosis in the cat. Exp. Eye Res. 80(4), 527–533 (2005)

    CAS  Google Scholar 

  296. A.V. Dmitriev, S.C. Mangel, Circadian clock regulation of pH in the rabbit retina. J. Neurosci. 21(8), 2897–2902 (2001). doi:21/8/2897 [pii]

    CAS  Google Scholar 

  297. A.V. Dmitriev, S.C. Mangel, Retinal pH reflects retinal energy metabolism in the day and night. J. Neurophysiol. 91(6), 2404–2412 (2004). https://doi.org/10.1152/jn.00881.2003

    Article  CAS  Google Scholar 

  298. B. Oakley 2nd, R. Wen, Extracellular pH in the isolated retina of the toad in darkness and during illumination. J. Physiol. 419, 353–378 (1989)

    Google Scholar 

  299. L. Padnick-Silver, R.A. Linsenmeier, Quantification of in vivo anaerobic metabolism in the normal cat retina through intraretinal pH measurements. Vis. Neurosci. 19(6), 793–806 (2002)

    Google Scholar 

  300. L. Padnick-Silver, R.A. Linsenmeier, Effect of hypoxemia and hyperglycemia on pH in the intact cat retina. Arch. Ophthalmol. 123(12), 1684–1690 (2005)

    Google Scholar 

  301. F. Yamamoto, G.A. Borgula, R.H. Steinberg, Effects of light and darkness on pH outside rod photoreceptors in the cat retina. Exp. Eye Res. 54(5), 685–697 (1992)

    CAS  Google Scholar 

  302. F. Yamamoto, R.H. Steinberg, Effects of systemic hypoxia on pH outside rod photoreceptors in the cat retina. Exp. Eye Res. 54(5), 699–709 (1992)

    CAS  Google Scholar 

  303. L.L. Odette, E.A. Newman, Model of potassium dynamics in the central nervous system. Glia 1(3), 198–210 (1988). https://doi.org/10.1002/glia.440010305

    Article  CAS  Google Scholar 

  304. C. Nicholson, J.M. Phillips, Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J. Physiol. 321, 225–257 (1981)

    CAS  Google Scholar 

  305. C. Nicholson, M.E. Rice, Diffusion of ions and transmitters in the brain cell microenvironment, in Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission, ed. by K. Fuxe, L. F. Agnati, (Raven Press, New York, 1991), pp. 279–294

    Google Scholar 

  306. M.E. Rice, C. Nicholson, Diffusion characteristics and extracellular volume fraction during normoxia and hypoxia in slices of rat neostriatum. J. Neurophysiol. 65(2), 264–272 (1991)

    CAS  Google Scholar 

  307. L. Wang, P. Tornquist, A. Bill, Glucose metabolism in pig outer retina in light and darkness. Acta Physiol. Scand. 160(1), 75–81 (1997)

    CAS  Google Scholar 

  308. N. Wangsa-Wirawan, L. Padnick-Silver, E. Budzynski, R. Linsenmeier, pH regulation in the intact cat outer retina. ARVO abstract. Invest. Ophthalmol. Vis. Sci. 42(4), S367 (2001)

    Google Scholar 

  309. T.J. Wolfensberger, A.V. Dmitriev, V.I. Govardovskii, Inhibition of membrane-bound carbonic anhydrase decreases subretinal pH and volume. Doc. Ophthalmol. 97(3–4), 261–271 (1999)

    CAS  Google Scholar 

  310. J.M. Ogilvie, K.K. Ohlemiller, G.N. Shah, B. Ulmasov, T.A. Becker, A. Waheed, A.K. Hennig, P.D. Lukasiewicz, W.S. Sly, Carbonic anhydrase XIV deficiency produces a functional defect in the retinal light response. Proc. Natl. Acad. Sci. U. S. A. 104(20), 8514–8519 (2007). https://doi.org/10.1073/pnas.0702899104

    Article  CAS  Google Scholar 

  311. E. Budzynski, N. Wangsa-Wirawan, L. Padnick-Silver, D. Hatchell, R. Linsenmeier, Intraretinal pH in diabetic cats. Curr. Eye Res. 30(3), 229–240 (2005)

    CAS  Google Scholar 

  312. A.V. Dmitriev, D. Henderson, R.A. Linsenmeier, Development of diabetes-induced acidosis in the rat retina. Exp. Eye Res. 149, 16–25 (2016). https://doi.org/10.1016/j.exer.2016.05.028

    Article  CAS  Google Scholar 

  313. I. Dietzel, U. Heinemann, G. Hofmeier, H.D. Lux, Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp. Brain Res. 40(4), 432–439 (1980)

    CAS  Google Scholar 

  314. J.D. Li, V.I. Govardovskii, R.H. Steinberg, Light-dependent hydration of the space surrounding photoreceptors in the cat retina. Vis. Neurosci. 11(4), 743–752 (1994b)

    CAS  Google Scholar 

  315. B. Huang, C.J. Karwoski, Light-evoked expansion of subretinal space volume in the retina of the frog. J. Neurosci. 12(11), 4243–4252 (1992)

    CAS  Google Scholar 

  316. V.I. Govardovskii, J.D. Li, A.V. Dmitriev, R.H. Steinberg, Mathematical model of TMA+ diffusion and prediction of light-dependent subretinal hydration in chick retina. Invest. Ophthalmol. Vis. Sci. 35(6), 2712–2724 (1994)

    CAS  Google Scholar 

  317. J.D. Li, R.P. Gallemore, A. Dmitriev, R.H. Steinberg, Light-dependent hydration of the space surrounding photoreceptors in chick retina. Invest. Ophthalmol. Vis. Sci. 35(6), 2700–2711 (1994a)

    CAS  Google Scholar 

  318. W. Cao, V. Govardovskii, J.D. Li, R.H. Steinberg, Systemic hypoxia dehydrates the space surrounding photoreceptors in the cat retina. Invest. Ophthalmol. Vis. Sci. 37(4), 586–596 (1996)

    CAS  Google Scholar 

  319. H. Okawa, A.P. Sampath, S.B. Laughlin, G.L. Fain, ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr. Biol. 18(24), 1917–1921 (2008)

    CAS  Google Scholar 

Download references

Acknowledgments

The work of RAL’s laboratory was supported largely by NIH R01 EY05034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Linsenmeier .

Editor information

Editors and Affiliations

Homework

Homework

figure a

Fig. 21.32

  1. 1.

    Calculate the relative gNa/gK (or PNa/PK if you prefer) for a photoreceptor whose resting potential in the dark is −30 mV. Make reasonable assumptions for ENa and EK (or Na+ and K+ concentrations) and assume that Cl is at equilibrium. How does this differ from most neurons at rest?

  2. 2.

    The dark current of photoreceptors is about −30 pA. Assume all the current is carried by Na+. All the Na+ has to be pumped out of the inner segment (IS) to maintain the normally low intracellular [Na+]i. The pump exchanges 3 Na+ for 2 K+ as usual, and each pump cycle (i.e., 3 Na+) requires one molecule of ATP.

    1. (a)

      What is the usage of ATP/min in the dark for an individual rod? (This is not the only function requiring ATP but it is by far the largest in the dark-adapted retina. Actually about 85% of the current is due to Na+, and 15% is due to Ca+2, but Ca+2 is pumped out by a secondary active transporter that moves Ca+2 out and Na+ in in the outer segment, which makes the load of Na+ higher than assumed in the problem statement.)

    2. (b)

      There are 180,000 rods per mm2 at the peak of rod density. The IS are about 25 μm long. As noted in the text, other layers of the outer retina use no oxygen, so this ATP usage is over a volume of 1 mm2 × 25 μm. Roughly what is the oxygen usage of the IS, in μM-ml−1-min−1 of IS volume (essentially per gram since tissue density is about 1.05 g/ml), if all of the metabolism is oxidative metabolism (1 glucose + 6 O2 → 6 CO2 + 6 H2O). Also assume that 36 moles of ATP are produced per mole of glucose. (After you do the calculation, you will be able to compare this with the typical oxygen consumption of the brain, which is around 2 μmoles O2-ml−1-min−1 or as it is often expressed, 4 ml O2-100g−1-min−1.)

  3. 3.

    The ganglion cell center and surround are usually viewed as being antagonistic to each other, but this is actually true only for certain stimulus conditions, as in Fig. 21.18. Under what conditions do the center and surround of ganglion cells add rather than subtract? Justify your answer.

  4. 4.

    Gauthier et al. [38] hypothesized that the receptive fields of primate retinal ganglion cells were arranged to tile the retina (or visual world). They suggested that the interdigitation of adjacent receptive fields was not random but was nearly optimal, with minimal gaps between ganglion cells and minimum overlap of receptive fields. Using RF data like those shown in Fig. 21.24, suggest a method to test this hypothesis.

  5. 5.

    Figure 21.14 shows that the small ERG signals that comprise the multifocal ERG vary in amplitude across the visual field. In fact, the stimulus elements are not equal in size, and the smaller elements in the middle of the stimulus array (left) produce the largest responses (right). Generate at least one testable hypothesis about why this might be true, recognizing that the ERG comes largely from photoreceptors (here cones) and bipolar cells.

  6. 6.

    The chapter shows difference of Gaussian receptive field profiles for selected cat retinal ganglion cells, but as noted in Fig. 21.19, primate retinal ganglion cells can be characterized in the same way. Receptive fields vary a great deal across the retina.

    1. (a)

      For the P (midget) cells with the smallest and largest receptive field centers, plot the sensitivity of center and surround of the receptive field in spatial coordinates, as in Fig. 21.18a. For the larger P cell, also show the surround sensitivity multiplied by 10. The cells in Fig. 21.19 were recorded between about 1 and 35 degrees of eccentricity. For convenience, the centers and surrounds of P cells from Croner and Kaplan [218] are shown separately below.

    2. (b)

      In response to a large (or diffuse) stimulus, both center and surround will be maximally activated. The area under the center curve represents this “integrated center strength” and is Kcrc 2. The integrated surround strength is Ksrs 2. For these two cells, compare the integrated center strengths. Also, what is the strength of the surround relative to the strength of the center? From your graphs of the center and surround, the answers to these questions may surprise you, but they seem to reveal a logic about the way ganglion cell receptive fields vary with eccentricity.

    3. (c)

      What is the highest spatial frequency that each of these cells can detect? (In the units of the figures and the equation in the text, this is where contrast sensitivity falls to 0.01, meaning that 100% contrast is needed.)

  7. 7.

    Which eye diseases could a retinal prosthesis be used to treat and why? What is the definition of legal blindness in the USA in terms of visual acuity? No currently available retinal prosthesis has succeeded in providing this minimal level of acuity. Why do you think that this is the case and what has limited our ability to reach this standard?

  8. 8.

    Barlow and Levick in Fig. 7 of their 1965 paper “The mechanisms of directionally selective units in the rabbit’s retina” (Journal of Physiology 178, 477–504) proposed a model for the receptive field of a rabbit retinal ganglion cell that has directional selectivity. It is known now that retinal ganglion cells with similar receptive field properties exist in most, if not all, vertebrate retinas, including those of the primate. Suggest a model for the creation of directional selectivity based on retinal circuitry involving bipolar and amacrine cells.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linsenmeier, R.A., Troy, J.B. (2020). Retinal Bioengineering. In: He, B. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-43395-6_21

Download citation

Publish with us

Policies and ethics

Navigation