Poromechanical Modeling of Porcine Knee Joint Using Indentation Map of Articular Cartilage

  • Conference paper
  • First Online:
Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering (CMBBE 2019)

Abstract

The knowledge of site-specific properties of articular cartilage of a knee joint may be important for understanding the onset of cartilage degeneration in the knee. Few earlier studies have focused on the rate-dependent poromechanical response of knee joints to site-specific material properties across the joint. The objective of the present study was to develop a methodology to implement the in-situ cartilage mechanical properties in an anatomically accurate computational model of the porcine knee joint. Fresh porcine knee joints were used to reconstruct the knee geometry using magnetic resonance imaging. An automated indentation test was used to determine the site-specific cartilage properties. The variations of the recorded reaction forces over different sites were not solely due to nonuniform cartilage thickness. The nonfibrillar matrix and fibrillar network of the tibial cartilage had higher stiffness compared to that of the femoral cartilage as determined in the data fitting procedure. Considering the site-specific properties in finite element simulations, the force-compression relationship of the joint was determined by both compression-magnitude and compression-rate. The preliminary results indicated that a realistic implementation of site-specific tissue properties may be necessary for understanding the load distribution in the joint. The methodology will be further refined and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 155.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sophia-Fox, A.J., Bedi, A., Rodeo, S.A.: The basic science of articular cartilage: structure, composition, and function. Sport. Health Multidiscip. Approach 1, 461–468 (2009). https://doi.org/10.1177/1941738109350438

    Article  Google Scholar 

  2. Troken, A.J., Mao, J.J., Marion, N.W., Wan, L.Q., Mow, V.C.: Cartilage and meniscus, properties of. In: Encyclopedia of Medical Devices and Instrumentation. Wiley, Hoboken (2006)

    Google Scholar 

  3. Wang, Y., Ding, C., Wluka, A.E., Davis, S., Ebeling, P.R., Jones, G., Cicuttini, F.M.: Factors affecting progression of knee cartilage defects in normal subjects over 2 years. Rheumatology 45, 79–84 (2006). https://doi.org/10.1093/rheumatology/kei108

    Article  Google Scholar 

  4. Korhonen, R.K., Julkunen, P., Li, L.P., van Donkelaar, C.C.: Computational models of articular cartilage. Comput. Math. Methods Med. 2013, 254507 (2013). https://doi.org/10.1155/2013/254507

    Article  Google Scholar 

  5. Huber, M., Trattnig, S., Lintner, F.: Anatomy, biochemistry, and physiology of articular cartilage. Invest. Radiol. 35, 573–580 (2000)

    Article  Google Scholar 

  6. Bhosale, A.M., Richardson, J.B.: Articular cartilage: structure, injuries and review of management. Br. Med. Bull. 87, 77–95 (2008). https://doi.org/10.1093/bmb/ldn025

    Article  Google Scholar 

  7. Mow, V.C., Huiskes, R.: Basic Orthopaedic Biomechanics & Mechano-biology. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  8. Taylor, Z.A., Miller, K.: Constitutive modeling of cartilaginous tissues: a review. J. Appl. Biomech. 22, 212–229 (2006)

    Article  Google Scholar 

  9. Li, L.P., Soulhat, J., Buschmann, M.D., Shirazi-Adl, A.: Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin. Biomech. 14, 673–682 (1999). https://doi.org/10.1016/S0268-0033(99)00013-3

    Article  Google Scholar 

  10. Gao, L.L., Zhang, C.Q., Gao, H., Liu, Z.D., **ao, P.P.: Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions. Mater. Sci. Eng. C 38, 244–251 (2014). https://doi.org/10.1016/J.MSEC.2014.02.009

    Article  Google Scholar 

  11. Oloyede, A., Broom, N.: Stress-sharing between the fluid and solid components of articular cartilage under varying rates of compression. Connect. Tissue Res. 30, 127–141 (1993)

    Google Scholar 

  12. Li, L.P., Herzog, W.: Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization. J. Biomech. 37, 375–382 (2004)

    Article  Google Scholar 

  13. Boschetti, F., Pennati, G., Gervaso, F., Peretti, G.M., Dubini, G.: Biomechanical properties of human articular cartilage under compressive loads. Biorheology 41, 159–166 (2004)

    Google Scholar 

  14. DiSilvestro, M.R., Suh, J.K.F.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34, 519–525 (2001). https://doi.org/10.1016/S0021-9290(00)00224-4

    Article  Google Scholar 

  15. Korhonen, R.K., Laasanen, M.S., Töyräs, J., Rieppo, J., Hirvonen, J., Helminen, H.J., Jurvelin, J.S.: Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J. Biomech. 35, 903–909 (2002). https://doi.org/10.1016/S0021-9290(02)00052-0

    Article  Google Scholar 

  16. Mow, V.C., Gibbs, M.C., Lai, W.M., Zhu, W.B., Athanasiou, K.A.: Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J. Biomech. 22, 853–861 (1989). https://doi.org/10.1016/0021-9290(89)90069-9

    Article  Google Scholar 

  17. Chen, X., Zimmerman, B.K., Lu, X.L.: Determine the equilibrium mechanical properties of articular cartilage from the short-term indentation response. J. Biomech. 48, 176–180 (2015). https://doi.org/10.1016/J.JBIOMECH.2014.10.036

    Article  Google Scholar 

  18. Cao, L., Youn, I., Guilak, F., Setton, L.A.: Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. J. Biomech. Eng. 128, 766 (2006). https://doi.org/10.1115/1.2246237

    Article  Google Scholar 

  19. Lu, X.L., Mow, V.C., Guo, X.E.: Proteoglycans and mechanical behavior of condylar cartilage. J. Dent. Res. 88, 244–248 (2009). https://doi.org/10.1177/0022034508330432

    Article  Google Scholar 

  20. Hosoda, N., Sakai, N., Sawae, Y., Murakami, T.: Finite element analyses of articular cartilage models considering depth-dependent elastic modulus and collagen fiber network. J. Biomech. Sci. Eng. 5, 437–448 (2010). https://doi.org/10.1299/jbse.5.437

    Article  Google Scholar 

  21. Klika, V., Gaffney, E.A., Chen, Y.C., Brown, C.P.: An overview of multiphase cartilage mechanical modelling and its role in understanding function and pathology. J. Mech. Behav. Biomed. Mater. 62, 139–157 (2016). https://doi.org/10.1016/J.JMBBM.2016.04.032

    Article  Google Scholar 

  22. DiSilvestro, M.R., Zhu, Q., Wong, M., Jurvelin, J.S., Suh, J.K.F.: Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I—simultaneous prediction of reaction force and lateral displacement. J. Biomech. Eng. 123, 191 (2001). https://doi.org/10.1115/1.1351890

    Article  Google Scholar 

  23. Richard, F., Villars, M., Thibaud, S.: Viscoelastic modeling and quantitative experimental characterization of normal and osteoarthritic human articular cartilage using indentation. J. Mech. Behav. Biomed. Mater. 24, 41–52 (2013). https://doi.org/10.1016/J.JMBBM.2013.04.012

    Article  Google Scholar 

  24. Mäkelä, J.T.A., Han, S.K., Herzog, W., Korhonen, R.K.: Very early osteoarthritis changes sensitively fluid flow properties of articular cartilage. J. Biomech. 48, 3369–3376 (2015). https://doi.org/10.1016/J.JBIOMECH.2015.06.010

    Article  Google Scholar 

  25. Bendjaballah, M., Shirazi-Adl, A., Zukor, D.: Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2, 69–79 (1995)

    Article  Google Scholar 

  26. Li, G., Gil, J., Kanamori, A., Woo, S.L.: A validated three-dimensional computational model of a human knee joint. J. Biomech. Eng. 121, 657–662 (1999). https://doi.org/10.1115/1.2800871

    Article  Google Scholar 

  27. Gu, K.B., Li, L.P.: A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci. Med. Eng. Phys. 33, 497–503 (2011)

    Article  Google Scholar 

  28. Below, S., Arnoczky, S.P., Dodds, J., Kooima, C., Walter, N.: The split-line pattern of the distal femur: a consideration in the orientation of autologous cartilage grafts. Arthrosc. J. Arthrosc. Relat. Surg. 18, 613–617 (2002). https://doi.org/10.1053/JARS.2002.29877

    Article  Google Scholar 

  29. Shim, V.B., Besier, T.F., Lloyd, D.G., Mithraratne, K., Fernandez, J.F.: The influence and biomechanical role of cartilage split line pattern on tibiofemoral cartilage stress distribution during the stance phase of gait. Biomech. Model. Mechanobiol. 15, 195–204 (2016). https://doi.org/10.1007/s10237-015-0668-y

    Article  Google Scholar 

  30. Kiapour, A., Kiapour, A.M., Kaul, V., Quatman, C.E., Wordeman, S.C., Hewett, T.E., Demetropoulos, C.K., Goel, V.K.: Finite element model of the knee for investigation of injury mechanisms: development and validation. J. Biomech. Eng. 136, 011002 (2013). https://doi.org/10.1115/1.4025692

    Article  Google Scholar 

  31. Mootanah, R., Imhauser, C.W., Reisse, F., Carpanen, D., Walker, R.W., Koff, M.F., Lenhoff, M.W., Rozbruch, S.R., Fragomen, A.T., Dewan, Z., Kirane, Y.M., Cheah, K., Dowell, J.K., Hillstrom, H.J.: Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis. Comput. Methods Biomech. Biomed. Eng. 17, 1502–1517 (2014). https://doi.org/10.1080/10255842.2014.899588

    Article  Google Scholar 

  32. Mononen, M.E., Tanska, P., Isaksson, H., Korhonen, R.K.: A novel method to simulate the progression of collagen degeneration of cartilage in the knee: data from the osteoarthritis initiative. Sci. Rep. 6, 21415 (2016). https://doi.org/10.1038/srep21415

    Article  Google Scholar 

  33. Mononen, M.E., Tanska, P., Isaksson, H., Korhonen, R.K.: New algorithm for simulation of proteoglycan loss and collagen degeneration in the knee joint: data from the osteoarthritis initiative. J. Orthop. Res. 36, 1673–1683 (2018). https://doi.org/10.1002/jor.23811

    Article  Google Scholar 

  34. Erdemir, A., Besier, T.F., Halloran, J.P., Imhauser, C.W., Laz, P.J., Morrison, T.M., Shelburne, K.B.: Deciphering the “art” in modeling and simulation of the knee joint: overall strategy. J. Biomech. Eng. 141, 071002 (2019). https://doi.org/10.1115/1.4043346

    Article  Google Scholar 

  35. Proffen, B.L., McElfresh, M., Fleming, B.C., Murray, M.M.: A comparative anatomical study of the human knee and six animal species. Knee 19, 493–499 (2012). https://doi.org/10.1016/J.KNEE.2011.07.005

    Article  Google Scholar 

  36. Lavoie, J.F., Sim, S., Quenneville, E., Garon, M., Moreau, A., Buschmann, M.D., Aubin, C.E.: Map** articular cartilage biomechanical properties of normal and osteoarthritic mice using indentation. In: Osteoarthritis Research Society International, Seattle, WA, USA (2015)

    Google Scholar 

  37. Sim, S., Matuska, A., Garon, M., Quenneville, E., McFetridge, P., Buschmann, M.D.: Cartilage stiffness and thickness distributions revealed by an automated indentation technique in the temporomandibular joint. In: TMJ Bioengineering Conference, Barcelona, Spain (2016)

    Google Scholar 

  38. Moshtagh, P.R., Pouran, B., Korthagen, N.M., Zadpoor, A.A., Weinans, H.: Guidelines for an optimized indentation protocol for measurement of cartilage stiffness: the effects of spatial variation and indentation parameters. J. Biomech. 49, 3602–3607 (2016). https://doi.org/10.1016/J.JBIOMECH.2016.09.020

    Article  Google Scholar 

  39. Rieppo, J., Hyttinen, M.M., Halmesmaki, E., Ruotsalainen, H., Vasara, A., Kiviranta, I., Jurvelin, J.S., Helminen, H.J.: Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation. Osteoarthr. Cartil. 17, 448–455 (2009). https://doi.org/10.1016/J.JOCA.2008.09.004

    Article  Google Scholar 

  40. Kazemi, M., Li, L.P.: A viscoelastic poromechanical model of the knee joint in large compression. Med. Eng. Phys. 36, 998–1006 (2014). https://doi.org/10.1016/J.MEDENGPHY.2014.04.004

    Article  Google Scholar 

  41. Donahue, T.L., Hull, M.L., Rashid, M.M., Jacobs, C.R.: A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124, 273 (2002). https://doi.org/10.1115/1.1470171

    Article  Google Scholar 

  42. Teeple, E., Fleming, B.C., Mechrefe, A.P., Crisco, J.J., Brady, M.F., Jay, G.D.: Frictional properties of Hartley guinea pig knees with and without proteolytic disruption of the articular surfaces. Osteoarthr. Cartil. 15, 309–315 (2007). https://doi.org/10.1016/J.JOCA.2006.08.011

    Article  Google Scholar 

  43. Lu, X.L., Miller, C., Quo, X.E., Van Mow, C.: A new correspondence principle for triphasic materials: determination of fixed charge density and porosity of articular cartilage by indentation. ASME-BED, Vail, Colorado (2005)

    Google Scholar 

  44. Pal, S.: Mechanical properties of biological materials. In: Design of Artificial Human Joints & Organs, pp. 23–40. Springer US, Boston (2014)

    Google Scholar 

  45. Rodriguez, M.L., Li, L.P.: Compression-rate-dependent nonlinear mechanics of normal and impaired porcine knee joints. BMC Musculoskelet. Disord. 18, 1–10 (2017). https://doi.org/10.1186/s12891-017-1805-9

    Article  Google Scholar 

  46. Meng, Q., An, S., Damion, R.A., **, Z., Wilcox, R., Fisher, J., Jones, A.: The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage. J. Mech. Behav. Biomed. Mater. 65, 439–453 (2017). https://doi.org/10.1016/J.JMBBM.2016.09.001

    Article  Google Scholar 

  47. Ronkainen, A.P., Fick, J.M., Herzog, W., Korhonen, R.K.: Site-specific cell-tissue interactions in rabbit knee joint articular cartilage. J. Biomech. 49, 2882–2890 (2016). https://doi.org/10.1016/J.JBIOMECH.2016.06.033

    Article  Google Scholar 

  48. Alhadlaq, H.A., **a, Y., Moody, J.B., Matyas, J.R.: Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy. Ann. Rheum. Dis. 63, 709–717 (2004). https://doi.org/10.1136/ARD.2003.011783

    Article  Google Scholar 

  49. Oloyede, A., Flachsmann, R., Broom, N.: The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect. Tissue Res. 27, 211–224 (1992)

    Article  Google Scholar 

  50. Hayes, W.C., Bodine, A.J.: Flow-independent viscoelastic properties of articular cartilage matrix. J. Biomech. 11, 407–419 (1978). https://doi.org/10.1016/0021-9290(78)90075-1

    Article  Google Scholar 

  51. Ahsanizadeh, S., Li, L.P.: Strain-rate-dependent non-linear tensile properties of the superficial zone of articular cartilage. Connect. Tissue Res. 56, 469–476 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Natural Sciences and Engineering Research Council of Canada. The first indentation test of a porcine joint was performed at Biomomentum (Quebec, Canada) with a Mach-1 tester (the original photos for Figs. 3 and 5 were taken at Biomomentum and modified for using here with permission). All subsequent indentation tests and joint reconstructions were performed using Dr. Brent Edwards’ facility at the Human Performance Lab, where Andrew Sawatsky trained Daniel Tang for the use of Mach-1. The MRI images were obtained at the Centre for Mobility and Joint Health, Dr. Steven Boyd’s lab at the University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le** Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zare, M., Tang, D., Li, L. (2020). Poromechanical Modeling of Porcine Knee Joint Using Indentation Map of Articular Cartilage. In: Ateshian, G., Myers, K., Tavares, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-43195-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43195-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43194-5

  • Online ISBN: 978-3-030-43195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation