Theory and Applications of the Elliptic Painlevé Equation

  • Chapter
  • First Online:
Partition Functions and Automorphic Forms

Part of the book series: Moscow Lectures ((ML,volume 5))

  • 1032 Accesses

Abstract

This note is intended to provide an introduction to the theory of discrete Painlevé equations focusing mainly on the elliptic difference case. The elliptic Painlevé equation is the master case of the continuous/discrete Painlevé equations in two variables and has the largest affine Weyl group symmetry \(W(E_8^{(1)})\). Various “integrable” nature such as the symmetry of equation, bilinear form, Lax pair and special solutions are explained from a geometric point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 50.28
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 64.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 90.94
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    From a geometric point of view [51], the third Painlevé equation P III is further classified into \(P_{\mathrm {III}_1}=P_{\mathrm {III}}^{D_6^{(1)}}\), \(P_{\mathrm {III}_2}=P_{\mathrm {III}}^{D_7^{(1)}}\) and \(P_{\mathrm {III}_3}=P_{\mathrm {III}}^{D_8^{(1)}}\).

  2. 2.

    Solving the Kovalevskaya’s top is much more difficult than the Euler/Lagrange cases because one need hyperelliptic functions.

  3. 3.

    Recently a method using the cluster algebra is also developed. See [4, 44] for example.

  4. 4.

    For the application to integrable systems, see the review [14] and references therein.

  5. 5.

    The conserved curve and the spectral curve can be identified for genus 1 case.

  6. 6.

    The representation (3.31) in variables (f i, g i) is algebraic but not \(\frak {S}_8\)-symmetric, while the representation (4.13) in variables (e i, h i, x, y) is \(\frak {S}_8\)-symmetric but not algebraic. There exist \(\frak {S}_8\)-symmetric and algebraic representations [1] which are, interestingly, related to the quadrirational Yang-Baxter maps.

  7. 7.

    The relation to the Eqs. (4.15) and (4.16) is given by similar way as the q-case Sect. 3.7.

References

  1. J. Atkinson, Y. Yamada, Quadrirational Yang-Baxter maps and the elliptic Cremona system (2018). ar**v:1804.01794 [nlin.SI]

    Google Scholar 

  2. F. Benini, S. Benvenuti, Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories. J. High Energ. Phys. 2009(09), 052 (2009)

    Google Scholar 

  3. M.A. Bershtein, A.I. Shchechkin, q-deformed Painlevé tau function and q-deformed conformal blocks. J. Phys. A: Math. Theor. 50, 085202 (2017)

    Google Scholar 

  4. M. Bershtein, P. Gavrylenko, A. Marshakov, Cluster integrable systems, q-Painlevé equations and their quantization. J. High Energ. Phys. 2018, 77 (2018)

    Article  Google Scholar 

  5. G. Bonelli, O. Lisovyy, K. Maruyoshi, A. Sciarappa, A. Tanzini, On Painlevé/gauge theory correspondence. Lett. Math. Phys. 107, 2359 (2017)

    Article  MathSciNet  Google Scholar 

  6. G. Bonelli, A. Grassi, A. Tanzini, Quantum curves and q-deformed Painlevé equations. Lett. Math. Phys. 109, 1961–2001 (2019). ar**v: 1710.11603 [hep-th]

    Google Scholar 

  7. A.B. Coble, Points sets and allied Cremona groups (part I), Trans. Amer. Math. Soc. 16, 155–198 (1915); – (part II). Ibid. 17 345–385 (1916).

    Google Scholar 

  8. O. Gamayun, N. Iorgov, O. Lisovyy, Conformal field theory of Painlevé VI. J. High Energ. Phys. 10, 038 (2012)

    Article  Google Scholar 

  9. P. Gavrylenko, N. Iorgov, O. Lisovyy, Higher rank isomonodromic deformations and W-algebras. Lett. Math. Phys. 110, 327–364 (2019). ar**v:1801.09608 [hep-th]

    Google Scholar 

  10. P. Gavrylenko, N. Iorgov, O. Lisovyy, On solutions of the Fuji-Suzuki-Tsuda system. Symmetry, Integr. Geom. Methods Appl. 14, 123 (2018). ar**v:1806.08650 [hep-th].

    Google Scholar 

  11. B. Grammaticos, F. Nijhoff, A. Ramani, Discrete Painlevé equations, in The Painlevé Property. CRM Series in Mathematical Physics (Springer, New York, 1999), pp. 413–516

    Google Scholar 

  12. B. Grammaticos, A. Ramani, R. Willox, J. Satsuma, Multiplicative equations related to the affine Weyl group E 8. J. Math. Phys. 58, 083502 (9pp) (2017)

    Google Scholar 

  13. A. Grassi, Y. Hatsuda, M. Marino, Topological strings from quantum mechanics. Ann. Henri Poincaré 17, 3177 (2016)

    Article  MathSciNet  Google Scholar 

  14. R. Inoue, A. Kuniba, T. Takagi, Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry. J. Phys. A Math. Theor. 45, 073001 (64pp) (2012)

    Google Scholar 

  15. M. Jimbo, H. Sakai, A q-analog of the sixth Painlevé equation. Lett. Math. Phys. 38, 145–154 (1996)

    Article  MathSciNet  Google Scholar 

  16. M. Jimbo, H. Nagoya, H. Sakai, CFT approach to the q-Painlevé VI equation. J. Integr. Syst. 2(1) (2017). ar**v:1706.01940 [hep-th]

    Google Scholar 

  17. K. Kajiwara, M. Noumi, Y. Yamada, Discrete dynamical systems with \(W(A_{m-1}^{(1)}\times A_{n-1}^{(1)})\) symmetry. Lett. Math. Phys. 60, 211–219 (2002)

    Google Scholar 

  18. K. Kajiwara, M. Noumi, Y. Yamada, q-Painlevé systems arising from q-KP hierarchy. Lett. Math. Phys. 62, 259–268 (2002)

    Google Scholar 

  19. K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, 10 E 9 solution to the elliptic Painlevé equation. J. Phys. A Math. Gen. 36, L263–L272 (2003)

    Google Scholar 

  20. K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, Hypergeometric solutions to the q-Painlevé equations. Int. Math. Res. Not. 2004, 2497–2521 (2004)

    Article  Google Scholar 

  21. K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, Construction of hypergeometric solutions to the q-Painlevé equations. Int. Math. Res. Not. 2004, 1439–1453 (2005)

    Article  Google Scholar 

  22. K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, Cubic pencils and Painlevé Hamiltonians. Funkcial. Ekvac. 48, 147–160 (2005)

    Article  MathSciNet  Google Scholar 

  23. K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, Point configurations, Cremona transformations and the elliptic difference Painlevé equation. Sémin. Congr. 14, 169–198 (2006)

    MATH  Google Scholar 

  24. K. Kajiwara, M. Noumi, Y. Yamada, Geometric aspects of Painlevé equations. J. Phys. A: Math. Theor. 50, 073001 (2017)

    Article  Google Scholar 

  25. A.P. Kels, New solutions of the star-triangle relation with discrete and continuous spin variables. J. Phys. A Math. Theor. 48, 435201 (2015)

    Article  MathSciNet  Google Scholar 

  26. A.P. Kels, M. Yamazaki, Elliptic hypergeometric sum/integral transformations and supersymmetric lens index. Symmetry, Integr. Geomet. Methods Appl. 14, 013 (2018)

    Google Scholar 

  27. A.P. Kels, M. Yamazaki, Lens generalisation of τ-functions for elliptic discrete Painlevé equation (2019). ar**v:1810.12103 [nlin.SI]

    Google Scholar 

  28. S.-S. Kim, F. Yagi, 5d E n Seiberg-Witten curve via toric-like diagram. J. High Energ. Phys. 06, 082 (2015)

    Article  MathSciNet  Google Scholar 

  29. S.-S. Kim, M. Taki, F. Yagi, Tao probing the end of the world. Prog. Theor. Exper. Phys. 8, 1 (2015)

    MATH  Google Scholar 

  30. G. Lusztig, Introduction to Quantum Groups. Progress in Mathematics, vol. 110 (Birkhäuser, Basel, 1993)

    Google Scholar 

  31. G. Lusztig, Total positivity in reductive groups, in Lie Theory and Geometry. Progress in Mathematics, vol. 123 (Birkhäuser, Basel, 1994), pp. 531–568

    Google Scholar 

  32. J.I. Manin, The Tate height of points on an abelian variety. Its variants and applications. Izv. Akad. Nauk SSSR Ser. Mat. 28, 1363–1390 (1964); AMS Transl. 59(2), 82–110 (1966)

    Google Scholar 

  33. T. Matano, A. Matumiya, K. Takano, On some Hamiltonian structures of Painlevé systems. II. J. Math. Soc. Japan 51, 843–866 (1999)

    Article  Google Scholar 

  34. A. Mironov, A. Morozov, On determinant representation and integrability of Nekrasov functions. Phys. Lett. B773, 34–46 (2017)

    Article  MathSciNet  Google Scholar 

  35. S. Mizoguchi, Y. Yamada, W(E 10) symmetry, M theory and Painlevé equations. Phys. Lett. B537, 130–140 (2002)

    Article  Google Scholar 

  36. M. Murata, H. Sakai, J. Yoneda, Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type \(E_8^{(1)}\). J. Math. Phys. 44, 1396–1414 (2003)

    Google Scholar 

  37. H. Nagao, Y. Yamada, Study of q-Garnier system by Padé method. Funkcial. Ekvac. 61, 109–133 (2018)

    Article  MathSciNet  Google Scholar 

  38. A. Nakayashiki, Y. Yamada, Kostka polynomials and energy functions in solvable lattice models. Sel. math. New Ser. 3, 547–599 (1997)

    Article  MathSciNet  Google Scholar 

  39. M. Noumi, Remarks on τ-functions for the difference Painlevé equations of type E 8, in Representation Theory, Special Functions and Painlev Equations—RIMS 2015 (Mathematical Society of Japan, Tokyo, 2018), pp. 1–65. ar**v:1604.04686

    Google Scholar 

  40. M. Noumi, Y. Yamada, Birational Weyl group action arising from a nilpotent Poisson algebra, in Physics and Combinatorics 1999 (Nagoya), ed. by A.N. Kirillov, A. Tsuchiya, H. Umemura (World Scientific, Singapore, 2001)

    Google Scholar 

  41. M. Noumi, S. Tsujimoto, Y. Yamada, Padé interpolation problem for elliptic Painlevé equation, in Symmetries, Integrable Systems and Representations, ed. by K. Iohara, et al. Springer Proceedings in Mathematics & Statistics, vol. 40 (Springer, Berlin, 2013), pp. 463–482

    Google Scholar 

  42. Y. Ohta, A. Ramani, B. Grammaticos, An affine Weyl group approach to the eight parameter discrete Painlevé equation. J. Phys. A Math. Gen. 34, 10523 (2001)

    Article  Google Scholar 

  43. K. Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixés de P. Painlevé. Jpn. J. Math. 5, 1–79 (1979)

    Article  Google Scholar 

  44. N. Okubo, T. Suzuki, Generalized q-Painlevé VI system of type (A 2n+1 + A 1 + A 1)(1) arising from cluster algebra (2018). ar**v:1810.03252 [math-ph]

    Google Scholar 

  45. C.M. Ormerod, E.M. Rains, An elliptic Garnier system. Commun. Math. Phys. 355(2), 741–766 (2017). ar**v:1607.07831 [math-ph]

    Google Scholar 

  46. C.M. Ormerod, Y. Yamada, From polygons to ultradiscrete painlevé equations. Symmetry, Integr. Geomet. Methods Appl. 11, 056, 36 (2015)

    Google Scholar 

  47. G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson, Integrable map**s and soliton equations. Phys. Lett. A126, 419–421 (1988)

    Article  MathSciNet  Google Scholar 

  48. G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson, Integrable map**s and soliton equations II. Physica D34, 183–192 (1989)

    MathSciNet  MATH  Google Scholar 

  49. E.M. Rains, An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations). Symmetry, Integr. Geomet. Methods Appl. 7, 088 (2011)

    Google Scholar 

  50. A. Ramani, B. Grammaticos, Singularity analysis for difference Painlevé equations associated with affine Weyl group E 8. J. Phys. A 50, 055204 (18pp) (2017)

    Google Scholar 

  51. H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Comm. Math. Phys. 220, 165–229 (2001)

    Article  MathSciNet  Google Scholar 

  52. H. Sakai, A q-analog of the Garnier system. Funkcial. Ekvac. 48, 273–297 (2005)

    Article  MathSciNet  Google Scholar 

  53. T. Shioda, K. Takano, On some Hamiltonian structures of Painlevé systems. I. Funkcial. Ekvac. 40, 271–291 (1997)

    MATH  Google Scholar 

  54. V.P. Spiridonov, Classical elliptic hypergeometric functions and their applications, in Elliptic Integrable Systems, ed. by M. Noumi, K. Takasaki. Rokko Lectures in Mathematics, vol. 18 (2005), pp. 253–287

    Google Scholar 

  55. V.P. Spiridonov, Essays on the theory of elliptic hypergeometric functions. Russ. Math. Surv. 63(3), 405–472 (2008)

    MathSciNet  MATH  Google Scholar 

  56. V.P. Spiridonov, Rarefied elliptic hypergeometric functions. Adv. Math. 331, 830–873 (2018)

    Article  MathSciNet  Google Scholar 

  57. T. Suzuki, A reformulation of generalized q-Painlevé VI system with \(W(A_{2n+1}^{(1)})\) symmetry. J. Integrable Syst. 2, xyw017 (2017)

    Google Scholar 

  58. T. Tokihiro, D. Takahashi, J. Matsukidaira, J. Satsuma, From soliton equations to integrable cellular automata through a limiting procedure. Phys. Rev. Lett. 76, 3247–3250 (1996)

    Article  Google Scholar 

  59. T. Tsuda, Integrable map**s via rational elliptic surfaces. J. Phys. A Math. Gen. 37, 2721–2730 (2004)

    Article  MathSciNet  Google Scholar 

  60. T. Tsuda, On an integrable system of q-difference equations satisfied by the universal characters: its Lax formalism and an application to q-Painlevé equations. Comm. Math. Phys. 293, 347–359 (2010)

    Article  MathSciNet  Google Scholar 

  61. A.P. Veselov, Integrable maps. Russ. Math. Surv. 46(5), 1–51 (1991)

    Article  Google Scholar 

  62. E.T. Whittaker, G.N. Watoson, A Course of Modern Analysis (Cambridge University Press, Cambridge, 1927)

    Google Scholar 

  63. Y. Yamada, A birational representation of Weyl group, combinatorial R matrix and discrete Toda equation, in Physics and Combinatorics 2000 (Nagoya), ed. by A.N. Kirillov, N. Liskova (World Scientific, Singapore, 2001), pp. 305–319

    Google Scholar 

  64. Y. Yamada, A Lax formalism for the elliptic difference Painlevé equation. Symmetry, Integr. Geomet. Methods Appl. 5, 042 (2009)

    Google Scholar 

  65. Y. Yamada, Padé method to Painlevé equations. Funkcial. Ekvac. 52, 83–92 (2009)

    Article  MathSciNet  Google Scholar 

  66. Y. Yamada, An elliptic Garnier system from interpolation, Symmetry, Integr. Geomet. Methods Appl. 13, 069 (2017)

    MATH  Google Scholar 

  67. M. Yamazaki, Integrability as duality: the Gauge/YBE correspondence (2018). ar**v:1808.04374 [hep-th]

    Google Scholar 

Download references

Acknowledgements

The author would like to thank his coworkers on various collaborations reviewed in this paper. He is also grateful to M. Bershtein, A. Grassi, A. Kels, V.P. Spiridonov, T. Suzuki, M. Yamazaki for interesting discussions. This work was supported by JSPS Kakenhi Grant (B) 26287018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamada, Y. (2020). Theory and Applications of the Elliptic Painlevé Equation. In: Gritsenko, V.A., Spiridonov, V.P. (eds) Partition Functions and Automorphic Forms. Moscow Lectures, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-42400-8_8

Download citation

Publish with us

Policies and ethics

Navigation