Xanthan Gum for Regenerative Medicine

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Xanthan gum, a branched polysaccharide produced by Xanthomonas bacteria, is traditionally used as an additive in several industrial applications, from food to cosmetics and petroleum, due to its rheological behavior and stability in a wide range of temperature, pH, and ionic strength. These characteristics, along with properties such as biocompatibility and biodegradability, also make this polysaccharide a very attractive material for biomedical applications, including drug delivery and regenerative medicine. The great potential of xanthan gum in tissue engineering and cell therapy fields has been evidenced in the recent years through many studies that show its ability to modulate the release profile of bioactive agents, such as drugs, growth factors, antibacterial agents and cells, and also to tune physicochemical and mechanical properties of biomaterials able to support cell growth. In this chapter, an overview of the microbial polysaccharide production is provided, from the fermentation process to polymer recovery and purification. The structure and conformation of xanthan gum molecule in different conditions is described, as well as its main functional properties, such as viscoelasticity, pH-dependent polyanionic behavior, and gelation capacity. Moreover, methods of functionalization and modification of xanthan gum structure are discussed, including physical, chemical, and chemo-enzymatic treatments to improve polymer processing and properties, such as mechanical performance and bioactivity. Furthermore, examples of the use of xanthan gum-based biomaterials for several targeted applications in soft or hard tissue repair are provided. Finally, current trends are identified and directions on future developments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 855.99
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 935.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja M, Kumar A, Singh K. Synthesis, characterization and in vitro release behavior of carboxymethyl xanthan. Int J Biol Macromol. 2012;51:1086–90.

    Article  CAS  PubMed  Google Scholar 

  • Almeida N, Mueller A, Hirschi S, Rakesh L. Rheological studies of polysaccharides for skin scaffolds. J Biomed Mater Res A. 2014;102:1510–7.

    Article  PubMed  Google Scholar 

  • Badwaik HR, Giri TK, Nakhate KT, et al. Xanthan gum and its derivatives as a potential bio-polymeric carrier for drug delivery system. Curr Drug Deliv. 2013;10:587–600.

    Article  CAS  PubMed  Google Scholar 

  • Bellini MZ, Caliari-Oliveira C, Mizukami A, et al. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. J Biomater Appl. 2015;29:1155–66.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia M, Ahuja M, Mehta H. Thiol derivatization of xanthan gum and its evaluation as a mucoadhesive polymer. Carbohydr Polym. 2015;131:119–24.

    Article  CAS  PubMed  Google Scholar 

  • Bombaldi de Souza RF, Bombaldi de Souza FC, Rodrigues C, et al. Mechanically-enhanced polysaccharide-based scaffolds for tissue engineering of soft tissues. Mater Sci Eng C Mater Biol Appl. 2019;94:364–75.

    Article  CAS  PubMed  Google Scholar 

  • Bombaldi de Souza RF, Bombaldi de Souza FC, Thorpe A, et al. Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. Int J Biol Macromol. 2020;143:619–32.

    Article  CAS  PubMed  Google Scholar 

  • Bueno VB, Bentini R, Catalani LH, et al. Synthesis and characterization of xanthan–hydroxyapatite nanocomposites for cellular uptake. Mater Sci Eng C. 2014;37:195–203.

    Article  CAS  Google Scholar 

  • Dubbin K, Tabet A, Heilshorn SC. Quantitative criteria to benchmark new and existing bio-inks for cell compatibility. Biofabrication. 2017;9:044102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyondi D, Webster TJ, Banerjee R. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int J Nanomedicine. 2013;8:47–59.

    PubMed  Google Scholar 

  • Elizalde-Peña EA, Quintero-Ortega IA, Zárate-Triviño DG, et al. (Chitosan-g-glycidyl methacrylate)-xanthan hydrogel implant in Wistar rats for spinal cord regeneration. Mater Sci Eng C Mater Biol Appl. 2017;78:892–900.

    Article  PubMed  Google Scholar 

  • Fabela-Sánchez O, Zarate-Triviño DG, Elizalde-Peña EA, et al. Mammalian cell culture on a novel chitosan-based biomaterial crosslinked with gluteraldehyde. Macromol Symp. 2009;283–284:181–90.

    Article  Google Scholar 

  • García-Ochoa F, Santos VE, Casas JA, Gómez E. Xanthan gum: production, recovery, and properties. Biotechnol Adv. 2000;18:549–79.

    Article  PubMed  Google Scholar 

  • Gils PS, Ray D, Sahoo PK. Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol. 2009;45:364–71.

    Article  CAS  PubMed  Google Scholar 

  • Glaser T, Bueno VB, Cornejo DR, et al. Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles. Biomed Mater. 2015;10:045002.

    Article  PubMed  Google Scholar 

  • Han G, Shao H, Zhu X, et al. The protective effect of xanthan gum on interleukin-1β induced rabbit chondrocytes. Carbohydr Polym. 2012;89:870–5.

    Article  CAS  PubMed  Google Scholar 

  • Han G, Chen Q, Liu F, et al. Low molecular weight xanthan gum for treating osteoarthritis. Carbohydr Polym. 2017;164:386–95.

    Article  CAS  PubMed  Google Scholar 

  • Hashim NT. Oral microbiology in periodontal health and disease. Oral microbiology in periodontitis; 2018.

    Google Scholar 

  • Huang J, Deng Y, Ren J, et al. Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohydr Polym. 2018a;186:54–63.

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li Z, Hu Q, et al. Bioinspired anti-digestive hydrogels selected by a simulated gut microfluidic chip for closing gastrointestinal fistula. iScience. 2018b;8:40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HK, Fahmy RH. Localized rosuvastatin via implantable bioerodible sponge and its potential role in augmenting bone healing and regeneration. Drug Deliv. 2016;23:3181–92.

    Article  CAS  PubMed  Google Scholar 

  • Izawa H, Nishino S, Maeda H, et al. Mineralization of hydroxyapatite upon a unique xanthan gum hydrogel by an alternate soaking process. Carbohydr Polym. 2014;102:846–51.

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Dave D, Jain P, et al. Efficacy of xanthan based chlorhexidine gel as an adjunct to scaling and root planing in treatment of the chronic periodontitis. J Indian Soc Periodontol. 2013;17:439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juris S, Mueller A, Smith B, et al. Biodegradable polysaccharide gels for skin scaffolds. J Biomater Nanobiotechnol. 2011;2:216–25.

    Article  CAS  Google Scholar 

  • Kaminski GAT, Sierakowski MR, Pontarolo R, et al. Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor. Carbohydr Polym. 2016;140:129–35.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hwang J, Seo Y, et al. Engineered chitosan–xanthan gum biopolymers effectively adhere to cells and readily release incorporated antiseptic molecules in a sustained manner. J Ind Eng Chem. 2017;46:68–79.

    Article  CAS  Google Scholar 

  • Kool MM, Schols HA, Wagenknecht M, et al. Characterization of an acetyl esterase from Myceliophthora thermophila C1 able to deacetylate xanthan. Carbohydr Polym. 2014;111:222–9.

    Article  CAS  PubMed  Google Scholar 

  • Kreyenschulte D, Krull R, Margaritis A. Recent advances in microbial biopolymer production and purification. Crit Rev Biotechnol. 2014;34:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Rao KM, Kwon SE, et al. Xanthan gum/bioactive silica glass hybrid scaffolds reinforced with cellulose nanocrystals: morphological, mechanical and in vitro cytocompatibility study. Mater Lett. 2017;193:274–8.

    Article  CAS  Google Scholar 

  • Kumar A, Rao KM, Han SS. Application of xanthan gum as polysaccharide in tissue engineering: a review. Carbohydr Polym. 2018;180:128–44.

    Article  CAS  PubMed  Google Scholar 

  • Kuo SM, Chang SJ, Wang H-Y, et al. Evaluation of the ability of xanthan gum/gellan gum/hyaluronan hydrogel membranes to prevent the adhesion of postrepaired tendons. Carbohydr Polym. 2014;114:230–7.

    Article  CAS  PubMed  Google Scholar 

  • Laffleur F, Michalek M. Modified xanthan gum for buccal delivery – a promising approach in treating sialorrhea. Int J Biol Macromol. 2017;102:1250–6.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yao P. Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property. Carbohydr Polym. 2015;132:490–8.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Biyajima Y, Sato T. Thermal denaturation, renaturation, and aggregation of a double-helical polysaccharide xanthan in aqueous solution. Polym J. 2009;41:526–32.

    Article  CAS  Google Scholar 

  • Matsuda Y, Sugiura F, Mays JW, Tasaka S. Atomic force microscopy of thermally renatured xanthan with low molar mass. Polym J. 2015;47:282–5.

    Article  CAS  Google Scholar 

  • Mendes AC, Baran ET, Pereira RC, et al. Encapsulation and survival of a chondrocyte cell line within xanthan gum derivative. Macromol Biosci. 2012;12:350–9.

    Article  CAS  PubMed  Google Scholar 

  • Mendes AC, Baran ET, Reis RL, Azevedo HS. Fabrication of phospholipid–xanthan microcapsules by combining microfluidics with self-assembly. Acta Biomater. 2013;9:6675–85.

    Article  CAS  PubMed  Google Scholar 

  • Milas M, Rinaudo M. Conformational investigation on the bacterial polysaccharide xanthan. Carbohydr Res. 1979;76:189–96.

    Article  CAS  PubMed  Google Scholar 

  • Needleman IG, Smales FC, Martin GP. An investigation of bioadhesion for periodontal and oral mucosal drug delivery. J Clin Periodontol. 1997;24:394–400.

    Google Scholar 

  • Petri DFS. Xanthan gum: a versatile biopolymer for biomedical and technological applications. J Appl Polym Sci. 2015;132.

    Google Scholar 

  • Ramburrun P, Kumar P, Choonara YE, et al. Design and characterization of neurodurable gellan-xanthan pH-responsive hydrogels for controlled drug delivery. Expert Opin Drug Deliv. 2017;14:291–306.

    Article  CAS  PubMed  Google Scholar 

  • Rao KM, Kumar A, Haider A, Han SS. Polysaccharides based antibacterial polyelectrolyte hydrogels with silver nanoparticles. Mater Lett. 2016;184:189–92.

    Article  CAS  Google Scholar 

  • Rao KM, Kumar A, Han SS. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J Mater Sci Technol. 2018;34:1371–7.

    Article  CAS  Google Scholar 

  • Salazar GM, Sanoh NC, Pernaloza DP Jr. Synthesis and characterization of a novel polysaccharide-based self-healing hydrogel. KIMIKA. 2018;29:44–8.

    Google Scholar 

  • Schmid J, Sieber V. Enzymatic transformations involved in the biosynthesis of microbial exo-polysaccharides based on the assembly of repeat units. Chembiochem. 2015;16:1141–7.

    Article  CAS  PubMed  Google Scholar 

  • Sehgal RR, Roohani-Esfahani SI, Zreiqat H, Banerjee R. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. J Tissue Eng Regen Med. 2017;11:1195–211.

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Zhang R, Xu W, et al. Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocoll. 2016;52:923–33.

    Article  CAS  Google Scholar 

  • Wang B, Han Y, Lin Q, et al. In vitro and in vivo evaluation of xanthan gum–succinic anhydride hydrogels for the ionic strength-sensitive release of antibacterial agents. J Mater Chem B. 2016a;4:1853–61.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, **n H, Zhu Y, et al. Synthesis and characterization of modified xanthan gum using poly(maleic anhydride/1-octadecene). Colloid Polym Sci. 2016b;294:1333–41.

    Article  CAS  Google Scholar 

  • Westin CB, Trinca RB, Zuliani C, et al. Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin. Mater Sci Eng C Mater Biol Appl. 2017;80:594–602.

    Article  CAS  PubMed  Google Scholar 

  • Westin CB, Nagahara MHT, Decarli MC, et al. Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. Eur Polym J. 2020;129:109637.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Brazil – Grant #307829/2018-9), and the Coordination for the Improvement of Higher Educational Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, Brazil – Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ângela Maria Moraes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bombaldi de Souza, R.F., Bombaldi de Souza, F.C., Westin, C.B., Barbosa, R.M., Moraes, Â.M. (2022). Xanthan Gum for Regenerative Medicine. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_59

Download citation

Publish with us

Policies and ethics

Navigation