Magnon Spintronics

  • Chapter
  • First Online:
Fundamentals of Magnonics

Part of the book series: Lecture Notes in Physics ((LNP,volume 969))

Abstract

Spintronics is an emerging and very active field of science and technology that is devoted to the investigation of basic phenomena and device application based on the electron spin in addition to its charge. Spintronic devices are already used in high-density nonvolatile magnetic storage, and intense research efforts are under way worldwide to develop new functionalities for transport and processing of information not available in conventional electronics. In this chapter we study topics of spintronics in which magnons play a direct role. Initially we introduce the concept of spin current in nonmagnetic metals, which is essential to understand the spin Hall effect, the Rashba–Edelstein effect, and other spintronics phenomena. Then we present the phenomenon of spin transfer torque in magnetic multilayers and study the excitation of magnons by electric currents. Next we study the spin pum** effect, one of the most important in spintronics. In the following section we study the concepts of magnon accumulation and magnonic spin currents, and derive their important governing equations. Finally, we study the spin Seebeck effect in magnetic insulators that is based on the magnonic spin current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silsbee, R.H., Janossy, A., Monod, P.: Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic-normal metal interface. Phys. Rev. B19, 4382 (1979)

    ADS  Google Scholar 

  2. Johnson, M., Silsbee, R.H.: Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface. Phys. Rev. B. 37, 5312 (1988)

    ADS  Google Scholar 

  3. Valet, T., Fert, A.: Theory of perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B. 48, 7099 (1993)

    ADS  Google Scholar 

  4. Rojas-Sánchez, J.-C., Fert, A.: Compared efficiencies of conversions between charge and spin current by spin-orbit interactions in two- and three-dimensional systems. Phys. Rev. Applied. 11, 054049 (2019)

    ADS  Google Scholar 

  5. Hoffmann, A.: Spin hall effects in metals. IEEE Trans. Magn. 49, 5172 (2013)

    ADS  Google Scholar 

  6. Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., Jungwirth, T.: Spin hall effects. Rev. Mod. Phys. 87, 1231 (2015)

    ADS  Google Scholar 

  7. Dyakonov, M.I., Perel, V.I.: Possibility of orienting electron spins with current. Sov. Phys. JETP Lett. 13, 467 (1971)

    ADS  Google Scholar 

  8. Dyakonov, M.I., Perel, V.I.: Current induced spin orientation of electrons in semiconductors. Phys. Lett. 35A, 459 (1971)

    ADS  Google Scholar 

  9. Hirsch, J.E.: Spin hall effect. Phys. Rev. Lett. 83, 1834 (1999)

    ADS  Google Scholar 

  10. Zhang, S.: Spin hall effect in the presence of spin diffusion. Phys. Rev. Lett. 85, 393 (2000)

    ADS  Google Scholar 

  11. Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N.A., Jungwirth, T., MacDonald, A.H.: Universal intrinsic spin hall effect. Phys. Rev. Lett. 85, 393 (2000)

    Google Scholar 

  12. Engel, H.-A., Halperin, B.I., Rashba, E.I.: Theory of spin hall conductivity in n-doped GaAs. Phys. Rev. Lett. 95, 166605 (2005)

    ADS  Google Scholar 

  13. Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D.: Observation of the spin hall effect in semiconductors. Science. 306, 1910 (2004)

    ADS  Google Scholar 

  14. Valenzuela, S.O., Tinkham, M.: Direct electronic measurement of the spin hall effect. Nature. 442, 176 (2016)

    ADS  Google Scholar 

  15. Rashba, E.: Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State. 2, 1109 (1960)

    Google Scholar 

  16. Bychkov, Y.A., Rasbha, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C Solid State Phys. 17, 6039 (1984)

    ADS  Google Scholar 

  17. Manchon, A., Koo, H.C., Nitta, J., Frolov, S.M., Duine, R.A.: New perspectives for Rashba spin-orbit coupling. Nat. Mater. 14, 871 (2015)

    ADS  Google Scholar 

  18. Soumyanarayanan, A., Reyren, N., Fert, A., Panagopoulos, C.: Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature. 539, 509 (2016)

    Google Scholar 

  19. Edelstein, V.M.: Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 3, 233 (1990)

    ADS  Google Scholar 

  20. Rojas-Sánchez, J.C., Vila, L., Desfonds, G., Gambarelli, S., Attané, J.P., De Teresa, J.M., Magén, C., Fert, A.: Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013)

    ADS  Google Scholar 

  21. Zhang, S., Fert, A.: Conversion between spin and charge currents with topological insulators. Phys. Rev. B. 94, 184423 (2016)

    ADS  Google Scholar 

  22. Sklenar, J., Zhang, W., Jungfleisch, M.B., Jiang, W., Saglam, H., Pearson, J.E., Ketterson, J.B., Hoffmann, A.: Interface generation of spin-orbit torques. J. Appl. Phys. 120, 180901 (2016)

    ADS  Google Scholar 

  23. Han, W., Otani, Y.C., Maekawa, S.: Quantum materials for spin and charge conversion. npj Quant. Mater. 3, 27 (2018)

    ADS  Google Scholar 

  24. Apalkov, D., Dieny, B., Slaughter, J.M.: Magnetoresistive random access memory. Proc. IEEE. 104, 1796 (2016)

    Google Scholar 

  25. Locatelli, N., Cros, V., Grollier, J.: Spin-torque building blocks. Nat. Mater. 13, 11 (2014)

    ADS  Google Scholar 

  26. Chen, T., Dumas, R.K., Eklund, A., Muduli, P.K., Houshang, A., Awad, A.A., Dürrenfeld, P., Malm, B.G., Rusu, A., Akerman, J.: Spin-torque and spin-hall nano-oscillators. Proc. IEEE. 104, 1919 (2016)

    Google Scholar 

  27. Urazhdin, S., Demidov, V.E., Ulrichs, H., Kendziorczyk, T., Kuhn, T., Leuthold, J., Wilde, G., Demokritov, S.O.: Nanomagnonic devices based on the spin-transfer torque. Nat Nanotechnol. 9, 509 (2014)

    ADS  Google Scholar 

  28. Chumak, A.V., Vasyuchka, V.I., Serga, A.A., Hillebrands, B.: Magnon spintronics. Nat. Phys. 11, 453 (2015)

    Google Scholar 

  29. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996)

    ADS  Google Scholar 

  30. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B. 54, 9353 (1996)

    ADS  Google Scholar 

  31. Stiles, M.D., Zangwill, A.: Anatomy of spin-transfer torque. Phys. Rev. B. 66, 014407 (2002)

    ADS  Google Scholar 

  32. Tsoi, M., Jansen, A.G.M., Bass, J., Chiang, W.-C., Seck, M., Tsoi, V., Wyder, P.: Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998)

    ADS  Google Scholar 

  33. Rezende, S.M., de Aguiar, F.M., Lucena, M.A., Azevedo, A.: Magnon excitation by spin injection in thin Fe/Cr/Fe films. Phys. Rev. Lett. 84, 4212 (2000)

    ADS  Google Scholar 

  34. Rippard, W.H., Pufall, M.R., Silva, T.J.: Quantitative studies of spin-momentum-transfer-induced excitations in Co/Cu multilayer films using point-contact spectroscopy. Appl. Phys. Lett. 82, 1260 (2003)

    ADS  Google Scholar 

  35. Kiselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkopf, R.J., Buhrman, R.A., Ralph, D.C.: Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature. 425, 380 (2003)

    ADS  Google Scholar 

  36. Rippard, W.H., Pufall, M.R., Kaka, S., Russek, S.E., Silva, T.J.: Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004)

    ADS  Google Scholar 

  37. Kiselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Rinkoski, M., Perez, C., Buhrman, R.A., Ralph, D.C.: Current-induced nanomagnet dynamics for magnetic fields perpendicular to the sample plane. Phys. Rev. Lett. 93, 036601 (2004)

    ADS  Google Scholar 

  38. Krivorotov, I.N., Emley, N.C., Sankey, J.C., Kiselev, S.I., Ralph, D.C., Buhrman, R.A.: Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science. 307, 228 (2005)

    ADS  Google Scholar 

  39. Rezende, S.M., de Aguiar, F.M., Azevedo, A.: Spin wave theory for the dynamics induced by direct currents in magnetic multilayers. Phys. Rev. Lett. 94, 037202 (2005)

    ADS  Google Scholar 

  40. Russek, S.E., Kaka, S., Rippard, W.H., Pufall, M.R., Silva, T.J.: Finite-temperature modeling of nanoscale spin-transfer oscillators. Phys. Rev. B. 71, 104425 (2005)

    ADS  Google Scholar 

  41. Rezende, S.M., de Aguiar, F.M., Azevedo, A.: Magnon excitation by spin-polarized direct currents in magnetic nanostructures. Phys. Rev. B. 73, 094402 (2006)

    ADS  Google Scholar 

  42. Slavin, A., Tiberkevich, V.: Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875 (2009)

    ADS  Google Scholar 

  43. Demidov, V.E., Urazhdin, S., Ulrichs, H., Tiberkevich, V., Slavin, A., Baither, D., Schmitz, G., Demokritov, S.O.: Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028 (2012)

    ADS  Google Scholar 

  44. Madami, M., Iacocca, E., Sani, S., Gubbiotti, G., Tacchi, S., Dumas, R.K., Akerman, J., Carlotti, G.: Propagating spin waves excited by spin-transfer torque: a combined electrical and optical study. Phys. Rev. B. 92, 024403 (2015)

    ADS  Google Scholar 

  45. Slonczewski, J.C.: Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261 (1999)

    ADS  Google Scholar 

  46. Slavin, A., Tiberkevich, V.: Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005)

    ADS  Google Scholar 

  47. Ruotolo, A., Cros, V., Georges, B., Dussaux, A., Grollier, J., Deranlot, C., Guillemet, R., Bouzehouane, K., Fusil, S., Fert, A.: Phase-locking of magnetic vortices mediated by antivortices. Nat. Nanotechnol. 4, 528 (2009)

    ADS  Google Scholar 

  48. Rezende, S.M., de Aguiar, F.M., Rodríguez-Suárez, R.L., Azevedo, A.: Mode locking of spin waves excited by direct currents in microwave nano-oscillators. Phys. Rev. Lett. 98, 087202 (2007)

    ADS  Google Scholar 

  49. Georges, B., Grollier, J., Darques, M., Cros, V., Deranlot, C., Marcilhac, B., Faini, G., Fert, A.: Coupling efficiency for phase locking of a spin transfer nano-oscillator to a microwave current. Phys. Rev. Lett. 101, 017201 (2008)

    ADS  Google Scholar 

  50. Li, Y., de Milly, X., Araujo, F.A., Klein, O., Cros, V., Grollier, J., de Loubens, G.: Probing phase coupling between two spin-torque nano-oscillators with an external source. Phys. Rev. Lett. 118, 247202 (2017)

    ADS  Google Scholar 

  51. Rezende, S.M.: Quantum coherence in spin-torque nano-oscillators. Phys. Rev. B. 81, 092401 (2010)

    ADS  Google Scholar 

  52. Haken, H.: Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys. 47, 67 (1975)

    ADS  MathSciNet  Google Scholar 

  53. Tserkovnyak, Y., Brataas, A., Bauer, G.E.W.: Enhanced Gilbert dam** in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002)

    ADS  Google Scholar 

  54. Tserkovnyak, Y., Brataas, A., Bauer, G.E.W.: Spin pum** and magnetization dynamics in metallic multilayers. Phys. Rev. B. 66, 22440 (2002)

    Google Scholar 

  55. Azevedo, A., Vilela Leão, L.H., Rodriguez-Suarez, R.L., Oliveira, A.B., Rezende, S.M.. Direct evidence of the spin-pum** effect, abstract HA-10. In: 49th Conference on Magnetism and Magnetic Materials, Jacksonville (2004); Dc Effect in Ferromagnetic Resonance: Evidence of the Spin-Pum** Effect?. J. Appl. Phys. 97:10C715 (2005)

    Google Scholar 

  56. Saitoh, E., Ueda, M., Miyajima, H., Tatara, G.: Conversion of spin current into charge current at room temperature: Inverse spin-hall effect. Appl. Phys. Lett. 88, 182509 (2006)

    ADS  Google Scholar 

  57. Tserkovnyak, Y., Brataas, A., Bauer, G.E.W., Halperin, B.: Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375 (2005)

    ADS  Google Scholar 

  58. Mizukami, S., Ando, Y., Miyazaki, T.: Effect of spin diffusion on Gilbert dam** for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B. 66, 104413 (2002)

    ADS  Google Scholar 

  59. Soares, M.M., Vilela-Leão, L.H., da Silva, G.L., Rodríguez-Suárez, R.L., Azevedo, A., Rezende, S.M., Ferromagnetic Resonance Linewidth and Spin Pum** in Permalloy/Platinum Bilayers. MMM Group Report, Universidade Federal de Pernambuco, Unpublished (2012)

    Google Scholar 

  60. Mosendz, O., Vlaminck, V., Pearson, J.E., Fradin, F.Y., Bauer, G.E.W., Bader, S.D., Hoffmann, A.: Detection and quantification of inverse spin Hall effect from spin pum** in permalloy/normal metal bilayers. Phys. Rev. B. 82, 214403 (2010)

    ADS  Google Scholar 

  61. Rezende, S.M., Rodríguez-Suárez, R.L., Soares, M.M., Vilela-Leão, L.H., Domínguez, D.L., Azevedo, A.: Enhanced spin pum** dam** in yttrium iron garnet/Pt bilayers. Appl. Phys. Lett. 102, 012402 (2013)

    ADS  Google Scholar 

  62. Rezende, S.M., Rodríguez-Suárez, R.L., Azevedo, A.: Magnetic relaxation due to spin pum** in thick ferromagnetic films in contact with normal metals. Phys. Rev. B. 88, 014404 (2013)

    ADS  Google Scholar 

  63. Berger, L.: Generation of dc voltages by a magnetic multilayer undergoing ferromagnetic resonance. Phys. Rev. B. 59, 11465 (1999)

    ADS  Google Scholar 

  64. Costache, M.V., Sladkov, M., Watts, S.M., van der Wal, C.H., van Wees, B.J.: Electrical detection of spin pum** due to the precessing magnetization of a single ferromagnet. Phys. Rev. Lett. 97, 216603 (2006)

    ADS  Google Scholar 

  65. Wang, X., Bauer, G.E.W., van Wees, B.J., Brataas, A., Tserkovnyak, Y.: Voltage generation by ferromagnetic resonance at a nonmagnet to ferromagnet contact. Phys. Rev. Lett. 97, 216602 (2006)

    ADS  Google Scholar 

  66. Harder, M., Cao, Z.X., Gui, Y.S., Fan, X.L., Hu, C.-M.: Analysis of the line shape of electrically detected ferromagnetic resonance. Phys. Rev. B. 84, 054423 (2011)

    ADS  Google Scholar 

  67. Ando, K., Takahashi, S., Ieda, J., Kajiwara, Y., Nakayama, H.Y.T., Harii, K., Fujikawa, Y., Matsuo, M., Maekawa, S., Saitoh, E.: Inverse spin-Hall effect induced by spin pum** in metallic system. J. Appl. Phys. 109, 103913 (2011)

    ADS  Google Scholar 

  68. Azevedo, A., Vilela-Leão, L.H., Rodríguez-Suárez, R.L., Lacerda Santos, A.F., Rezende, S.M.: Spin pum** and anisotropic magnetoresistance voltages in magnetic bilayers: Theory and experiment. Phys. Rev. B. 83, 144402 (2011)

    ADS  Google Scholar 

  69. Kajiwara, Y., Harii, K., Takahashi, S., Ohe, J., Uchida, K., Mizuguchi, M., Umezawa, H., Kawai, H., Ando, K., Takanashi, K., Maekawa, S., Saitoh, E.: Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature. 464, 262 (2010)

    ADS  Google Scholar 

  70. Weiler, M., et al.: Experimental test of the spin mixing Interface conductivity concept. Phys. Rev. Lett. 111, 176601 (2013)

    ADS  Google Scholar 

  71. Mendes, J.B.S., Cunha, R.O., Alves Santos, O., Ribeiro, P.R.T., Machado, F.L.A., Rodríguez-Suárez, R.L., Azevedo, A., Rezende, S.M.: Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80. Phys. Rev. B. 89, 140406(R) (2014)

    ADS  Google Scholar 

  72. Zhang, W., Jungfleisch, M.B., Jiang, W., Pearson, J.E., Hoffmann, A., Freimuth, F., Mokrousov, Y.: Spin Hall effects in metallic Antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014)

    ADS  Google Scholar 

  73. Qiu, Z., Ando, K., Uchida, K., Kajiwara, Y., Takahashi, R., Nakayama, H., An, T., Fujikawa, Y., Saitoh, E.: Spin mixing conductance at a well-controlled platinum/yttrium iron garnet interface. Appl. Phys. Lett. 103, 092404 (2013)

    ADS  Google Scholar 

  74. Castel, V., Vlietstra, N., van Wees, B.J., Ben Youssef, J.: Yttrium iron garnet thickness and frequency dependence of the spin-charge current conversion in YIG/Pt systems. Phys. Rev. B. 90, 214434 (2014)

    ADS  Google Scholar 

  75. Du, C., Wang, H., Chris Hammel, P., Yang, F.: Y3Fe5O12 spin pum** for quantitative understanding of pure spin transport and spin Hall effect in a broad range of materials. J. Appl. Phys. 117, 172603 (2015)

    ADS  Google Scholar 

  76. Jungfleisch, M.B., Chumak, A.V., Kehlberger, A., Lauer, V., Kim, D.H., Onbasli, M.C., Ross, C.A., Kläui, M., Hillebrands, B.: Thickness and power dependence of the spin-pum** effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B. 91, 134407 (2015)

    ADS  Google Scholar 

  77. Sangiao, S., De Teresa, J.M., Morellon, L., Lucas, I., Martinez-Velarte, M.C., Viret, M.: Control of the spin to charge conversion using the inverse Rashba-Edelstein effect. Appl. Phys. Lett. 106, 172403 (2015)

    ADS  Google Scholar 

  78. Matsushima, M., Ando, Y., Dushenko, S., Ohshima, R., Kumamoto, R., Shinjo, T., Shiraishi, M.: Quantitative investigation of the inverse Rashba-Edelstein effect in Bi/Ag and Ag/Bi on YIG. Appl. Phys. Lett. 110, 072404 (2017)

    ADS  Google Scholar 

  79. Baker, A.A., Figueroa, A.I., Collins-McIntyre, L.J., van der Laan, G., Hesjedal, T.: Spin pum** in Ferromagnet-topological insulator-Ferromagnet Heterostructures. Sc Rep. 5, 7905 (2015)

    Google Scholar 

  80. Rojas-Sánchez, J.-C., et al.: Spin to charge conversion at room temperature by spin pum** into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016)

    ADS  Google Scholar 

  81. Kondou, K., Yoshimi, R., Tsukazaki, A., Fukuma, Y., Matsuno, J., Takahashi, K.S., Kawasaki, M., Tokura, Y., Otani, Y.: Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027 (2016)

    Google Scholar 

  82. Mendes, J.B.S., Santos, O.A., Holanda, J., Loreto, R.P., De Araujo, C.I.L., Chang, C.-Z., Moodera, J.S., Azevedo, A., Rezende, S.M.: Dirac-surface-state-dominated spin to charge current conversion in the topological insulator (Bi0.22Sb0.78)2Te3 films at room temperature. Phys. Rev. B. 96, 180415(R) (2017)

    ADS  Google Scholar 

  83. Mahendra, D.C., Liu, T., Chen, J.-Y., Peterson, T., Sahu, P., Li, H., Zhao, Z., Wu, M., Wang, J.-P.: Room-temperature spin-to-charge conversion in sputtered bismuth selenide thin films via spin pum** from yttrium iron garnet. Appl. Phys. Lett. 114, 102401 (2019)

    ADS  Google Scholar 

  84. Mendes, J.B.S., Alves-Santos, O., Meireles, L.M., Lacerda, R.G., Vilela-Leão, L.H., Machado, F.L.A., Rodríguez-Suárez, R.L., Azevedo, A., Rezende, S.M.: Spin-to-charge-current conversion and magnetoresistance in yttrium iron garnet-graphene hybrid structure. Phys. Rev. Lett. 115, 226601 (2015)

    ADS  Google Scholar 

  85. Mendes, J.B.S., Aparecido-Ferreira, A., Holanda, J., Azevedo, A., Rezende, S.M.: Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pum** from yttrium iron garnet. Appl. Phys. Lett. 112, 242407 (2018)

    ADS  Google Scholar 

  86. Hasan, M.Z., Kane, C.L.: Topological insulators. Rev. Mod. Phys. 82, 3061 (2010)

    ADS  Google Scholar 

  87. Rado, G.T., Weertman, J.R.: Spin-wave resonance in a ferromagnetic metal. J. Phys. Chem. Solids. 11, 315 (1959)

    ADS  Google Scholar 

  88. Hillebrands, B.: Spin-wave calculations for multilayered structures. Phys. Rev. B. 41, 530 (1990)

    ADS  Google Scholar 

  89. Zhang, S.S.-L., Zhang, S.: Magnon mediated electric current drag across a ferromagnetic insulator layer. Phys. Rev. Lett. 109, 096603 (2012)

    ADS  Google Scholar 

  90. Zhang, S.S.-L., Zhang, S.: Spin convertance at magnetic interfaces. Phys. Rev. B. 86, 214424 (2012)

    ADS  Google Scholar 

  91. Rezende, S.M., Rodríguez-Suárez, R.L., Cunha, R.O., Rodrigues, A.R., Machado, F.L.A., Fonseca Guerra, G.A., Lopez Ortiz, J.C., Azevedo, A.: Magnon spin-current theory for the longitudinal spin-Seebeck effect. Phys. Rev. B. 89, 014416 (2014)

    ADS  Google Scholar 

  92. Rezende, S.M., Rodríguez-Suárez, R.L., Cunha, R.O., Lopez Ortiz, J.C., Azevedo, A.: Bulk magnon spin current theory for the longitudinal spin Seebeck effect. J. Magn. Magn. Mater. 400, 171 (2016)

    ADS  Google Scholar 

  93. Cornelissen, L.J., Liu, J., Duine, R.A., Ben Youssef, J., van Wees, B.J.: Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022 (2015)

    Google Scholar 

  94. Cornelissen, L.J., Peters, K.J.H., Bauer, G.E.W., Duine, R.A., van Wees, B.J.: Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. 94, 014412 (2016)

    ADS  Google Scholar 

  95. Rezende, S.M., Rodríguez-Suárez, R.L., Azevedo, A.: Magnon diffusion theory for the spin Seebeck effect in ferromagnetic and antiferromagnetic insulators. J. Phys. D. Appl. Phys. 51, 174004 (2018)

    ADS  Google Scholar 

  96. Bauer, G.E.W., Saitoh, E., van Wees, B.J.: Spin caloritronics. Nat. Mat. 11, 391 (2012)

    Google Scholar 

  97. Boona, S.R., Myers, R.C., Heremans, J.P.: Spin caloritronics. Energy Environ. Sci. 7, 885 (2014)

    Google Scholar 

  98. Uchida, K., Ishida, M., Kikkawa, T., Kirihara, A., Murakami, T., Saitoh, E.: Longitudinal spin Seebeck effect: From fundamentals to applications. J. Phys. Condens. Matter. 26, 343202 (2014)

    Google Scholar 

  99. Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Observation of spin Seebeck effect. Nature. 455, 778 (2008)

    ADS  Google Scholar 

  100. Uchida, K., **ao, J., Adachi, H., Ohe, J., Takahashi, S., Ieda, J., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., Bauer, G.E.W., Maekawa, S., Saitoh, E.: Spin Seebeck insulator. Nat. Mater. 9, 894 (2010)

    ADS  Google Scholar 

  101. Uchida, K., Adachi, H., Ota, T., Nakayama, H., Maekawa, S., Saitoh, E.: Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010)

    ADS  Google Scholar 

  102. Jaworski, C.M., Yang, J., Mack, S., Awschalom, D.D., Heremans, J.P., Myers, R.C.: Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898 (2010)

    ADS  Google Scholar 

  103. Slachter, A., Bakker, F.L., Adam, J.P., van Wees, B.J.: Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat. Phys. 6, 879 (2010)

    Google Scholar 

  104. Miao, B.F., Huang, S.Y., Qu, D., Chien, C.L.: Inverse spin Hall effect in a ferromagnetic metal. Phys. Rev. Lett. 111, 066602 (2013)

    ADS  Google Scholar 

  105. Agrawal, M., Vasyuchka, V.I., Serga, A.A., Karenowska, A.D., Melkov, G.A., Hillebrands, B.: Direct measurement of magnon temperature: New insight into Magnon-phonon coupling in magnetic insulators. Phys. Rev. Lett. 111, 107204 (2013)

    ADS  Google Scholar 

  106. Seki, S., Ideue, T., Kubota, M., Kozuka, Y., Takagi, R., Nakamura, M., Kaneko, Y., Kawasaki, M., Tokura, Y.: Thermal generation of spin current in an Antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015)

    ADS  Google Scholar 

  107. Wu, S.M., Zhang, W., Amit, K.C., Borisov, P., Pearson, J.E., Jiang, J.S., Lederman, D., Hoffmann, A., Bhattacharya, A.: Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016)

    ADS  Google Scholar 

  108. Li, J., Shi, Z., Ortiz, V.H., Aldosary, M., Chen, C., Aji, V., Wei, P., Shi, J.: Spin Seebeck effect from antiferromagnetic magnons and critical spin fluctuations in epitaxial FeF2 films. Phys. Rev. Lett. 122, 217204 (2019)

    Google Scholar 

  109. Ribeiro, P.R.T., Machado, F.L.A., Gamino, M., Azevedo, A., Rezende, S.M.: Spin Seebeck effect in antiferromagnet nickel oxide in wide ranges of temperature and magnetic field. Phys. Rev. B. 99, 094432 (2019)

    ADS  Google Scholar 

  110. Rezende, S.M., Rodríguez-Suárez, R.L., Azevedo, A.: Theory of the spin Seebeck effect in antiferromagnets. Phys. Rev. B. 93, 014425 (2016)

    ADS  Google Scholar 

  111. Uchida, K., Ota, T., Adachi, H., ** and magnon-phonon-mediated spin-Seebeck effect. J. Appl. Phys. 111, 103903 (2012)

    ADS  Google Scholar 

  112. Kikkawa, T., Uchida, K., Daimon, S., Shiomi, Y., Adachi, H., Qiu, Z., Hou, D., **, X.-F., Maekawa, S., Saitoh, E.: Separation of longitudinal spin Seebeck effect from anomalous Nernst effect: Determination of origin of transverse thermoelectric voltage in metal/insulator junctions. Phys. Rev. B. 88, 214403 (2013)

    ADS  Google Scholar 

  113. Kikkawa, T., Uchida, K., Daimon, S., Qiu, Z., Shiomi, Y., Saitoh, E.: Critical suppression of spin Seebeck effect by magnetic fields. Phys. Rev. B. 92, 064413 (2015)

    ADS  Google Scholar 

  114. Schreier, M., et al.: Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers. J. Phys. D. Appl. Phys. 48, 025001 (2015)

    ADS  Google Scholar 

  115. Kehlberger, A., et al.: Length scale of the spin Seebeck effect. Phys. Rev. Lett. 115, 096602 (2015)

    ADS  Google Scholar 

  116. Gilleo, M.A., Geller, S.: Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3.xM2O3.(5-x)Fe2O3. Phys. Rev. 110, 73 (1958)

    ADS  Google Scholar 

  117. Flipse, J., Dejene, F.K., Wagenaar, D., Bauer, G.E.W., Youssef, J.B., van Wees, B.J.: Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett. 113, 027601 (2014)

    ADS  Google Scholar 

  118. Daimon, S., Iguchi, R., Hioki, T., Saitoh, E., Uchida, K.I.: Thermal imaging of the spin Peltier effect. Nat. Commun. 7, 13754 (2016)

    ADS  Google Scholar 

  119. Costa, S.S., Sampaio, L.C.: Magnon theory for the spin Peltier effect. J. Phys. D. Appl. Phys. In press (2020)

    Google Scholar 

  120. Moore, G.E.: Cramming more components onto integrated circuits. Electronics. 38, 8 (1965)

    Google Scholar 

  121. Serga, A.A., Chumak, A.V., Hillebrands, B.: YIG Magnonics. J. Phys. D. Appl. Phys. 43, 264002 (2010)

    ADS  Google Scholar 

  122. Dzyaloshinsky, I.: A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids. 4, 241 (1958)

    ADS  Google Scholar 

  123. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    ADS  Google Scholar 

  124. Fert, A., Levy, P.M.: Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538 (1980)

    ADS  Google Scholar 

  125. Fert, A.: Magnetic and transport properties of metallic multilayers. Mater. Sci. Forum. 59-60, 439 (1990)

    Google Scholar 

  126. Bode, M., et al.: Chiral magnetic order at surfaces driven by inversion asymmetry. Nature. 447, 190 (2007)

    ADS  Google Scholar 

  127. Nagaosa, N., Tokura, Y.: Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899 (2013)

    ADS  Google Scholar 

  128. Fert, A., Cros, V., Sampaio, J.: Skyrmions on the track. Nat. Nanotechnol. 8, 152 (2013)

    ADS  Google Scholar 

  129. Jiang, W., Chen, G., Liu, K., Zang, J., te Velthuis, S.G.E., Hoffmann, A.: Skyrmions in magnetic multilayers. Phys. Rep. 704, 1 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

Further Reading

  • Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston, New York (1976)

    MATH  Google Scholar 

  • Bandyopadhyay, S., Cahay, M.: Introduction to Spintronics, 2nd edn. CRC, Boca Raton (2015)

    MATH  Google Scholar 

  • Datta, S.: Lessons from Nanoelectronics: A New Perspective on Transport- Basic Concepts, 2nd edn. World Scientific Pub. Co. Inc., Singapore (2017)

    Google Scholar 

  • Demokritov, S.O. (ed.): Spin Wave Confinement. Pan Stanford, Singapore (2009)

    Google Scholar 

  • Demokritov, S.O. (ed.): Spin Wave Confinement: Propagating Waves. Pan Stanford, Singapore (2017)

    Google Scholar 

  • Demokritov, S.O., Slavin, A.N. (eds.): Magnonics- from Fundamentals to Applications. Springer, Heidelberg (2013)

    Google Scholar 

  • Guimarães, A.P.: Principles of Nanomagnetism, 2nd edn. Springer, Berlin (2017)

    Google Scholar 

  • Gubbiotti, G.: Three-Dimensional Magnonics: Layered, Micro- and Nanostructures. CRC Press, Taylor and Francis (2019)

    Google Scholar 

  • Heinrich, B., Bland, J.A.C. (eds.): Ultrathin Magnetic Structures II. Springer, Heidelberg (1994)

    Google Scholar 

  • Hillebrands, B., Ounadjela, K. (eds.): Spin Dynamics in Confined Magnetic Structures I. Springer, Heidelberg (2002)

    Google Scholar 

  • Hillebrands, B., Ounadjela, K. (eds.): Spin Dynamics in Confined Magnetic Structures II. Springer, Heidelberg (2003)

    Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)

    MATH  Google Scholar 

  • Reif, F.: Fundamentals of Statistical and Thermal Physics. Mc Graw-Hill Book Co, New York (2008)

    Google Scholar 

  • Stancil, D.D., Prabhakar, A.: Spin Waves: Theory and Applications. Springer, New York (2009)

    MATH  Google Scholar 

  • White, R.M.: Quantum Theory of Magnetism, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  • Wu, M., Hoffmann, A. (eds.): Recent Advances in Magnetic Insulators – From Spintronics to Microwave Applications. Elsevier, San Diego (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezende, S.M. (2020). Magnon Spintronics. In: Fundamentals of Magnonics. Lecture Notes in Physics, vol 969. Springer, Cham. https://doi.org/10.1007/978-3-030-41317-0_8

Download citation

Publish with us

Policies and ethics

Navigation