Abstract

Detection and quantifying of electroporation effects in food and biological materials (food plants, biomass feedstocks and bio-suspensions) is very important for numerous practical applications. Currently, different methods and techniques have been proposed to detect and measure electroporation effects. This chapter presents the current methods to quantify electroporation effects based on the dielectric spectroscopy data (low-frequency, low-high frequency and phase shift methods, electro-kinetic methods), texture analysis (stress–deformation and relaxation tests, and acoustic methods), solute diffusivity data, image analysis (light and electron microscopy), and other methods. Numerous examples of electroporation detection and quantification are presented for different food materials. Benefits and disadvantages of each method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboonajmi M, Jahangiri M, Hassan-Beygi SR (2015) A review on application of acoustic analysis in quality evaluation of agro-food products. J Food Process Preserv 39:3175–3188

    Article  CAS  Google Scholar 

  • Aguilera JM, Stanley DW (1999) Microstructural principles of food processing and engineering. Aspen Publishers, Inc. A Wolters Kluwer Company, Gaithersburg

    Google Scholar 

  • Alam MR (2017) The effect of pulsed electric field pre-treatment on drying kinetics and quality in dehydrated fruits and vegetables. PhD Thesis, Università Degli Studi Del Molise, Department of agricultural, environmental and food sciences, Campobasso

    Google Scholar 

  • Alam MDR, Lyng JG, Frontuto D et al (2018) Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. J Food Sci 83:2159–2166

    Article  CAS  PubMed  Google Scholar 

  • Alfaifi B, Tang J, Jiao Y et al (2014) Radio frequency disinfestation treatments for dried fruit: model development and validation. J Food Eng 120:268–276

    Article  Google Scholar 

  • Angersbach A, Heinz V, Knorr D (1999) Electrophysiological model of intact and processed plant tissues: cell disintegration criteria. Biotechnol Prog 15:753–762

    Article  CAS  PubMed  Google Scholar 

  • Angersbach A, Heinz V, Knorr D (2002) Evaluation of process-induced dimensional changes in the membrane structure of biological cells using impedance measurement. Biotechnol Prog 18:597–603

    Article  CAS  PubMed  Google Scholar 

  • Arnold WM, Zimmermann U (1988) Electro-rotation: development of a technique for dielectric measurements on individual cells and particles. J Electrost 21:151–191

    Article  Google Scholar 

  • Asami K (2012) Dielectric spectroscopy reveals nanoholes in erythrocyte ghosts. Soft Matter 8:3250–3257

    Article  CAS  Google Scholar 

  • Asami K, Yamaguchi T (1999) Electrical and morphological changes of human erythrocytes under high hydrostatic pressure followed by dielectric spectroscopy. Ann Biomed Eng 27:427–435

    Article  CAS  PubMed  Google Scholar 

  • Asami K, Hanai T, Koizumi N (1980) Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization. Biophys J 31:215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asavasanti S, Ristenpart W, Stroeve P, Barrett DM (2011) Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency. J Food Sci 76(1):E96–E111

    Article  CAS  Google Scholar 

  • Barba FJ, Parniakov O, Pereira SA et al (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77:773–798

    Article  Google Scholar 

  • Ben Ammar J (2011) Etude de l’effet des champs electriques pulses sur la congelation des produits vegetaux, PhD Thesis, Compiegne: Universite de Technologie de Compiegne, France. PhD Thesis, Universite de Technologie de Compiegne, Compiegne, France

    Google Scholar 

  • Ben Ammar J, Lanoisellé J-L, Lebovka NI et al (2011) Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity. J Food Sci 76:E90–E97

    Article  CAS  PubMed  Google Scholar 

  • Burgain J, Petit J, Scher J et al (2017) Surface chemistry and microscopy of food powders. Prog Surf Sci 92:409–429

    Article  CAS  Google Scholar 

  • Calin VL, Mihailescu M, Mihale N et al (2017) Changes in optical properties of electroporated cells as revealed by digital holographic microscopy. Biomed Opt Express 8:2222–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalermchat Y, Dejmek P (2005) Effect of pulsed electric field pretreatment on solid--liquid expression from potato tissue. J Food Eng 71:164–169

    Article  Google Scholar 

  • Chalermchat Y, Malangone L, Dejmek P (2010) Electropermeabilization of apple tissue: effect of cell size, cell size distribution and cell orientation. Biosyst Eng 105:357–366. https://doi.org/10.1016/j.biosystemseng.2009.12.006

    Article  Google Scholar 

  • Chang DC, Reese TS (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 58:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanona-Pérez J, Quevedo R, Aparicio AJ, Chávez CG, Pérez JM, Dominguez GC, Alamilla-Beltrán L, Gutiérrez-López GF (2008) Image processing methods and fractal analysis for quantitative evaluation of size, shape, structure and microstructure in food materials. In: Gutiérrez-López GF, Welti-Chanes J, Parada-Arias E (eds) Food engineering: integrated approaches. Springer-Verlag, New York, USA, pp 277–286

    Google Scholar 

  • Chelidze T (2002) Dielectric spectroscopy of blood. J Non-Cryst Solids 305:285–294

    Article  CAS  Google Scholar 

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14

    Article  CAS  PubMed  Google Scholar 

  • Cholet C, Delsart C, Petrel M et al (2014) Structural and biochemical changes induced by pulsed electric field treatments on cabernet sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides. J Agric Food Chem 62:2925–2934

    Article  CAS  PubMed  Google Scholar 

  • Chopinet L, Roduit C, Rols M-P, Dague E (2013) Destabilization induced by electropermeabilization analyzed by atomic force microscopy. Biochim Biophys Acta Biomembr 1828:2223–2229

    Article  CAS  Google Scholar 

  • Cole KS (1928) Electric impedance of suspensions of spheres. J Gen Physiol 12:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  • Condello M, Caraglia M, Castellano M et al (2013) Structural and functional alterations of cellular components as revealed by electron microscopy. Microsc Res Tech 76:1057–1069

    Article  PubMed  Google Scholar 

  • Dalton C, Goater AD, Drysdale J, Pethig R (2001) Parasite viability by electrorotation. Colloids Surf A Physicochem Eng Asp 195:263–268

    Article  CAS  Google Scholar 

  • Dänzer H (1934) Über das Verhalten biologischer Körper im Hochfrequenzfeld (About the behavior of biological bodies in the high frequency field). Ann Phys 412:463–480

    Article  Google Scholar 

  • Dänzer H (1935) Über das Verhalten biologischer Körper bei Hochfrequenz (About the behavior of biological bodies at high frequency). Ann Phys 413:783–790

    Article  Google Scholar 

  • Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J Chem Phys 19:1484–1490

    Article  CAS  Google Scholar 

  • Debye PJW (1929) Polar molecules. Dover Publications, New York, USA

    Google Scholar 

  • Dellarosa N, Laghi L, Ragni L et al (2018) Pulsed electric fields processing of apple tissue: spatial distribution of electroporation by means of magnetic resonance imaging and computer vision system. Innov Food Sci Emerg Technol 47:120–126

    Google Scholar 

  • Dong J, Jeor VLS (2017) Food microstructure techniques. In: Nielsen SS (ed) Food analysis. Springer Nature, Switzerland AG, pp 557–570

    Google Scholar 

  • Kantar SE, Boussetta N, Lebovka N et al (2018) Pulsed electric field treatment of citrus fruits: improvement of juice and polyphenols extraction. Innov Food Sci Emerg Technol 46:153–161. https://doi.org/10.1016/j.ifset.2017.09.024

    Article  CAS  Google Scholar 

  • El Zakhem H, Lanoisellé J-L, Lebovka NI et al (2006a) Behavior of yeast cells in aqueous suspension affected by pulsed electric field. J Colloid Interface Sci 300:553–563

    Article  PubMed  CAS  Google Scholar 

  • El Zakhem H, Lanoisellé J-L, Lebovka NI et al (2006b) The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields. Colloids Surf B Biointerfaces 47:189–197

    Article  PubMed  CAS  Google Scholar 

  • Ersus S, Barrett DM (2010) Determination of membrane integrity in onion tissues treated by pulsed electric fields: use of microscopic images and ion leakage measurements. Innov Food Sci Emerg Technol 11:598–603. https://doi.org/10.1016/j.ifset.2010.08.001

    Article  CAS  Google Scholar 

  • Fazaeli M, Tahmasebi M, Djomeh EZ (2012) Characterization of food texture: application of microscopic technology. In: Mendez-Vilas A, Rigoglio NN, Mendes Silva MV et al (eds) Current microscopy contributions to advances in science and technology. Formatex Research Center, Badajoz, pp 855–871

    Google Scholar 

  • Feldman Y, Ishai PB, Raicu V (2015) Electrode polarization. In: Raicu V, Feldman Y (eds) Dielectric relaxation in biological systems: Physical principles, methods, and applications. Oxford University Press, Oxford, UK, pp 140–169

    Google Scholar 

  • Fincan M, Dejmek P (2002) In situ visualization of the effect of a pulsed electric field on plant tissue. J Food Eng 55:223–230

    Article  Google Scholar 

  • Fincan M, Dejmek P (2003) Effect of osmotic pretreatment and pulsed electric field on the viscoelastic properties of potato tissue. J Food Eng 59:169–175

    Article  Google Scholar 

  • Fricke H (1955) The complex conductivity of a suspension of stratified particles of spherical or cylindrical form. J Phys Chem 59:168–170

    Article  CAS  Google Scholar 

  • Fricke H, Morse S (1925) The electric resistance and capacity of blood for frequencies between 800 and 41/2 million cycles. J Gen Physiol 9:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gonzalo D, Pagán R (2016) Detection of electroporation in microbial cells: techniques and procedures. In: Miklavcic D (ed) Handbook of electroporation. Springer International Publishing AG, Cham, pp 1–15

    Google Scholar 

  • Gimsa J, Marszalek P, Loewe U, Tsong TY (1991) Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. Biophys J 60:749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenbaum A, Ishai PB, Feldman Y (2015) Analysis of experimental data and fitting problems. In: Raicu V, Feldman Y (eds) Dielectric relaxation in biological systems: physical principles, methods, and applications. Oxford University Press, Oxford, UK, pp 170

    Google Scholar 

  • Grimi N, Lebovka N, Vorobiev E, Vaxelaire J (2009) Compressing behavior and texture evaluation for potatoes pretreated by pulsed electric field. J Texture Stud 40:208–224

    Article  Google Scholar 

  • Grimi N, Mamouni F, Lebovka N et al (2010) Acoustic impulse response in apple tissues treated by pulsed electric field. Biosyst Eng 105:266–272. https://doi.org/10.1016/j.biosystemseng.2009.11.005

    Article  Google Scholar 

  • Grimi N, Mamouni F, Lebovka N et al (2011) Impact of apple processing modes on extracted juice quality: pressing assisted by pulsed electric fields. J Food Eng 103:52–61

    Article  CAS  Google Scholar 

  • Guliy OI, Bunin VD, O’Neil D et al (2007) A new electro-optical approach to rapid assay of cell viability. Biosens Bioelectron 23:583–587

    Article  CAS  PubMed  Google Scholar 

  • Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  CAS  Google Scholar 

  • Hayden RI, Moyse CA, Calder FW et al (1969) Electrical impedance studies on potato and alfalfa tissue. J Exp Bot 20:177–200

    Article  Google Scholar 

  • Herman P, Drapalova H, Muzikova R, Vecer J (2005) Electroporative adjustment of pH in living yeast cells: ratiometric fluorescence pH imaging. J Fluoresc 15:763–768

    Article  CAS  PubMed  Google Scholar 

  • Hjouj M, Rubinsky B (2010) Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue. J Membr Biol 236:137–146

    Article  CAS  PubMed  Google Scholar 

  • Höber R (1910) Eine Methode, die elektrische Leitfähigkeit im Innern von Zellen zu messen (a method to measure the electrical conductivity inside cells). Pflüger’s Arch für die gesamte Physiol des Menschen und der Tiere 133:237–253

    Article  Google Scholar 

  • Hölzel R (1999) Non-invasive determination of bacterial single cell properties by electrorotation. Biochim Biophys Acta, Mol Cell Res 1450:53–60

    Article  PubMed  Google Scholar 

  • Huang Y, Holzel R, Pethig R, Wang X-B (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37:1499

    Article  CAS  PubMed  Google Scholar 

  • Ishai PB, Talary MS, Caduff A et al (2013) Electrode polarization in dielectric measurements: a review. Meas Sci Technol 24:102001

    Article  CAS  Google Scholar 

  • Jäger H, Balasa A, Knorr D (2009) Food industry applications for pulsed electric fields. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer-Verlag, New York, USA, pp 181–216

    Google Scholar 

  • James B (2014) Food microstructure analysis. In: Rao MA, Rizvi SSH, Datta AK, Ahmed J (eds) Engineering properties of foods. CRC Press, Taylor & Francis Group, Boca Raton, USA, pp 63–92

    Google Scholar 

  • Janositz A, Knorr D (2010) Microscopic visualization of pulsed electric field induced changes on plant cellular level. Innov Food Sci Emerg Technol 11:592–597

    Article  Google Scholar 

  • Jubery TZ, Srivastava SK, Dutta P (2014) Dielectrophoretic separation of bioparticles in microdevices: a review. Electrophoresis 35:691–713

    Article  CAS  PubMed  Google Scholar 

  • Kaatze U (2015) Dielectric relaxation of water. In: Raicu V, Feldman Y (eds) Dielectric Relaxation in Biological systems: Physical Principles, Methods, and Applications. Oxford University Press, Oxford, UK, pp 189–227

    Google Scholar 

  • Karim MA, Rahman MM, Pham ND, Fawzia S (2017) Food microstructure as affected by processing and its effect on quality and stability. In: Devahastin S (ed) Food microstructure and its relationship with quality and stability. Woodhead Publishing, Duxford, UK, pp 43–57

    Google Scholar 

  • Kent M, Knöchel R, Daschner F et al (2007) Intangible but not intractable: the prediction of fish “quality” variables using dielectric spectroscopy. Meas Sci Technol 18:1029

    Article  CAS  Google Scholar 

  • Kinosita K Jr, Ashikawa I, Saita N et al (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Kranjc M, Miklavčič D (2017) Electric field distribution and electroporation threshold. In: Miklavcic D (ed) Handbook of electroporation. Springer International Publishing AG, Cham, pp 1043–1058

    Chapter  Google Scholar 

  • Lebovka NI, Bazhal MI, Vorobiev E (2001) Pulsed electric field breakage of cellular tissues: visualisation of percolative properties. Innov Food Sci Emerg Technol 2:113–125

    Article  Google Scholar 

  • Lebovka NI, Praporscic I, Vorobiev E (2004) Effect of moderate thermal and pulsed electric field treatments on textural properties of carrots, potatoes and apples. Innov Food Sci Emerg Technol 5:9–16

    Article  Google Scholar 

  • Lebovka NI, Shynkaryk M, Vorobiev E (2007) Moderate electric field treatment of sugarbeet tissues. Biosyst Eng 96:47–56

    Article  Google Scholar 

  • Lee EW, Wong D, Prikhodko SV et al (2012) Electron microscopic demonstration and evaluation of irreversible electroporation-induced nanopores on hepatocyte membranes. J Vasc Interv Radiol 23:107–113

    Article  PubMed  Google Scholar 

  • Liu C (2019) Effet du pré-traitement par champ électrique pulsé sur le séchage et la friture des légumes: cas des pommes de terre et des carottes. PhD Thesis, Compiegne: Universite de Technologie de Compiegne, France

    Google Scholar 

  • Loginova SK (2011) Mise en oeuvre de champs electriques pulses pour la conception d’un procede de diffusion a froid a partir de betteraves a sucre et d'autres tubercules alimentaires (etude multi-echelle). Universite de Technologie de Compiegne, France, Compiegne

    Google Scholar 

  • Lu R, Abbott JA (2004) Force/deformation techniques for measuring texture. In: Kilcast D (ed) Texture in food: Solid foods. CRC Press, Boca Raton, USA, pp 109–145

    Google Scholar 

  • Markx GH, Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzym Microb Technol 25:161–171

    Article  CAS  Google Scholar 

  • Markx GH, Alp B, McGilchrist A (2002) Electro-orientation of Schizosaccharomyces pombe in high conductivity media. J Microbiol Methods 50:55–62

    Article  PubMed  Google Scholar 

  • Mashkour M, Maghsoudlou Y, Kashaninejad M, Aalami M (2018) Iron fortification of whole potato using vacuum impregnation technique with a pulsed electric field pretreatment. Potato Res 61(4):375–389

    Article  Google Scholar 

  • McLachlan DS, Cai K, Chiteme C, Heiss WD (2000) An analysis of dispersion measurements in percolative metal--insulator systems using analytic scaling functions. Phys B Condens Matter 279:66–68

    Article  CAS  Google Scholar 

  • Moisescu MG, Radu M, Kovacs E et al (2013) Changes of cell electrical parameters induced by electroporation. A dielectrophoresis study. Biochim Biophys Acta Biomembr 1828:365–372

    Article  CAS  Google Scholar 

  • Napotnik TB, Miklavcic D (2018) In vitro electroporation detection methods – an overview. Bioelectrochemistry 120:166–182

    Google Scholar 

  • Nelson S (2015) Dielectric properties of agricultural materials and their applications. Academic Press, London, UK

    Google Scholar 

  • Nishani S, Deshpande S, Gundewadi G (2017) Use of acoustics as non-destructive techniques: a review. Int J Curr Microbiol Appl Sci 6:2468–2476

    Article  Google Scholar 

  • Oblak J, Križaj D, Amon S et al (2007) Feasibility study for cell electroporation detection and separation by means of dielectrophoresis. Bioelectrochemistry 71:164–171

    Article  CAS  PubMed  Google Scholar 

  • Palaniappan S, Sastry SK (1991) Electrical conductivities of selected solid foods during ohmic heating 1. J Food Process Eng 14:221–236

    Article  Google Scholar 

  • Pataro G, Carullo D, Siddique MAB et al (2018) Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling. J Food Eng 233:65–73. https://doi.org/10.1016/j.jfoodeng.2018.03.029

    Article  CAS  Google Scholar 

  • Patel P, Markx GH (2008) Dielectric measurement of cell death. Enzym Microb Technol 43:463–470

    Article  CAS  Google Scholar 

  • Pethig RR (2017) Dielectrophoresis: Theory, methodology and biological applications, John Wiley & Sons, Ltd., Chichester, UK

    Google Scholar 

  • Pethig RR, Smith S (2012) Introduction to bioelectronics: for engineers and physical scientists. Wiley, Chichester/West Sussex

    Book  Google Scholar 

  • Pethig RR, Talary MS (2007) Dielectrophoretic detection of membrane morphology changes in Jurkat T-cells undergoing etoposide-induced apoptosis. IET Nanobiotechnol 1:2–9

    Article  CAS  PubMed  Google Scholar 

  • Philippson M (1921) Les lois de la résistance électrique des tissus vivants (The laws of electrical resistance of living tissues). Bull l’Académie R Belgique 7:387–403

    Google Scholar 

  • Pillet F, Formosa-Dague C, Baaziz H et al (2016) Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci Rep 6:19778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyatkovskyy TI, Shynkaryk MV, Mohamed HM et al (2018) Effects of combined high pressure (HPP), pulsed electric field (PEF) and sonication treatments on inactivation of Listeria innocua. J Food Eng 233:49–56

    Article  CAS  Google Scholar 

  • Raicu V (2015) Theory of suspensions of particles in homogeneous fields. In: Raicu V, Feldman Y (eds) Dielectric relaxation in biological systems: physical principles, methods, and applications. Oxford University Press, Oxford, UK, pp 60–83

    Google Scholar 

  • Raicu V, Feldman Y (eds) (2015) Dielectric relaxation in biological systems: physical principles, methods, and applications. Oxford University Press, Oxford, UK

    Google Scholar 

  • Ratanachoo K, Gascoyne PRC, Ruchirawat M (2002) Detection of cellular responses to toxicants by dielectrophoresis. Biochim Biophys Acta Biomembr 1564:449–458

    Article  CAS  Google Scholar 

  • Reilly JP (2012) Applied bioelectricity: From electrical stimulation to electropathology. Springer-Verlag, New York, USA

    Google Scholar 

  • Rondeau C, Le Quéré J-M, Turk M, et al (2012) The de-structuration of parenchyma cells of apple induced by pulsed electric fields: a TD-NMR investigation. In: Proceeding of the international conference bio & food electrotechnologies (BFE 2012), Book of Full Papers. ProdAl Scarl, Società consortile a responsabilità limitata, c/o University of Salerno, Fisciano, Italy, p 5

    Google Scholar 

  • Russ JC (2016) The image processing handbook. CRC press, Taylor & Francis Group, Boca Raton, USA

    Google Scholar 

  • Ryttsen F, Farre C, Brennan C et al (2000) Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy. Biophys J 79:1993–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack M, Schultheiss C, Bluhm H (2005) Triggered Marx generators for the industrial-scale electroporation of sugar beets. IEEE Trans Ind Appl 41:707–714

    Article  Google Scholar 

  • Sack M, Eing C, Stangle R et al (2009) Electric measurement of the electroporation efficiency of mash from wine grapes. IEEE Trans Dielectr Electr Insul 16:1329–1337

    Article  Google Scholar 

  • Sack M, Ruf J, Hochberg M, et al (2017) A device for combined thermal and pulsed electric field treatment of food. In: Optimization of electrical and electronic equipment (OPTIM) & 2017 international Aegean conference on electrical machines and power electronics (ACEMP), 2017 international conference on, pp 31–36

    Google Scholar 

  • Sastry SK (2014) Electrical conductivity of foods. In: Engineering properties of foods, 3 rd edn. CRC Press, pp 483–522

    Google Scholar 

  • Schwan H (1954) Die elektrischen eigenschaften von muskelgewebe bei niederfrequenz (the electrical properties of muscle tissue at low frequency). Zeitschrift für Naturforsch B 9:245–251

    Article  Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspensions. In: Lawrence JH, Tobias CA (eds) Advances in biological and medical physics. Academic Press Inc., New York, pp 147–209

    Google Scholar 

  • Schwan HP, Carstensen EL (1957) Dielectric properties of the membrane of lysed erythrocytes. Sci 125:985–986

    Article  CAS  Google Scholar 

  • Sinha A, Bhargav A (2018) Texture changes during thermal processing of food: experiments and modelling. Ar**v Prepr ar**v:1810.06434:1–21

    Google Scholar 

  • Soliva-Fortuny R, Vendrell-Pacheco M, Martín-Belloso O, Elez-Martínez P (2017) Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biol Technol 132:195–201

    Article  CAS  Google Scholar 

  • Spugnini EP, Arancia G, Porrello A et al (2007) Ultrastructural modifications of cell membranes induced by electroporation on melanoma xenografts. Microsc Res Tech 70:1041–1050

    Google Scholar 

  • Sree VG, Gowrishankar S (2014) Electrical modeling and impedance analysis of biological cells. Int J Eng Res 3:46–50

    Article  CAS  Google Scholar 

  • Suchanek M, Olejniczak Z (2018) Low field MRI study of the potato cell membrane electroporation by pulsed electric field. J Food Eng 231:54–60

    Article  CAS  Google Scholar 

  • Suchodolskis A, Stirke A, Timonina A et al (2011) Baker’s yeast transformation studies by atomic force microscopy. Adv Sci Lett 4:171–173

    Article  Google Scholar 

  • Trainito CI, Bayart E, Subra F et al (2016) The electrorotation as a tool to monitor the dielectric properties of spheroid during the permeabilization. J Membr Biol 249(5):593–600

    Article  CAS  PubMed  Google Scholar 

  • Valič B, Golzio M, Pavlin M et al (2003) Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J 32:519–528

    Article  PubMed  Google Scholar 

  • Wagner KW (1924) Theoretische Grundlagen. In: Schering H (ed) Die Isolierstoffe der Elektrotechnik: Vortragsreihe, veranstaltet von dem Elektrotechnischen Verein E.V. und der Technischen Hochschule, Berlin (the insulating materials of electrical engineering: lecture series organized by the Electrotechnical Association E.V. and the Technical University, Berlin). Springer, Berlin, pp 1–59

    Google Scholar 

  • Wang L, Boussetta N, Lebovka N, Vorobiev E (2020) Cell disintegration of apple peels induced by pulsed electric field and efficiency of bio-compound extraction. Food Bioprod Process (Accepted 11 March 2020)

    Google Scholar 

  • Wiktor A, Gondek E, Jakubczyk E et al (2016) Acoustic emission as a tool to assess the changes induced by pulsed electric field in apple tissue. Innov Food Sci Emerg Technol 37:375–383

    Article  Google Scholar 

  • Wiktor A, Gondek E, Jakubczyk E et al (2018) Acoustic and mechanical properties of carrot tissue treated by pulsed electric field, ultrasound and combination of both. J Food Eng 238:12–21

    Article  Google Scholar 

  • Yuan X-S, Shen J-L, Wang X-L et al (2005) Schistosoma japonicum: a method for transformation by electroporation. Exp Parasitol 111:244–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Lv Z, **ong S (2017) Nondestructive quality evaluation of agro-products using acoustic vibration methods—a review. Crit Rev Food Sci Nutr:1–12

    Google Scholar 

  • Zhao X, Zhuang H, Yoon S-C et al (2017) Electrical impedance spectroscopy for quality assessment of meat and fish: a review on basic principles, measurement methods, and recent advances. J Food Qual ID 6370739:1–16

    Google Scholar 

  • Zou X, Zhao J (2015) Nondestructive measurement in food and agro-products. Springer, Dordrecht

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorobiev, E., Lebovka, N. (2020). Techniques to Detect Electroporation. In: Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-40917-3_3

Download citation

Publish with us

Policies and ethics

Navigation