Polymers in Biomedical Use

  • Reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Polymers are macromolecules, versatile in structure, constitution, and properties. They have wide range of applications in various fields such as biophysics, medicine, electronics, and other branches of science and technology. Among these polymers biomedical polymers are specially mentioned due to their less toxicity in vivo, easy to process and sterilized, better shelf life, light weight, and remarkable properties suited to the applications. The current research explores the various applications of biomedical polymers in the field of medicine. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical, and degradation properties must be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bremner I (1988) Manifestations of copper excess. Am J Clin Nutr 67:1069S–1073S

    Article  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    Article  CAS  Google Scholar 

  • Carmali S, Brocchini S (2014) Polyacetals. In: Natural and synthetic biomedical polymers, Natural and Synthetic Biomedical Polymers, pp 219–233

    Google Scholar 

  • Cheadle WG (2006) Risk factors for surgical site infection. Surg Infect 7:S7–S11

    Article  Google Scholar 

  • Cometa S, Iatta R, Ricci MA, Ferretti C, de Giglio E (2013) Analytical characterization and antimicrobial properties of novel copper nanoparticles-loaded electrosynthesised hydrogel coatings. J Bioact Compat Polym 28:508–522

    Google Scholar 

  • Curtis LT (2008) Prevention of hospital-acquired infections: review of non-pharmacological interventions. J Hosp Infect 69:204–219

    Article  CAS  Google Scholar 

  • Damm C, Munstedt H, Rosch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108:61–66

    Article  CAS  Google Scholar 

  • Damodaran VB, Joslin J, Reynolds MM (2012) Preparing biocompatible materials for non-permanent medical devices. Eur Pharm Rev 17(5):71–77

    Google Scholar 

  • De Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  Google Scholar 

  • De Giglio E, Cafagna D, Cometa S, Allegretta A, Pedico A, Giannossa LC, Sabbatini L, Mattioli-Belmonte M, Iatta R (2013) An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal Bioanal Chem 405:805–816

    Article  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  Google Scholar 

  • Galaev I, Mattiasson B (1999) Smart polymers and what they could do in biotechnology and medicine.Trends Biotechnol 17(8):335–40. https://doi.org/10.1016/s0167-7799(99)01345-1

  • Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1548

    Article  CAS  Google Scholar 

  • Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225

    Article  CAS  Google Scholar 

  • Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K (2007) Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 8:1396–1399

    Article  CAS  Google Scholar 

  • Jones DS, Djokic J, Gorman SP (2005) The resistance of polyvinylpyrrolidone-Iodine-poly (ε-caprolactone) blends to adherence of Escherichia coli. Biomaterials 26:2013–2020

    Article  CAS  Google Scholar 

  • Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  CAS  Google Scholar 

  • Kumar V, Jolivalt C, Pulpytel J, Jafari R, Arefi-Khonsari F (2013) Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. J Biomed Mater Res A 101:1121–1132

    Article  Google Scholar 

  • Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russel AJ (2004) Permanent nonleaching antibacterial surfaces 1: synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    Article  CAS  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  Google Scholar 

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  CAS  Google Scholar 

  • Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  CAS  Google Scholar 

  • Patil NV (2006) Smart polymers are in the biotech future. Bio Process International. Fluid Mechanics and Transport Phenomena. https://doi.org/10.1002/aic.11032

  • Pehlivan H, Balkose D, Ulku S, Tihminlioglu F (2005) Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos Sci Technol 65:2049–2058

    Article  CAS  Google Scholar 

  • Parsa MH, Nasher al ahkami S, Pishbin H, Kazemi M (2012) Investigating spring back phenomena in double curved sheet metals forming. Materials & Design 41:326–337

    Google Scholar 

  • Pishbin F, Mouriño V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2013) Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater 9:7469–7479

    Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 32:2–10

    Google Scholar 

  • Sastri VR (2010) Plastics in medical devices: properties, requirements, and applications, A volume in Plastics Design Library, PDL Handbook series

    Google Scholar 

  • Sastri VS (2010) Plastic in medical devices: properties, requirements and applications. Elsevier, Burlington

    Google Scholar 

  • Shleeva S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, Gorton L (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517–2554

    Article  Google Scholar 

  • Sintubin L, de Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and cap** agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1985) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  Google Scholar 

  • Yu SY, Yoo SJ, Yang L, Zapata C, Srinivasan A, Hay BA, Baker NE (2002) A pathway of signals regulating effector and initiator caspases in the develo** Drosophila eye. Development 129(13):3269–3278

    Google Scholar 

  • Yuan YL, Ai F, Zang XP (2004) Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone. Colloid Surf B 35:1–5

    Article  CAS  Google Scholar 

  • Zhang W, Zhang YH, Ji JH, Zhao J, Yan Q, Chu PK (2006) Antimicrobial properties of copper plasma-modified polyethylene. Polymer 47:7441–7445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Premkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Premkumar, J., SonicaSree, K., Sudhakar, T. (2021). Polymers in Biomedical Use. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-40513-7_74

Download citation

Publish with us

Policies and ethics

Navigation