Respiratory Chain and Energy Metabolism of Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

The production of glutamic acid as well as amino acids of the aspartic acid family from carbohydrates is carried out industrially by a group of bacteria represented by Corynebacterium glutamicum. C. glutamicum is a Gram-positive facultative aerobe with a thick cell wall comprising, besides the peptidoglycan layer, a layer of mycolic acid and arabinogalactan. Industrially, glutamic acid production is induced by various stresses such as biotin limitation or the addition of surfactants or antibiotics, which may alter the cell membrane tension or opening of the mechano-sensitive channel as well as lead to the reduction of 2-oxoglutarate dehydrogenase activity that in turn affects the flow of the TCA cycle. Albeit the molecular events associated with these phenotypes are not fully understood, glutamate production in C. glutamicum is related to the cell surface structure (cell membrane) and the metabolic flux (especially through the TCA cycle) since these are deeply involved in cellular energetics. In the aerobic respiratory chain of C. glutamicum, several primary dehydrogenases, including type II NADH dehydrogenase, and malate:quinone oxidoreductase- and lactate dehydrogenase-dependent NADH reoxidizing systems, function donating electrons from each substrates to menaquinone, and the resulting menaquinol is oxidized by cytochrome bcc-aa 3 supercomplex and cytochrome bd oxidase. The bcc-aa 3 supercomplex and bd oxidase generate proton-motive force, H+/O ratio of 6 and 2, respectively. In this chapter, molecular characters and energetics of these respiratory components are summarized and also some metabolic engineering of C. glutamicum to produce valuable chemicals are described related to the respiratory chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aoki R, Wada M, Takesue N, Tanaka K, Yokota A (2005) Enhanced glutamic acid production by H+-ATPase-defective mutant of Corynebacterium glutamicum. Biosci Biotechnol Biochem 69:1466–1472

    Article  CAS  PubMed  Google Scholar 

  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494(7438):443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bott M, Niebisch A (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104:129–153

    Article  CAS  PubMed  Google Scholar 

  • Bott M, Niebisch A (2005) Respiratory energy metabolism. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. Taylor & Francis, New York, pp 305–332

    Google Scholar 

  • Brandt U, Trumpower B (1994) The proton motive Q cycle in mitochondria and bacteria. Crit Rev Biochem Mol Biol 29:165–197

    Article  CAS  PubMed  Google Scholar 

  • Davidson JF, Schiestl RH (2001) Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol 21(24):8483–8489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desplats C, Beyly A, Cuiné S, Bernard L, Cournac L, Peltier G (2007) Modification of substrate specificity in single point mutants of Agrobacterium tumefaciens type II NADH dehydrogenase. FEBS Lett 581(21):4017–4022

    Article  CAS  PubMed  Google Scholar 

  • Dominguez H, Rokkin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465:441–445

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Li W, Li J, Wang J, Ge J, Xu D, Liu Y, Wu K, Zeng Q, Wu JW, Tian C, Zhou B, Yang M (2012) Structural insight into the type-II mitochondrial NADH dehydrogenases. Nature 491(7424):478–482

    Article  CAS  PubMed  Google Scholar 

  • Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature 538(7625):406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong H, Li J, Xu A, Tang Y, Ji W, Gao R, Wang S, Yu L, Tian C, Li J, Yen HY, Man Lam S, Shui G, Yang X, Sun Y, Li X, Jia M, Yang C, Jiang B, Lou Z, Robinson CV, Wong LL, Guddat LW, Sun F, Wang Q, Rao Z (2018) An electron transfer path connects subunits of a mycobacterial respiratory supercomplex. Science 362(1020):eaat8923

    Article  PubMed  CAS  Google Scholar 

  • Graf S, Fedotovskaya O, Kao WC, Hunte C, Ädelroth P, Bott M, von Ballmoos C, Brzezinski P (2016) Rapid electron transfer within the III–IV supercomplex in Corynebacterium glutamicum. Sci Rep 6:34098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, Cook GM (2014) Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol Microbiol 91(5):950–964

    Article  CAS  PubMed  Google Scholar 

  • Jones AJ, Blaza JN, Varghese F, Hirst J (2017) Respiratory complex I in Bos taurus and Paracoccus denitrificans pumps four protons across the membrane for every NADH oxidized. J Biol Chem 292(12):4987–4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabashima Y, Kishikawa J, Kurokawa T, Sakamoto J (2009) Correlation between proton translocation and growth: genetic analysis of the respiratory chain of Corynebacterium glutamicum. J Biochem 146:845–855

    Article  CAS  PubMed  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  PubMed  Google Scholar 

  • Kabus A, Niebisch A, Bott M (2007) Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production. Appl Environ Microbiol 73:861–868

    Article  CAS  PubMed  Google Scholar 

  • Kao WC, Kleinschroth T, Nitschke W, Baymann F, Neehaul Y, Hellwig P, Richers S, Vonck J, Bott M, Hunte C (2016) The obligate respiratory supercomplex from Actinobacteria. Biochim Biophys Acta 1857(10):1705–1714

    Article  CAS  PubMed  Google Scholar 

  • Kataoka N, Vangnai AS, Pongtharangkul T, Yakushi T, Wada M, Yokota A, Matsushita K (2019) Engineering of Corynebacterium glutamicum as a prototrophic pyruvate-producing strain: characterization of ramA-deficient mutant and its application for metabolic engineering. Biosci Biotechnol Biochem 83:372–380

    Article  CAS  PubMed  Google Scholar 

  • Kato O, Youn J-W, Stansen KC, Matsui D, Oikawa T, Wendisch VF (2010) Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiol 10(1):321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita K, Konishi K, Anraku Y (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b 558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem 259:3375–3381

    CAS  PubMed  Google Scholar 

  • Koch-Koerfges A, Pfelzer N, Platzen L, Oldiges M, Bott M (2013) Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain. Biochim Biophys Acta 1827(6):699–708

    Article  CAS  PubMed  Google Scholar 

  • Komati RG, Lindner SN, Wendisch VF (2015) Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol 81(6):1996–2005

    Article  CAS  Google Scholar 

  • Kurokawa T, Sakamoto J (2005) Purification and characterization of succinate: menaquinone oxidoreductase from Corynebacterium glutamicum. Arch Microbiol 183:317–324

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto K, Sakiyama M, Sakamoto J, Noguchi S, Sone N (2000) Menaquinol oxidase activity and primary structure of cytochrome bd from the amino-acid fermenting bacterium Corynebacterium glutamicum. Arch Microbiol 173:390–397

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wada M, Yokota A (2007) A comparative proteomic approach to understand the adaptations of an H+-ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies. Proteomics 7:3348–3357

    Article  CAS  PubMed  Google Scholar 

  • Madej MG, Nasiri HR, Hilgendorff NS, Schwalbe H, Unden G, Lancaster CR (2006) Experimental evidence for proton motive force-dependent catalysis by the diheme-containing succinate:menaquinone oxidoreductase from the Gram-positive bacterium Bacillus licheniformis. Biochemistry 45:15049–15055

    Article  CAS  PubMed  Google Scholar 

  • Marreiros BC, Sena FV, Sousa FM, Batista AP, Pereira MM (2016) Type II NADH:quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences. Environ Microbiol 18(12):4697–4709

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K (2013) Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Microbiology monographs 23. Springer, pp 315–334

    Google Scholar 

  • Matsushita K, Ohnishi T, Kaback R (1987) NADH-ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. Biochemistry 26:7732–7737

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Yamamoto T, Toyama H, Adachi O (1998) NADPH oxidase system works as superoxide-generating cyanide-resistant pathway in the respiratory chain of Corynebacterium glutamicum. Biosci Biotechnol Biochem 62:1968–1977

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Otofuji A, Iwahashi M, Toyama H, Adachi O (2001) NADH dehydrogenase of Corynebacterium glutamicum. Purification of NADH dehydrogenase II homologue able to oxidize NADPH. FEMS Microbiol Lett 204:271–276

    Article  CAS  PubMed  Google Scholar 

  • Messner KR, Imlay JA (1999) The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 274(15):10119–10128

    Article  CAS  PubMed  Google Scholar 

  • Messner KR, Imlay JA (2002) Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem 277(45):42563–42571

    Article  CAS  PubMed  Google Scholar 

  • Miller MJ, Gennis RB (1983) The purification and characterization of the cytochrome d terminal oxidase complex of the Escherichia coli aerobic respiratory chain. J Biol Chem 258:9159–9165

    CAS  PubMed  Google Scholar 

  • Molenaar D, van der Rest ME, Petrović S (1998) Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur J Biochem 254:395–403

    Article  CAS  PubMed  Google Scholar 

  • Molenaar D, van der Rest ME, Drysch A, Yucel R (2000) Functions of the membrane-associated and cytoplasmic malate dehydogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol 182:6884–6891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morosov X, Davoudi CF, Baumgart M, Brocker M, Bott M (2018) The copper-deprivation stimulon of Corynebacterium glutamicum comprises proteins for biogenesis of the actinobacterial cytochrome bc 1-aa 3 supercomplex. J Biol Chem 293(40):15628–15640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nantapong N, Kugimiya Y, Toyama H, Adachi O, Matsushita K (2004) Effect of NADH dehydrogenase-disruption and over-expression on the respiratory-related metabolism in Corynebacterium glutamicum KY9714. Appl Microbiol Biotechnol 66:187–193

    Article  CAS  PubMed  Google Scholar 

  • Nantapong N, Otofuji A, Migita CT, Adachi O, Toyama H, Matsushita K (2005) Electron transfer ability from NADH to menaquinone and from NADPH to oxygen of type II NADH dehydrogenase of Corynebacterium glutamicum. Biosci Biotechnol Biochem 69:149–159

    Article  CAS  PubMed  Google Scholar 

  • Nantapong N, Murata R, Trakulnaleamsai S, Kataoka N, Yakushi T, Matsushita K (2019) The effect of reactive oxygen species (ROS) and ROS-scavenging enzymes, superoxide dismutase and catalase, on the thermotolerant ability of Corynebacterium glutamicum. Appl Microbiol Biotechnol 103(13):5355–5366

    Article  CAS  PubMed  Google Scholar 

  • Niebisch A, Bott M (2003) Purification of a cytochrome bc-aa 3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa 3 oxidase and mutational analysis of diheme cytochrome c 1. J Biol Chem 278:4339–4346

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Teramoto H, Vertès AA, Inui M, Yukawa H (2008) ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol 190:3264–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Moser CC, Page CC, Dutton PL, Yano T (2000) Simple redox-linked proton-transfer design: new insights from structures of quinol-fumarate reductase. Structure 8:R23–R32

    Article  CAS  PubMed  Google Scholar 

  • Safarian S, Rajendran C, Müller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H (2016) Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science 352(6285):583–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kühlbrandt W, Michel H (2019) Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science 366(6461):100–104

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto J, Shibata T, Mine T, Miyahara R, Torigoe T, Noguchi S, Matsushita K, Sone N (2001) Cytochrome c oxidase contains an extra charged amino acid cluster in a new type of respiratory chain in the amino-acid-producing Gram-positive bacterium Corynebacterium glutamicum. Microbiology 147:2865–2871

    Article  CAS  PubMed  Google Scholar 

  • Sato-Watanabe M, Mogi T, Ogura T, Kitagawa T, Miyoshi H, Iwamura H, Anraku Y (1994) Identification of a novel quinone-binding site in the cytochrome bo complex from Escherichia coli. J Biol Chem 269:28908–28912

    CAS  PubMed  Google Scholar 

  • Sawada K, Kato Y, Imai K, Li L, Wada M, Matsushita K, Yokota A (2012) Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum. J Biosci Bioeng 113:467–473

    Article  CAS  PubMed  Google Scholar 

  • Schirawski J, Unden G (1998) Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. Eur J Biochem 257:210–215

    Article  CAS  PubMed  Google Scholar 

  • Schnorpfeil M, Janausch IG, Biel S, Kröger A, Unden G (2001) Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. Eur J Biochem 268:3069–3074

    Article  CAS  PubMed  Google Scholar 

  • Schreiner ME, Eikmanns BJ (2005) Pyruvate:quinone oxidoreductase from Corynebacterium glutamicum: purification and biochemical characterization. J Bacteriol 187:862–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine H, Shimada T, Hayashi C, Ishiguro A, Tomita F, Yokota A (2001) H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol 57:534–540

    Article  CAS  PubMed  Google Scholar 

  • Sone N, Nagata K, Kojima H, Tajima J, Kodera Y, Kanamaru T, Noguchi S, Sakamoto J (2001) A novel hydrophobic diheme c-type cytochrome. Purification from Corynebacterium glutamicum and analysis of the QcrCBA operon encoding three subunit proteins of a putative cytochrome reductase complex. Biochim Biophys Acta 1503:279–290

    Article  CAS  PubMed  Google Scholar 

  • Sone N, Hägerhäll C, Sakamoto J (2004) Aerobic respiration in the gram-positive bacteria. In: Zannoni D (ed) Respiration in archaea and bacteria, vol 2: Diversity of prokaryotic respiratory systems. Springer, The Netherlands, pp 35–62

    Chapter  Google Scholar 

  • Spero MA, Aylward FO, Currie CR, Donohue TJ (2015) Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:quinone oxidoreductase (complex I) across bacteria. MBio 6(2):e00389-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M (2007) Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi G, Zetta L, Negri A, Mortarino M, Ceciliani F, Ronchi S (1997) Redox potentials and quinone reductase activity of L-aspartate oxidase from Escherichia coli. Biochemistry 36:16221–16230

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Inui M (2016) The extracytoplasmic function σ factor σ(C) regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol Microbiol 100:486–509

    Article  CAS  PubMed  Google Scholar 

  • Tsuge Y, Uematsu K, Yamamoto S, Suda M, Yukawa H, Inui M (2015) Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation. Appl Micobiol Biotechnol 99:5573–5582

    Article  CAS  Google Scholar 

  • Villegas JM, Volentini SI, Rintoul MR, Rapisarda VA (2011) Amphipathic C-terminal region of Escherichia coli NADH dehydrogenase-2 mediates membrane localization. Arch Biochem Biophys 505(2):155–159

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008) Enhanced valine production in Corynebacterium glutamicum with H+-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem 72:2959–2965

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Golightly EJ, Fuglsang CC, Schneider P, Duke KR, Lam L, Christensen S, Brown KM, Jørgensen CT, Brown SH (2001) A novel carbohydrate:acceptor oxidoreductase from Microdochium nivale. Eur J Biochem 268:1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Hönigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L, Ashkenazy H, Punta M, Schlessinger A, Bromberg Y, Schneider R, Vriend G, Sander C, Ben-Tal N, Rost B (2014) PredictProtein – an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42(Web Server issue):W337–W343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Vinothkumar KR, Hirst J (2016) Structure of mammalian respiratory complex I. Nature 536(7616):354–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U (2015) Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347(6217):44–49

    Article  CAS  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The author thanks Prof. Toshiharu Yakushi, Yamaguchi University, for his critical reading and suggestions for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunobu Matsushita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kataoka, N., Matsutani, M., Matsushita, K. (2020). Respiratory Chain and Energy Metabolism of Corynebacterium glutamicum . In: Inui, M., Toyoda, K. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-39267-3_3

Download citation

Publish with us

Policies and ethics

Navigation