Automatic Differential Capacitive Sensing by Means of Linear Interface

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 629))

Included in the following conference series:

  • 771 Accesses

Abstract

In this work we present the development of an integrated CMOS analog interface able to convert differential capacitive sensors variations into a DC voltage. The presented circuit is based on autobalancing bridge techniques improving its performances through the linearization of the input/output characteristic and the achievement of the full-range sensor variations capability. Comparison between theoretical and measured interface static behaviour results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baxter L (1997) Capacitive sensors. In: Capacitive sensors: design and applications. The Institute of Electrical and Electronics Engineers, New York, pp 1–46

    Google Scholar 

  2. Puers R (1993) Capacitive sensors: when and how to use them. Sens Actuators, A 37–38:93–105. https://doi.org/10.1016/0924-4247(93)80019-d

    Article  Google Scholar 

  3. Lotters J, Olthuis W, Veltink P, Bergveld P (1999) A sensitive differential capacitance to voltage converter for sensor applications. IEEE Trans Instrum Meas 48:89–96. https://doi.org/10.1109/19.755066

    Article  Google Scholar 

  4. **e H, Fedder G (2002) Vertical comb-finger capacitive actuation and sensing for CMOS-MEMS. Sens Actuators, A 95:212–221. https://doi.org/10.1016/s0924-4247(01)00740-3

    Article  Google Scholar 

  5. Pedersen T, Fragiacomo G, Hansen O, Thomsen E (2009) Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance. Sens Actuators, A 154:35–41. https://doi.org/10.1016/j.sna.2009.07.013

    Article  Google Scholar 

  6. Zeng T, Lu Y, Liu Y, Yang H, Bai Y, Hu P et al (2016) A capacitive sensor for the measurement of departure from the vertical movement. IEEE Trans Instrum Meas 65:458–466. https://doi.org/10.1109/tim.2015.2490806

    Article  Google Scholar 

  7. Tsuchiya T, Funabashi H (2004) A z-axis differential capacitive SOI accelerometer with vertical comb electrodes. Sens Actuators, A 116:378–383. https://doi.org/10.1016/j.sna.2004.05.008

    Article  Google Scholar 

  8. Horenstein M, Perreault J, Bifano T (2000) Differential capacitive position sensor for planar MEMS structures with vertical motion. Sens Actuators, A 80:53–61. https://doi.org/10.1016/s0924-4247(99)00251-4

    Article  Google Scholar 

  9. Zadeh E, Sawan M (2005) High accuracy differential capacitive circuit for bioparticles sensing applications. In: 48th Midwest symposium on circuits and systems. IEEE

    Google Scholar 

  10. Ghafar-Zadeh E, Sawan M, Chodavarapu V, Hosseini-Nia T (2010) Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Trans Biomed Circuits Syst 4:232–238. https://doi.org/10.1109/tbcas.2010.2048430

    Article  Google Scholar 

  11. Ferri G, Stornelli V, Parente F, Barile G (2016) Full range analog Wheatstone bridge-based automatic circuit for differential capacitance sensor evaluation. Int J Circuit Theory Appl 45:2149–2156. https://doi.org/10.1002/cta.2298

    Article  Google Scholar 

  12. Singh T, Saether T, Ytterdal T (2009) Current-mode capacitive sensor interface circuit with single-ended to differential output capability. IEEE Trans Instrum Meas 58:3914–3920. https://doi.org/10.1109/tim.2009.2021241

    Article  Google Scholar 

  13. Tan S, Liu C, Yeh L, Chiu Y, Hsu K (2011) A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability. J Micromech Microeng 21:035005. https://doi.org/10.1088/0960-1317/21/3/035005

    Article  Google Scholar 

  14. Mochizuki K, Watanabe K, Masuda T (1998) A high-accuracy high-speed signal processing circuit of differential-capacitance transducers. IEEE Trans Instrum Meas 47:1244–1247. https://doi.org/10.1109/19.746591

    Article  Google Scholar 

  15. Barile G et al (2018) A CMOS full-range linear integrated interface for differential capacitive sensor readout. Sens Actuators A: Phys 281:130–140. Available: https://doi.org/10.1016/j.sna.2018.08.033

    Article  Google Scholar 

  16. Vejdani P, Allidina K, Nabki F (2017) Analysis of sensitivity and power consumption of chop** techniques for integrated capacitive sensor interface circuits. J Low Power Electron Appl 7:31. https://doi.org/10.3390/jlpea7040031

    Article  Google Scholar 

  17. Brookhuis R, Lammerink T, Wiegerink R (2015) Differential capacitive sensing circuit for a multi-electrode capacitive force sensor. Sens Actuators, A 234:168–179. https://doi.org/10.1016/j.sna.2015.08.020

    Article  Google Scholar 

  18. Flammini A, Marioli D, Sisinni E, Taroni A (2005) A multichannel DSP-based instrument for displacement measurement using differential variable reluctance transducer. IEEE Trans Instrum Meas 54:178–183. https://doi.org/10.1109/tim.2004.834052

    Article  Google Scholar 

  19. Kar S, Chatterjee P, Mukherjee B, Swamy K, Sen S (2018) A differential output interfacing ASIC for integrated capacitive sensors. IEEE Trans Instrum Meas 67:196–203. https://doi.org/10.1109/tim.2017.2761238

    Article  Google Scholar 

  20. Depari A, Sisinni E, Flammini A, Ferri G, Stornelli V, Barile G et al (2018) Autobalancing analog front end for full-range differential capacitive sensing. IEEE Trans Instrum Meas 67:885–893. https://doi.org/10.1109/tim.2017.2785160

    Article  Google Scholar 

  21. Barile G, Ferri G, Parente F, Stornelli V, Depari A, Flammini A et al (2017) A standard CMOS bridge-based analog interface for differential capacitive sensors. In: 2017 13th conference on Ph.D. research in microelectronics and electronics (PRIME). IEEE, pp 281–284

    Google Scholar 

  22. Barile G, Ferri G, Parente F, Stornelli V, Depari A, Flammini A et al (2017) Linear integrated interface for automatic differential capacitive sensing. In: Eurosensors 2017, MDPI, p 592. https://doi.org/10.3390/proceedings1040592. Accessed 24 July 2018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Barile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barile, G., Ferri, G., Depari, A., Flammini, A., Sisinni, E. (2020). Automatic Differential Capacitive Sensing by Means of Linear Interface. In: Di Francia, G., et al. Sensors and Microsystems. AISEM 2019. Lecture Notes in Electrical Engineering, vol 629. Springer, Cham. https://doi.org/10.1007/978-3-030-37558-4_19

Download citation

Publish with us

Policies and ethics

Navigation