Minimisation of the Gibbs Free Energy: Magnetic Phase Diagrams and Caloric Effects

  • Chapter
  • First Online:
Ab initio Theory of Magnetic Ordering

Part of the book series: Springer Theses ((Springer Theses))

  • 418 Accesses

Abstract

Chapters 2 and 3 contain the DFT-DLM theory adopted in this thesis and the entire formalism of how to use KKR-MST in the context of SDFT to describe magnetism at finite temperatures. The central quantities obtained by the theory are the derivatives of \(\langle \Omega ^\text {int}\rangle _0\), namely the internal local fields \(\{{\mathbf {h}}^{\text {int}}_n\}\) and the direct correlation function. Their calculation as a function of the state of magnetic order \(\{{\mathbf {m}}_n\}\) sets the basis of the study of magnetic structures and their stabilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khmelevskyi S, Khmelevska T, Ruban AV, Mohn P (2007) Magnetic exchange interactions in the paramagnetic state of hcp Gd. J Phys: Condens Matter 19(32):326218

    Google Scholar 

  2. Shallcross S, Kissavos AE, Meded V, Ruban AV (2005) An ab initio effective Hamiltonian for magnetism including longitudinal spin fluctuations. Phys Rev B 72:104437

    Article  ADS  Google Scholar 

  3. Antal A, Lazarovits B, Udvardi L, Szunyogh L, Újfalussy B, Weinberger P (2008) First-principles calculations of spin interactions and the magnetic ground states of Cr trimers on Au (111). Phys Rev B 77:174429

    Article  ADS  Google Scholar 

  4. Khmelevskyi S, Ruban AV, Mohn P (2016) Magnetic ordering and exchange interactions in structural modifications of \({\text{Mn}}_{3}\)Ga alloys: interplay of frustration, atomic order, and off-stoichiometry. Phys Rev B 93:184404

    Google Scholar 

  5. Bean CP, Rodbell DS (1962) Magnetic disorder as a first-order phase transformation. Phys Rev 126:104–115

    Article  ADS  Google Scholar 

  6. Tishin AM, Spichkin YI (2003) The magnetocaloric effect and its applications, vol 6

    Google Scholar 

  7. Planes A, Mañosa L, Saxena A (2014) Magnetism and structure in functional materials. Springer, Berlin

    Google Scholar 

  8. Sandeman KG (2012) Magnetocaloric materials: the search for new systems. Scr Mater 67(6):566–571. Viewpoint set no. 51: magnetic materials for energy

    Google Scholar 

  9. Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in \({\text{ Gd }}_{5}({\text{ Si }}_{2}{\text{ Ge }}_{2})\). Phys Rev Lett 78:4494–4497

    Article  ADS  Google Scholar 

  10. Matsunami D, Fujita A, Takenaka K, Kano M (2015) Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn\(_3\)GaN. Nat Mater 14:73

    Article  ADS  Google Scholar 

  11. Neese B, Chu B, Lu S-G, Wang Y, Furman E, Zhang QM (2008) Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890):821–823

    Google Scholar 

  12. Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Mañosa L, Mathur ND (2013) Giant electrocaloric strength in single-crystal BaTiO\(_3\). Adv Mater 25(9):1360–1365

    Article  Google Scholar 

  13. Bonnot E, Romero R, Mañosa L, Vives E, Planes A (2008) Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 100:125901

    Google Scholar 

  14. Spaldin NA, Fiebig M, Mostovoy M (2008) The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J Phys: Condens Matter 20(43):434203

    Google Scholar 

  15. Castán T, Planes A, Saxena A (2012) Thermodynamics of ferrotoroidic materials: Toroidocaloric effect. Phys Rev B 85:144429

    Google Scholar 

  16. Toledano P, Khalyavin DD, Chapon LC (2011) Spontaneous toroidal moment and field-induced magnetotoroidic effects in Ba\({}_{2}\)CoGe\({}_{2}\)O\({}_{7}\). Phys Rev B 84:094421

    Google Scholar 

  17. Baum M, Schmalzl K, Steffens P, Hiess A, Regnault LP, Meven M, Becker P, Bohatý L, Braden M (2013) Controlling toroidal moments by crossed electric and magnetic fields. Phys Rev B 88:024414

    Article  ADS  Google Scholar 

  18. Ashcroft NW, Mermin DN (1976) Solid state physics. Saunders College Publishing, Philadelphia

    Google Scholar 

  19. Mermin ND (1965) Thermal properties of the inhomogeneous electron gas. Phys Rev 137:A1441–A1443

    Google Scholar 

  20. Staunton JB, Banerjee R, dos Santos Dias M, Deak A, Szunyogh L (2014) Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: compositional hypersensitivity of FeRh. Phys Rev B 89:054427

    Google Scholar 

  21. Zemen J, Mendive-Tapia E, Gercsi Z, Banerjee R, Staunton JB, Sandeman KG (2017) Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory. Phys Rev B 95:184438

    Article  ADS  Google Scholar 

  22. Mendive-Tapia E, Castán T (2015) Magnetocaloric and barocaloric responses in magnetovolumic systems. Phys Rev B 91:224421

    Google Scholar 

  23. Nikitin SA, Myalikgulyev G, Annaorazov MP, Tyurin AL, Myndyev RW, Akopyan SA (1992) Giant elastocaloric effect in FeRh alloy. Phys Lett A 171(3):234–236

    Article  ADS  Google Scholar 

  24. Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J-L, Pramanick S, Majumdar S, Frontera C, Mañosa L (2014) Barocaloric and magnetocaloric effects in \({\text{ Fe }}_{49}{\text{ Rh }}_{51}\). Phys Rev B 89:214105

    Google Scholar 

  25. Zhang XX, Tejada J, **n Y, Sun GF, Wong KW, Bohigas X (1996) Magnetocaloric effect in La\(_{0.67}\)Ca\(_{0.33}\)MnO\(_\delta \) and La\(_{0.60}\)Y\(_{0.07}\)Ca\(_{0.33}\)MnO\(_\delta \) bulk materials. Appl Phys Lett 69(23):3596–3598

    Google Scholar 

  26. Caron L, Miao XF, Klaasse JCP, Gama S, Brück E (2013) Tuning the giant inverse magnetocaloric effect in Mn\(_{2-x}\)Cr\(_{x}\)Sb compounds. Appl Phys Lett 103(11):112404

    Google Scholar 

  27. Tegus O, Brück E, Zhang L, Dagula, Buschow KHJ, de Boer FR (2002) Magnetic-phase transitions and magnetocaloric effects. Phys B: Condens Matter 319(1):174 – 192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Mendive Tapia .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendive Tapia, E. (2020). Minimisation of the Gibbs Free Energy: Magnetic Phase Diagrams and Caloric Effects. In: Ab initio Theory of Magnetic Ordering. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-37238-5_4

Download citation

Publish with us

Policies and ethics

Navigation