Optimal Volt/Var Control Applied to Modern Distribution Systems

  • Chapter
  • First Online:
Handbook of Optimization in Electric Power Distribution Systems

Part of the book series: Energy Systems ((ENERGY))

  • 1073 Accesses

Abstract

The voltage regulation in distribution systems refers to the primary objective of maintaining customers’ voltages within an acceptable range under all loading conditions. This function has been accomplished by the Volt/Var control—a strategy that coordinates voltage regulating devices and reactive power controls in order to reach a suitable operation of the system. As the modernization of the distribution grid has become a reality, new intelligent and updated schemes for Volt/Var control must be developed to face the recent operating scenario challenges and to make use of the technological advances in infrastructure. Under those circumstances, Volt/Var control has the task of achieving high quality power supply and, at the same time, meeting strict performance goals on the grid operation. To tackle these problems, intelligent systems are built providing a computational efficient optimization engine. In this context, this chapter presents the Volt/Var control, from basic concepts to advanced topics, laying the foundation for a complete optimization framework and introducing the Volt/Var optimization as a determinant tool to further enhance system operation objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agüero, J.R.: Improving the efficiency of power distribution systems through technical and non-technical losses reduction. In: 2012 IEEE PES Transmission and Distribution Conference and Exposition (T&D), pp. 1–8. IEEE, Orlando (2012). https://doi.org/10.1109/TDC.2012.6281652

  2. Aguero, J.R., Khodaei, A.: Grid modernization, DER integration and utility business models—trends challenges. IEEE Power Energ. Mag. 16(2), 112–121 (2018). https://doi.org/10.1109/MPE.2018.2811817

    Google Scholar 

  3. Ahmadi, H., Marti, J.R., Dommel, H.W.: A framework for volt-var optimization in distribution systems. IEEE Trans. Smart Grid 6(3), 1473–1483 (2015). https://doi.org/10.1109/TSG.2014.2374613

    Article  Google Scholar 

  4. Anilkumar, R., Devriese, G., Srivastava, A.K.: Voltage and reactive power control to maximize the energy savings in power distribution system with wind energy. IEEE Trans. Ind. Appl. 54(1), 656–664 (2018). https://doi.org/10.1109/TIA.2017.2740850

    Article  Google Scholar 

  5. Anwar, A., Mahmood, A.N., Taheri, J., Tari, Z., Zomaya, A.Y.: HPC-based intelligent Volt/VAr control of unbalanced distribution smart grid in the presence of noise. IEEE Trans. Smart Grid 8(3), 1446–1459 (2017). https://doi.org/10.1109/TSG.2017.2662229

    Article  Google Scholar 

  6. Aryanezhad, M.: Management and coordination of LTC, SVR, shunt capacitor and energy storage with high PV penetration in power distribution system for voltage regulation and power loss minimization. Int. J. Electr. Power Energy Syst. 100, 178–192 (2018). https://doi.org/10.1016/j.ijepes.2018.02.015

    Article  Google Scholar 

  7. Augugliaro, A., Dusonchet, L., Favuzza, S., Sanseverino, E.R.: Voltage regulation and power losses minimization in automated distribution networks by an evolutionary multiobjective approach. IEEE Trans. Power Syst. 19(3), 1516–1527 (2004). https://doi.org/10.1109/TPWRS.2004.825916

    Article  Google Scholar 

  8. Borghetti, A., Napolitano, F., Nucci, C.A.: Volt/Var optimization of unbalanced distribution feeders via mixed integer linear programming. Int. J. Electr. Power Energy Syst. 72, 40–47 (2015). https://doi.org/10.1016/j.ijepes.2015.02.009. The Special Issue for 18th Power Systems Computation Conference.

    Article  Google Scholar 

  9. Bose, A.: Smart transmission grid applications and their supporting infrastructure. IEEE Trans. Smart Grid 1(1), 11–19 (2010). https://doi.org/10.1109/TSG.2010.2044899

    Article  Google Scholar 

  10. Brazilian Electricity Regulatory Agency (ANEEL): Procedures for Distribution of Electrical Energy in the National Electric System (PRODIST) (2018). http://www.aneel.gov.br/modulo-8 (in Portuguese)

  11. Capitanescu, F., Bilibin, I., Ramos, E.R.: A comprehensive centralized approach for voltage constraints management in active distribution grid. IEEE Trans. Power Syst. 29(2), 933–942 (2014). https://doi.org/10.1109/TPWRS.2013.2287897

    Article  Google Scholar 

  12. Ceylan, O., Liu, G., Xu, Y., Tomsovic, K.: Distribution system voltage regulation by distributed energy resources. In: 2014 North American Power Symposium (NAPS), pp. 1–5. IEEE, Pullman (2014). https://doi.org/10.1109/NAPS.2014.6965466

  13. Ceylan, O., Liu, G., Tomsovic, K.: Coordinated distribution network control of tap changer transformers, capacitors and PV inverters. Electr. Eng. 100(2), 1133–1146 (2018). https://doi.org/10.1007/s00202-017-0563-x

    Article  Google Scholar 

  14. Chang, N.E.: Determination of primary-feeder losses. IEEE Trans. Power Apparatus Syst. PAS-87(12), 1991–1994 (1968). https://doi.org/10.1109/TPAS.1968.292159

    Article  Google Scholar 

  15. Cheng, S., Chen, M.Y.: Multi-objective reactive power optimization strategy for distribution system with penetration of distributed generation. Int. J. Electr. Power Energy Syst. 62, 221–228 (2014). https://doi.org/10.1016/j.ijepes.2014.04.040

    Article  Google Scholar 

  16. Chen, P., Chen, Z., Bak-Jensen, B.: Probabilistic load flow: a review. In: 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp. 1586–1591. IEEE, Nan**g (2008). https://doi.org/10.1109/DRPT.2008.4523658

  17. Chen, Y., Strothers, M., Benigni, A.: All-day coordinated optimal scheduling in distribution grids with PV penetration. Electr. Power Syst. Res. 164, 112–122 (2018). https://doi.org/10.1016/j.epsr.2018.07.028

    Article  Google Scholar 

  18. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Genetic and Evolutionary Computation Series. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2

  19. Coley, D.A.: An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific, River Edge (1999)

    Book  Google Scholar 

  20. Daratha, N., Das, B., Sharma, J.: Coordination between OLTC and SVC for voltage regulation in unbalanced distribution system distributed generation. IEEE Trans. Power Syst. 29(1), 289–299 (2014). https://doi.org/10.1109/TPWRS.2013.2280022

    Article  Google Scholar 

  21. Das, B. (ed.): Power distribution automation. In: No. 75 in IET Power and Energy Series, 1st edn. The Institution of Engineering and Technology, London (2016)

    Google Scholar 

  22. de Mello, A.P.C., Pfitscher, L.L., Bernardon, D.P.: Coordinated Volt/VAr control for real-time operation of smart distribution grids. Electr. Power Syst. Res. 151, 233–242 (2017). https://doi.org/10.1016/j.epsr.2017.05.040

    Article  Google Scholar 

  23. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms, 1st edn. Wiley-Interscience series in systems and optimization. Wiley, Chichester (2001)

    Google Scholar 

  24. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang, L., Ng, A.H.C., Deb, K. (eds.) Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing, Chap. 1, pp. 3–34. Springer, London (2011). https://doi.org/10.1007/978-0-85729-652-8_1

    Chapter  Google Scholar 

  25. Deng, Y., Ren, X., Zhao, C., Zhao, D.: A heuristic and algorithmic combined approach for reactive power optimization with time-varying load demand in distribution systems. IEEE Trans. Power Syst. 17(4), 1068–1072 (2002). https://doi.org/10.1109/TPWRS.2002.804973

    Article  Google Scholar 

  26. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Natural Computer Series. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-44874-8

    Book  Google Scholar 

  27. Electric Power Research Institute: Advanced Metering Infrastructure (AMI). EPRI, Palo Alto (2007). https://www.ferc.gov/CalendarFiles/20070423091846-EPRI%20-%20Advanced%20Metering.pdf

  28. Evangelopoulos, V.A., Georgilakis, P.S., Hatziargyriou, N.D.: Optimal operation of smart distribution networks: A review of models, methods and future research. Electr. Power Syst. Res. 140, 95–106 (2016). https://doi.org/10.1016/j.epsr.2016.06.035

    Article  Google Scholar 

  29. Feng, X., Peterson, W., Yang, F., Wickramasekara, G.M., Finney, J.: Smarter grids are more efficient: voltage and var optimization reduces energy losses and peak demands. ABB Rev. 2009(3), 33–37 (2009). http://search-ext.abb.com/library/Download.aspx?DocumentID=9AKK104295D7260&LanguageCode=en&DocumentPartId=&Action=Launch

    Google Scholar 

  30. Ferreira, E.C., Neto, M.S.I., Asada, E.N.: Metaheuristic strategies for solving the optimal reactive power dispatch with discrete variables. In: 2016 12th IEEE International Conference on Industry Applications (INDUSCON), pp. 1–6. IEEE, Curitiba (2016). https://doi.org/10.1109/INDUSCON.2016.7874516

  31. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley, Reading (1989)

    Google Scholar 

  32. Gonen, T.: Electric Power Distribution Engineering, 3rd edn. CRC Press, Boca Raton (2014)

    Google Scholar 

  33. Hong, Y., Luo, Y.: Optimal VAR control considering wind farms using probabilistic load-flow and gray-based genetic algorithms. IEEE Trans. Power Deliv. 24(3), 1441–1449 (2009). https://doi.org/10.1109/TPWRD.2009.2016625

    Article  Google Scholar 

  34. Hu, Z., Wang, X., Chen, H., Taylor, G.A.: Volt/VAr control in distribution systems using a time-interval based approach. IEE Proc. Gener. Transm. Distrib. 150(5), 548–554 (2003). https://doi.org/10.1049/ip-gtd:20030562

    Article  Google Scholar 

  35. Huda, A.S.N., Zivanovic, R.: Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools. Renew. Sust. Energ. Rev. 76, 974–988 (2017). https://doi.org/10.1016/j.rser.2017.03.069

    Article  Google Scholar 

  36. Ibrahim, M., Salama, M.M.A.: Smart distribution system volt/VAR control using distributed intelligence and wireless communication. IET Gener. Transm. Distrib. 9(4), 307–318 (2015). https://doi.org/10.1049/iet-gtd.2014.0513

    Article  Google Scholar 

  37. IEEE Guide for Application of Shunt Power Capacitors. IEEE Std 1036-2010 (Revision of IEEE Std 1036-1992), pp. 1–97 (2011). https://doi.org/10.1109/IEEESTD.2011.5703189

  38. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1–138 (2018). https://doi.org/10.1109/IEEESTD.2018.8332112

  39. INPE: SONDA—Sistema Nacional de Organização de Dados Ambientais [National Organization System of Environment Data]. Instituto Nacional de Pesquisas Espaciais, São José dos (2016). http://sonda.ccst.inpe.br/index.html. In Portuguese

  40. Iwata, S., Fukuyama, Y.: Verification of dependability on parallel differential evolution based voltage and reactive power control. IFAC-PapersOnLine 49(27), 140–145 (2016). https://doi.org/10.1016/j.ifacol.2016.10.733. IFAC Workshop on Control of Transmission and Distribution Smart Grids CTDSG 2016

    Article  Google Scholar 

  41. Janikow, C.Z., Michalewicz, Z.: An experimental comparison of binary and floating point representations in genetic algorithms. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms (ICGA), pp. 31–36. Morgan Kaufmann, San Diego (1991)

    Google Scholar 

  42. Jardini, J.A., Tahan, C.M.V., Gouvea, M.R., Ahn, S.U., Figueiredo, F.M.: Daily load profiles for residential, commercial and industrial low voltage consumers. IEEE Trans. Power Deliv. 15(1), 375–380 (2000). https://doi.org/10.1109/61.847276

    Article  Google Scholar 

  43. Jenkins, N., Allan, R., Crossley, P., Kirschen, D., Strbac, G.: Embedded generation. In: No. 31 in IET Power and Energy Series, 1st edn. The Institution of Engineering and Technology, London (2000)

    Google Scholar 

  44. Keane, A., Ochoa, L.F., Borges, C.L.T., Ault, G.W., Alarcon-Rodriguez, A.D., Currie, R.A.F., Pilo, F., Dent, C., Harrison, G.P.: State-of-the-art techniques and challenges ahead for distributed generation planning and optimization. IEEE Trans. Power Syst. 28(2), 1493–1502 (2013). https://doi.org/10.1109/TPWRS.2012.2214406

    Article  Google Scholar 

  45. Kersting, W.H.: Distribution system modeling and analysis. In: The Electric Power Engineering Series, 1st edn. CRC Press, Boca Raton (2001)

    Google Scholar 

  46. Kersting, W.H.: Radial distribution test feeders. In: 2001 IEEE Power Engineering Society Winter Meeting. Cat. No.01CH37194, vol. 2, pp. 908–912. IEEE, Columbus (2001). https://doi.org/10.1109/PESW.2001.916993

  47. Kisacikoglu, M.C., Ozpineci, B., Tolbert, L.M.: Examination of a PHEV bidirectional charger system for V2G reactive power compensation. In: 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 458–465. IEEE, Palm Springs (2010). https://doi.org/10.1109/APEC.2010.5433629

  48. Krok, M.J., Genc, S.: A coordinated optimization approach to Volt/VAr control for large power distribution networks. In: Proceedings of the 2011 American Control Conference, pp. 1145–1150. IEEE, San Francisco (2011). https://doi.org/10.1109/ACC.2011.5991606

  49. Kulmala, A., Repo, S., Järventausta, P.: Coordinated voltage control in distribution networks including several distributed energy resources. IEEE Trans. Smart Grid 5(4), 2010–2020 (2014). https://doi.org/10.1109/TSG.2014.2297971

    Article  Google Scholar 

  50. Kundur, P.: Power System Stability and Control, 1st edn. McGraw-Hill, New York (1994)

    Google Scholar 

  51. Lee, K.Y., El-Sharkawi, M.A. (eds.): Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems. Wiley, Hoboken (2008)

    Google Scholar 

  52. Li, P., Ji, H., Wang, C., Zhao, J., Song, G., Ding, F., Wu, J.: Coordinated control method of voltage and reactive power for active distribution networks based on soft open point. IEEE Trans. Sustain. Energy 8(4), 1430–1442 (2017). https://doi.org/10.1109/TSTE.2017.2686009

    Article  Google Scholar 

  53. Liang, R.H., Wang, Y.S.: Fuzzy-based reactive power and voltage control in a distribution system. IEEE Trans. Power Deliv. 18(2), 610–618 (2003). https://doi.org/10.1109/TPWRD.2003.809740

    Article  Google Scholar 

  54. Liang, R.H., Chen, Y.K., Chen, Y.T.: Volt/Var control in a distribution system by a fuzzy optimization approach. Int. J. Electr. Power Energy Syst. 33(2), 278–287 (2011). https://doi.org/10.1016/j.ijepes.2010.08.023

    Article  Google Scholar 

  55. Liu, M.B., Canizares, C.A., Huang, W.: Reactive power and voltage control in distribution systems with limited switching operations. IEEE Trans. Power Syst. 24(2), 889–899 (2009). https://doi.org/10.1109/TPWRS.2009.2016362

    Article  Google Scholar 

  56. Macedo, L.H., Franco, J.F., Rider, M.J., Romero, R.: Optimal operation of distribution networks considering energy storage devices. IEEE Trans. Smart Grid 6(6), 2825–2836 (2015). https://doi.org/10.1109/TSG.2015.2419134

    Article  Google Scholar 

  57. Madrigal, M., Uluski, R.: Practical Guidance for Defining a Smart Grid Modernization Strategy: The Case of Distribution. The World Bank, Washington (2015). https://doi.org/10.1596/978-1-4648-0410-6

    Google Scholar 

  58. Madureira, A.G.: Coordinated and optimized voltage management of distribution networks with multi-microgrids. Ph.D. Thesis, Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto, Portugal (2010). https://repositorio.inesctec.pt/bitstream/123456789/3180/1/PS-06923.pdf

  59. Madureira, A.G., Peças Lopes, J.A.: Coordinated voltage support in distribution networks with distributed generation and microgrids. IET Renew. Power Gener. 3(4), 439–454 (2009). https://doi.org/10.1049/iet-rpg.2008.0064

    Article  Google Scholar 

  60. Malakar, T., Goswami, S.: Active and reactive dispatch with minimum control movements. Int. J. Electr. Power Energy Syst. 44(1), 78–87 (2013). https://doi.org/10.1016/j.ijepes.2012.07.014

    Article  Google Scholar 

  61. Malekpour, A.R., Niknam, T.: A probabilistic multi-objective daily Volt/Var control at distribution networks including renewable energy sources. Energy 36(5), 3477–3488 (2011). https://doi.org/10.1016/j.energy.2011.03.052

    Article  Google Scholar 

  62. Malekpour, A.R., Tabatabaei, S., Niknam, T.: Probabilistic approach to multi-objective Volt/Var control of distribution system considering hybrid fuel cell and wind energy sources using improved shuffled frog lea** algorithm. Renew. Energy 39(1), 228–240 (2012). https://doi.org/10.1016/j.renene.2011.08.004

    Article  Google Scholar 

  63. Manbachi, M., Farhangi, H., Palizban, A., Arzanpour, S.: Impact of V2G on real-time adaptive Volt/VAr optimization of distribution networks. In: 2013 IEEE Electrical Power Energy Conference, pp. 1–6. IEEE, Halifax (2013). https://doi.org/10.1109/EPEC.2013.6802909

  64. Manbachi, M., Nasri, M., Shahabi, B., Farhangi, H., Palizban, A., Arzanpour, S., Moallem, M., Lee, D.C.: Real-time adaptive VVO/CVR topology using multi-agent system and IEC 61850-based communication protocol. IEEE Trans. Sustain. Energy 5(2), 587–597 (2014). https://doi.org/10.1109/TSTE.2013.2278540

    Article  Google Scholar 

  65. Manbachi, M., Farhangi, H., Palizban, A., Arzanpour, S.: A novel Volt-VAR optimization engine for smart distribution networks utilizing Vehicle to Grid dispatch. Int. J. Electr. Power Energy Syst. 74, 238–251 (2016). https://doi.org/10.1016/j.ijepes.2015.07.030

    Article  Google Scholar 

  66. Manbachi, M., Sadu, A., Farhangi, H., Monti, A., Palizban, A., Ponci, F., Arzanpour, S.: Impact of EV penetration on Volt-VAR optimization of distribution networks using real-time co-simulation monitoring platform. Appl. Energy 169, 28–39 (2016). https://doi.org/10.1016/j.apenergy.2016.01.084

    Article  Google Scholar 

  67. Manbachi, M., Sadu, A., Farhangi, H., Monti, A., Palizban, A., Ponci, F., Arzanpour, S.: Real-time co-simulation platform for smart grid Volt-VAR optimization using IEC 61850. IEEE Trans. Ind. Inf. 12(4), 1392–1402 (2016). https://doi.org/10.1109/TII.2016.2569586

    Article  Google Scholar 

  68. Manbachi, M., Farhangi, H., Palizban, A., Arzanpour, S.: Smart grid adaptive volt-VAR optimization: Challenges for sustainable future grids. Sustain. Cities Soc. 28, 242–255 (2017). https://doi.org/10.1016/j.scs.2016.09.014

    Article  Google Scholar 

  69. McGranaghan, M., Uluski, R.W.: Smart Distribution Systems Workshop. CIRED, Frankfurt (2011). http://grouper.ieee.org/groups/td/dist/da/doc/2011%20CIRED%20Panel%20Tutorial%20binder_AH.pdf. EPRI

  70. Meier, A.: Electric power systems. In: Wiley survival guides in engineering and science, 1st edn. Wiley-IEEE, Hoboken, (2006)

    Google Scholar 

  71. Meirinhos, J.L., Rua, D.E., Carvalho, L.M., Madureira, A.G.: Multi-temporal optimal power flow for voltage control in MV networks using distributed energy resources. Electr. Power Syst. Res. 146, 25–32 (2017). https://doi.org/10.1016/j.epsr.2017.01.016

    Article  Google Scholar 

  72. Miranda, V., Fonseca, N.: EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems. In: IEEE/PES Transmission and Distribution Conference and Exhibition, vol. 2, pp. 745–750. IEEE, Yokohama (2002). https://doi.org/10.1109/TDC.2002.1177567

  73. Miranda, V., Fonseca, N.: Reactive power dispatch with EPSO-evolutionary particle swarm optimization. In: Proceedings of PMAPS - International Conference on Probabilistic Methods Applied to Power Systems, p. 6. Naples, Italy (2002)

    Google Scholar 

  74. Mitchell, M.: An Introduction to Genetic Algorithms, 1st edn. MIT, Cambridge (1998)

    Google Scholar 

  75. Mohapatra, A., Bijwe, P.R., Panigrahi, B.K.: An efficient hybrid approach for Volt/Var control in distribution systems. IEEE Trans. Power Deliv. 29(4), 1780–1788 (2014). https://doi.org/10.1109/TPWRD.2014.2306845

    Article  Google Scholar 

  76. Niknam, T.: A new approach based on ant colony optimization for daily Volt/Var control in distribution networks considering distributed generators. Energy Convers. Manag. 49(12), 3417–3424 (2008). https://doi.org/10.1016/j.enconman.2008.08.015

    Article  Google Scholar 

  77. Niknam, T.: A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering distributed generators. Appl. Energy 88(3), 778–788 (2011). https://doi.org/10.1016/j.apenergy.2010.08.027

    Article  Google Scholar 

  78. Niknam, T., Ranjbar, A.M., Shirani, A.R.: Impact of distributed generation on Volt/Var control in distribution networks. In: 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3, p. 7. IEEE, Bologna (2003). https://doi.org/10.1109/PTC.2003.1304390

  79. Niknam, T., Firouzi, B.B., Ostadi, A.: A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators. Appl. Energy 87(6), 1919–1928 (2010). https://doi.org/10.1016/j.apenergy.2010.01.003

    Article  Google Scholar 

  80. Niknam, T., Zare, M., Aghaei, J.: Scenario-based multiobjective Volt/Var control in distribution networks including renewable energy sources. IEEE Trans. Power Deliv. 27(4), 2004–2019 (2012). https://doi.org/10.1109/TPWRD.2012.2209900

    Article  Google Scholar 

  81. Oliveira, D.Q., Marujo, D., Santos, M.V., Bonatto, B.D., Arango, H., de Souza, A.C.Z., Delboni, L.F.N., Filho, J.M.C., Silveira, P.M., Felber, L.A., Braga, M.F.: Multiobjective voltage control in smart distribution power systems. In: 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), pp. 7–12. IEEE, Montevideo (2015). https://doi.org/10.1109/ISGT-LA.2015.7381121

  82. Padilha-Feltrin, A., Rodezno, D.A.Q., Mantovani, J.R.S.: Volt-var multiobjective optimization to peak-load relief and energy efficiency in distribution networks. IEEE Trans. Power Deliv. 30(2), 618–626 (2015). https://doi.org/10.1109/TPWRD.2014.2336598

    Article  Google Scholar 

  83. Park, J.Y., Nam, S.R., Park, J.K.: Control of a ULTC considering the dispatch schedule of capacitors in a distribution system. IEEE Trans. Power Syst. 22(2), 755–761 (2007). https://doi.org/10.1109/TPWRS.2007.895168

    Article  Google Scholar 

  84. Paudyal, S., Canizares, C.A., Bhattacharya, K.: Optimal operation of distribution feeders in smart grids. IEEE Trans. Ind. Electron. 58(10), 4495–4503 (2011). https://doi.org/10.1109/TIE.2011.2112314

    Article  Google Scholar 

  85. Primadianto, A., Lu, C.N.: A review on distribution system state estimation. IEEE Trans. Power Syst. 32(5), 3875–3883 (2017). https://doi.org/10.1109/TPWRS.2016.2632156

    Article  Google Scholar 

  86. Radatz, P., Kagan, N., Rocha, C., Smith, J., Dugan, R.C.: Assessing maximum DG penetration levels in a real distribution feeder by using OpenDSS. In: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), pp. 71–76. IEEE, Belo Horizonte (2016). https://doi.org/10.1109/ICHQP.2016.7783416

  87. Rahimi, S., Marinelli, M., Silvestro, F.: Evaluation of requirements for Volt/Var control and optimization function in distribution management systems. In: 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), pp. 331–336. IEEE, Florence (2012). https://doi.org/10.1109/EnergyCon.2012.6347777

  88. Ranamuka, D., Agalgaonkar, A.P., Muttaqi, K.M.: Online voltage control in distribution systems with multiple voltage regulating devices. IEEE Trans. Sustain. Energy 5(2), 617–628 (2014). https://doi.org/10.1109/TSTE.2013.2277719

    Article  Google Scholar 

  89. Rothlauf, F.: Binary representations of integers and the performance of selectorecombinative genetic algorithms. In: Guervós, J.J.M., Adamidis, P., Beyer, H.G., Schwefel, H.P., Fernández-Villacañas, J.L. (eds.) Parallel Problem Solving from Nature—PPSN VII. Lecture Notes in Computer Science, vol. 2439, pp. 99–108. Springer, Berlin (2002)

    Chapter  Google Scholar 

  90. Roytelman, I., Ganesan, V.: Coordinated local and centralized control in distribution management systems. IEEE Trans. Power Deliv. 15(2), 718–724 (2000). https://doi.org/10.1109/61.853010

    Article  Google Scholar 

  91. Roytelman, I., Wee, B.K., Lugtu, R.L.: Volt/Var control algorithm for modern distribution management system. IEEE Trans. Power Syst. 10(3), 1454–1460 (1995). https://doi.org/10.1109/59.466504

    Article  Google Scholar 

  92. Sabillon-Antunez, C., Melgar-Dominguez, O.D., Franco, J.F., Lavorato, M., Rider, M.J.: Volt-VAr control and energy storage device operation to improve the electric vehicle charging coordination in unbalanced distribution networks. IEEE Trans. Sustain. Energy 8(4), 1560–1570 (2017). https://doi.org/10.1109/TSTE.2017.2695195

    Article  Google Scholar 

  93. Sallam, A.A., Malik, O.P.: Electric distribution systems. In: No. 45 in IEEE Press Series on Power Engineering, 1st edn. Wiley-IEEE, Hoboken (2011). https://doi.org/10.1002/9780470943854

    Book  Google Scholar 

  94. Satsangi, S., Kumbhar, G.B.: Effect of load models on scheduling of VVC devices in a distribution network. IET Gener. Transm. Distrib. 12(17), 3993–4001 (2018). https://doi.org/10.1049/iet-gtd.2018.5262

    Article  Google Scholar 

  95. Sen, P.K., Lee, K.H.: Conservation voltage reduction technique: an application guideline for smarter grid. IEEE Trans. Ind. Appl. 52(3), 2122–2128 (2016). https://doi.org/10.1109/TIA.2016.2525937

    Article  Google Scholar 

  96. Senjyu, T., Miyazato, Y., Touma, S., Yona, A., Funabashi, T., Kim, C.: Optimal control of distribution voltage profile by considering the number of operation of the distribution installations. In: 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–8. IEEE, Pittsburgh (2008). https://doi.org/10.1109/PES.2008.4596615

  97. Senjyu, T., Miyazato, Y., Yona, A., Urasaki, N., Funabashi, T.: Optimal distribution voltage control and coordination with distributed generation. IEEE Trans. Power Deliv. 23(2), 1236–1242 (2008). https://doi.org/10.1109/TPWRD.2007.908816

    Article  Google Scholar 

  98. Shen, Z., Baran, M.E.: Gradient based centralized optimal Volt/Var control strategy for smart distribution system. In: 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), pp. 1–6. IEEE, Washington (2013). https://doi.org/10.1109/ISGT.2013.6497865

  99. Shigenobu, R., Noorzad, A.S., Yona, A., Senjyu, T.: Multi-objective optimisation of step voltage regulator operation and optimal placement for distribution systems design using linkage combination update-non-dominated sorting genetic algorithm-II. IET Gener. Transm. Distrib. 12(1), 20–30 (2018). https://doi.org/10.1049/iet-gtd.2016.1361

    Article  Google Scholar 

  100. Short, T.A.: Electric power distribution handbook. In: The Electric Power Engineering Series, 1st edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  101. Smith, C.A., Redfern, M.A., Potts, S.: Improvement in the performance of on-load tap changer transformers operating in series. In: 2003 IEEE Power Engineering Society General Meeting, vol. 3, pp. 1905–1910. IEEE, Toronto (2003). https://doi.org/10.1109/PES.2003.1267455

  102. Son, K.M., Moon, K.S., Lee, S.K., Park, J.K.: Coordination of an SVC with a ULTC reserving compensation margin for emergency control. IEEE Trans. Power Deliv. 15(4), 1193–1198 (2000). https://doi.org/10.1109/61.891502

    Article  Google Scholar 

  103. Srivastava, A.K., Pandey, A.S., Singh, D.: Short-term load forecasting methods: a review. In: 2016 International Conference on Emerging Trends in Electrical Electronics Sustainable Energy Systems (ICETEESES), pp. 130–138. IEEE, Sultanpur (2016). https://doi.org/10.1109/ICETEESES.2016.7581373

  104. Taylor, T.: Model behavior: using distribution models to deliver smart grid Volt/Var control. ABB Rev. 12(3), 44–51 (2012). https://library.e.abb.com/public/0b1ca7c89a1ae491c1257a79004c4ba8/44-51%203m211_EN_72dpi.pdf

    Google Scholar 

  105. Ulinuha, A., Masoum, M.A.S., Islam, S.: Hybrid genetic-fuzzy algorithm for Volt/Var/total harmonic distortion control of distribution systems with high penetration of non-linear loads. IET Gener. Transm. Distrib. 5(4), 425–439 (2011). https://doi.org/10.1049/iet-gtd.2010.0168

    Article  Google Scholar 

  106. Uluski, R.W.: Volt-VAR Control Workshop. IEEE PES, Minneapolis (2010). http://grouper.ieee.org/groups/td/dist/da/doc/Uluski%20Summary%20of%20EPRI%20Volt%20VAR%20Workshop,%20Final.pdf. EPRI

  107. Uluski, R.W.: VVC in the smart grid era. In: 2010 IEEE Power and Energy Society General Meeting, pp. 1–7. IEEE, Providence (2010). https://doi.org/10.1109/PES.2010.5589850

  108. Uluski, R.W.: Volt/Var Control and Optimization Concepts and Issues. EPRI, [S.l.] (2011). http://cialab.ee.washington.edu/nwess/2012/talks/uluski.pdf

  109. Uluski, R.: Using standards to integrate distributed energy resources with distribution management systems. In: 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), pp. 1–3. IET, Stockholm (2013). https://doi.org/10.1049/cp.2013.1219

  110. Vítor, T.S., Vieira, J.C.M.: Optimal voltage regulation in distribution systems with unbalanced loads and distributed generation. In: 2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), pp. 942–947. IEEE, Melbourne (2016). https://doi.org/10.1109/ISGT-Asia.2016.7796512

  111. Vítor, T.S., Vieira, J.C.M.: A robust Volt/Var control via multi-objective optimization. In: 2018 13th IEEE International Conference on Industry Applications (INDUSCON), pp. 672–678. IEEE, São Paulo (2018). https://doi.org/10.1109/INDUSCON.2018.8627297

  112. Wang, Z., Wang, J.: Review on implementation and assessment of conservation voltage reduction. IEEE Trans. Power Syst. 29(3), 1306–1315 (2014). https://doi.org/10.1109/TPWRS.2013.2288518

    Article  Google Scholar 

  113. Wang, P., Liang, D.H., Yi, J., Lyons, P.F., Davison, P.J., Taylor, P.C.: Integrating electrical energy storage into coordinated voltage control schemes for distribution networks. IEEE Trans. Smart Grid 5(2), 1018–1032 (2014). https://doi.org/10.1109/TSG.2013.2292530

    Article  Google Scholar 

  114. Wester, C., Engelman, N., Smith, T., Odetunde, K., Anderson, B., Reilly, J.: The role of the SCADA RTU in today’s substation. In: 2015 68th Annual Conference for Protective Relay Engineers, pp. 622–628. IEEE, College Station (2015). https://doi.org/10.1109/CPRE.2015.7102199

  115. Wilson, T.L.: Energy conservation with voltage reduction–fact or fantasy. In: 2002 Rural Electric Power Conference, pp. C3.1–C3.6. IEEE, Colorado Springs (2002). https://doi.org/10.1109/REPCON.2002.1002295

  116. **ao, Y., Tian, S., Yuan, Q., Zhang, X.: An approach to the integration of GIS and DMS. In: 1998 International Conference on Power System Technology, 1998. Proceedings. POWERCON ’98, pp. 297–301. IEEE, Bei**g (1998). https://doi.org/10.1109/ICPST.1998.728974

  117. Yan, W., Lu, S., Yu, D.C.: A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique. IEEE Trans. Power Syst. 19(2), 913–918 (2004). https://doi.org/10.1109/TPWRS.2004.826716

    Article  Google Scholar 

  118. Yilmaz, M., El-Shatshat, R.: State-based Volt/VAR control strategies for active distribution networks. Int. J. Electr. Power Energy Syst. 100, 411–421 (2018). https://doi.org/10.1016/j.ijepes.2018.02.040

    Article  Google Scholar 

  119. Yoshida, H., Kawata, K., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 15(4), 1232–1239 (2000). https://doi.org/10.1109/59.898095

    Article  Google Scholar 

  120. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965). http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf

    Article  Google Scholar 

  121. Zafar, R., Ravishankar, J., Fletcher, J.E., Pota, H.R.: Multi-timescale model predictive control of battery energy storage system using conic relaxation in smart distribution grids. IEEE Trans. Power Syst. 33(6), 7152–7161 (2018). https://doi.org/10.1109/TPWRS.2018.2847400

    Article  Google Scholar 

  122. Zare, M., Niknam, T.: A new multi-objective for environmental and economic management of Volt/Var control considering renewable energy resources. Energy 55, 236–252 (2013). https://doi.org/10.1016/j.energy.2013.03.058

    Article  Google Scholar 

  123. Zare, M., Niknam, T., Azizipanah-Abarghooee, R., Amiri, B.: Multi-objective probabilistic reactive power and voltage control with wind site correlations. Energy 66, 810–822 (2014). https://doi.org/10.1016/j.energy.2014.01.034

    Article  Google Scholar 

  124. Zhihuan, L., Yinhong, L., **anzhong, D.: Non-dominated sorting genetic algorithm-II for robust multi-objective optimal reactive power dispatch. IET Gener. Transm. Distrib. 4(9), 1000–1008 (2010). https://doi.org/10.1049/iet-gtd.2010.0105

    Article  Google Scholar 

  125. Zhou, B., Xu, D., Chan, K.W., Li, C., Cao, Y., Bu, S.: A two-stage framework for multiobjective energy management in distribution networks with a high penetration of wind energy. Energy 135, 754–766 (2017). https://doi.org/10.1016/j.energy.2017.06.178

    Article  Google Scholar 

  126. Ziadi, Z., Taira, S., Oshiro, M., Funabashi, T.: Optimal power scheduling for smart grids considering controllable loads and high penetration of photovoltaic generation. IEEE Trans. Smart Grid 5(5), 2350–2359 (2014). https://doi.org/10.1109/TSG.2014.2323969

    Article  Google Scholar 

  127. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. in computer engineering. In: Computer Engineering and Networks Laboratory (TIK). Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich (1999). http://www.tik.ee.ethz.ch/sop/publicationListFiles/zitz1999a.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Soares Vítor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vítor, T.S., Asada, E.N., de Melo Vieira, J.C. (2020). Optimal Volt/Var Control Applied to Modern Distribution Systems. In: Resener, M., Rebennack, S., Pardalos, P., Haffner, S. (eds) Handbook of Optimization in Electric Power Distribution Systems. Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-36115-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36115-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36114-3

  • Online ISBN: 978-3-030-36115-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation