Nanoparticle Vaccines for Immunotherapy: From Design to Clinical Trials

  • Chapter
  • First Online:
Mucosal Delivery of Drugs and Biologics in Nanoparticles

Abstract

Nanoparticles have the capacity to activate the immune system, based on both intrinsic particle characteristics and through the delivery of immune activating cargo. Co-delivery of antigens with adjuvants, such as cytokines, cytotoxic agents or pathogen-associated molecular patterns, presents opportunities for stimulating antigen-specific immune responses. This chapter highlights the immunogenic benefits of select chemotherapeutics and the use of nanoparticles to deliver immunogenic molecules and antigens. The influence of intrinsic nanoparticle properties and biological barriers on immune responses to nanoparticles is also discussed. In closing, a summary of nanoparticles approved for clinical use in the United States and examples of those approved in other countries are presented to highlight successes in nano-immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strassburg MA. The global eradication of smallpox. Am J Infect Control. 1982;10(2):53–9.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. Global vaccine action plan: monitoring eaaarGW.

    Google Scholar 

  3. Hinman A. Eradication of vaccine-preventable diseases. Annu Rev Public Health. 1999;20:211–29.

    Article  CAS  PubMed  Google Scholar 

  4. Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res. 2015;4(1):23–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  CAS  PubMed  Google Scholar 

  6. Serda RE. Particle platforms for cancer immunotherapy. Int J Nanomedicine. 2013;8:1683–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clinical and experimental vaccine research. 2015;4(1):23–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Gregorio E, Rappuoli R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol. 2014;14(7):505–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Pasquale A, Preiss S, Tavares Da Silva F, Garcon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel). 2015;3(2):320–43.

    Article  CAS  Google Scholar 

  10. Naud PS, Roteli-Martins CM, De Carvalho NS, et al. Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: final analysis of a long-term follow-up study up to 9.4 years post-vaccination. Hum Vaccin Immunother. 2014;10(8):2147–62.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fuenmayor J, Godia F, Cervera L. Production of virus-like particles for vaccines. New Biotechnol. 2017;39(Pt B):174–80.

    Article  CAS  Google Scholar 

  12. Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014;31(10):2563–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meraz IM, Savage DJ, Segura-Ibarra V, et al. Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm. 2014;11(10):3484–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  CAS  PubMed  Google Scholar 

  15. Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E. Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release. 2012;161(1):25–37.

    Article  CAS  PubMed  Google Scholar 

  16. Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science. 2007;316(5824):612–6.

    Article  CAS  PubMed  Google Scholar 

  17. Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature. 2003;425(6956):397–402.

    Article  CAS  PubMed  Google Scholar 

  18. Houde M, Bertholet S, Gagnon E, et al. Phagosomes are competent organelles for antigen cross-presentation. Nature. 2003;425(6956):402–6.

    Article  CAS  PubMed  Google Scholar 

  19. Basha G, Lizee G, Reinicke AT, Seipp RP, Omilusik KD, Jefferies WA. MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells. PLoS One. 2008;3(9):e3247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Croissant JG, Fatieiev Y, Omar H, et al. Periodic mesoporous organosilica nanoparticles with controlled morphologies and high drug/dye loadings for multicargo delivery in cancer cells. Chemistry. 2016;22(28):9607–15.

    Article  CAS  PubMed  Google Scholar 

  21. Noureddine A, Brinker CJ. Pendant/bridged/mesoporous silsesquioxane nanoparticles: versatile and biocompatible platforms for smart delivery of therapeutics. Chem Eng J. 2018;340:125–47.

    Article  CAS  Google Scholar 

  22. Park J, Wrzesinski SH, Stern E, et al. Combination delivery of TGF-beta inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012;11(10):895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan Y, Kuai R, Xu Y, Ochyl LJ, Irvine DJ, Moon JJ. Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett. 2017;17(12):7387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dane EL, Irvine DJ. Big thinking for adjuvants. Nat Biotechnol. 2015;33(11):1146–8.

    Article  CAS  PubMed  Google Scholar 

  25. Meraz IM, Hearnden CH, Liu X, et al. Multivalent presentation of MPL by porous silicon microparticles favors T helper 1 polarization enhancing the anti-tumor efficacy of doxorubicin nanoliposomes. PLoS One. 2014;9(4):e94703.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Horisawa E, Kubota K, Tuboi I, et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm Res. 2002;19(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  27. Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev. 2001;50(1–2):143–56.

    Article  CAS  PubMed  Google Scholar 

  28. Mahony D, Cavallaro AS, Stahr F, Mahony TJ, Qiao SZ, Mitter N. Mesoporous silica nanoparticles act as a self-adjuvant for ovalbumin model antigen in mice. Small. 2013;9(18):3138–46.

    Article  CAS  PubMed  Google Scholar 

  29. Borges O, Cordeiro-da-Silva A, Romeijn SG, et al. Uptake studies in rat Peyer’s patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. J Control Release. 2006;114(3):348–58.

    Article  CAS  PubMed  Google Scholar 

  30. Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines through particle design. Small. 2011;7(14):1919–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutierro I, Hernandez RM, Igartua M, Gascon AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine. 2002;21(1–2):67–77.

    Article  CAS  PubMed  Google Scholar 

  33. McClean S, Prosser E, Meehan E, et al. Binding and uptake of biodegradable poly-DL-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci. 1998;6(2):153–63.

    Article  CAS  PubMed  Google Scholar 

  34. Simecka JW. Mucosal immunity of the gastrointestinal tract and oral tolerance. Adv Drug Deliv Rev. 1998;34(2–3):235–59.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang PL, Lin HJ, Wang HW, et al. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater. 2015;11:356–67.

    Article  CAS  PubMed  Google Scholar 

  36. Stano A, Nembrini C, Swartz MA, Hubbell JA, Simeoni E. Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization. Vaccine. 2012;30(52):7541–6.

    Article  CAS  PubMed  Google Scholar 

  37. Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25(10):1159–64.

    Article  CAS  PubMed  Google Scholar 

  38. Sloat BR, Sandoval MA, Hau AM, He Y, Cui Z. Strong antibody responses induced by protein antigens conjugated onto the surface of lecithin-based nanoparticles. J Control Release. 2010;141(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Sloat BR, Yanasarn N, Cui Z. Relationship between the size of nanoparticles and their adjuvant activity: data from a study with an improved experimental design. Eur J Pharm Biopharm. 2011;78(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  40. Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release. 2015;220(Pt A):141–8.

    Article  CAS  PubMed  Google Scholar 

  41. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Ge Q, Ting D, et al. Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater. 2004;3(3):190–6.

    Article  CAS  PubMed  Google Scholar 

  43. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006;112(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  44. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–13.

    Article  CAS  PubMed  Google Scholar 

  45. Mueller SN, Tian S, DeSimone JM. Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol Pharm. 2015;12(5):1356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fifis T, Gamvrellis A, Crimeen-Irwin B, et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 2004;173(5):3148–54.

    Article  CAS  PubMed  Google Scholar 

  47. Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev. 2001;47(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  48. Mottram PL, Leong D, Crimeen-Irwin B, et al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm. 2007;4(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  49. Katare YK, Muthukumaran T, Panda AK. Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm. 2005;301(1–2):149–60.

    Article  CAS  PubMed  Google Scholar 

  50. Jain AK, Goyal AK, Gupta PN, et al. Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Release. 2009;136(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  51. Thomas C, Gupta V, Ahsan F. Influence of surface charge of PLGA particles of recombinant hepatitis B surface antigen in enhancing systemic and mucosal immune responses. Int J Pharm. 2009;379(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  52. Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res. 2010;27(5):905–19.

    Article  CAS  PubMed  Google Scholar 

  53. Meraz IM, Melendez B, Gu J, et al. Activation of the Inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node. Mol Pharm. 2012;9:2049–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–9.

    Article  CAS  PubMed  Google Scholar 

  55. Jung T, Kamm W, Breitenbach A, Kaiserling E, **ao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000;50(1):147–60.

    Article  CAS  PubMed  Google Scholar 

  56. Roux X, Dubuquoy C, Durand G, et al. Sub-nucleocapsid nanoparticles: a nasal vaccine against respiratory syncytial virus. PLoS One. 2008;3(3):e1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu JR, Kim S, Lee JB, Chang J. Single intranasal immunization with recombinant adenovirus-based vaccine induces protective immunity against respiratory syncytial virus infection. J Virol. 2008;82(5):2350–7.

    Article  CAS  PubMed  Google Scholar 

  58. Rodrigues TC, Oliveira MLS, Soares-Schanoski A, et al. Mucosal immunization with PspA (pneumococcal surface protein a)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS One. 2018;13(1):e0191692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kunda NK, Alfagih IM, Miyaji EN, et al. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int J Pharm. 2015;495(2):903–12.

    Article  CAS  PubMed  Google Scholar 

  60. Dhakal S, Renu S, Ghimire S, et al. Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in pigs. Front Immunol. 2018;9:934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stylianou E, Diogo GR, Pepponi I, et al. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice. Eur J Immunol. 2014;44(2):440–9.

    Article  CAS  PubMed  Google Scholar 

  62. Baleeiro RB, Schweinlin M, Rietscher R, et al. Nanoparticle-based mucosal vaccines targeting tumor-associated antigens to human dendritic cells. J Biomed Nanotechnol. 2016;12(7):1527–43.

    Article  CAS  PubMed  Google Scholar 

  63. Wang D, Molavi O, Lutsiak ME, Elamanchili P, Kwon GS, Samuel J. Poly(D,L-lactic-co-glycolic acid) microsphere delivery of adenovirus for vaccination. J Pharm Pharm Sci. 2007;10(2):217–30.

    CAS  PubMed  Google Scholar 

  64. Maldonado-Contreras AL, McCormick BA. Intestinal epithelial cells and their role in innate mucosal immunity. Cell Tissue Res. 2011;343(1):5–12.

    Article  CAS  PubMed  Google Scholar 

  65. Moss DM, Curley P, Kinvig H, Hoskins C, Owen A. The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Rev Gastroenterol Hepatol. 2018;12(3):223–36.

    Article  CAS  PubMed  Google Scholar 

  66. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31(1):51–72.

    Article  CAS  PubMed  Google Scholar 

  67. Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2006;13:54–54.

    Google Scholar 

  68. Panaretakis T, Kepp O, Brockmeier U, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28(5):578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martins I, Kepp O, Galluzzi L, et al. Surface-exposed calreticulin in the interaction between dying cells and phagocytes. Annals of the New York Academy of Sciences. 2010;1209(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  70. Birge RB, Boeltz S, Kumar S, et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. 2016;23(6):962–78.

    Google Scholar 

  71. Wong DY, Ong WW, Ang WH. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angewandte Chemie (International ed. in English). 2015;54(22):6483–7.

    Article  CAS  Google Scholar 

  72. Zhao X, Yang K, Zhao R, et al. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 2016;102:187–97.

    Article  CAS  PubMed  Google Scholar 

  73. Lu J, Liu X, Liao YP, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun. 2017;8(1):1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng DW, Chen JL, Zhu JY, et al. Highly integrated Nano-platform for breaking the barrier between chemotherapy and immunotherapy. Nano Lett. 2016;16(7):4341–7.

    Article  CAS  PubMed  Google Scholar 

  75. Noureddine A, Lichon L, Maynadier M, et al. Controlled multiple functionalization of mesoporous silica nanoparticles: homogeneous implementation of pairs of functionalities communicating through energy or proton transfers. Nanoscale. 2015;7(26):11444–52.

    Article  CAS  PubMed  Google Scholar 

  76. Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res. 2011;44(10):903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Noureddine A, Gary-Bobo M, Lichon L, et al. Bis-clickable mesoporous silica nanoparticles: straightforward preparation of light-actuated Nanomachines for controlled drug delivery with active targeting. Chemistry. 2016;22(28):9624–30.

    Article  CAS  PubMed  Google Scholar 

  78. Croissant J, Zink JI. Nanovalve-controlled cargo release activated by plasmonic heating. J Am Chem Soc. 2012;134(18):7628–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Saint-Cricq P, Deshayes S, Zink JI, Kasko AM. Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core-shell mesoporous silica nanoparticles. Nanoscale. 2015;7(31):13168–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Roy A, Singh MS, Upadhyay P, Bhaskar S. Combined chemo-immunotherapy as a prospective strategy to combat cancer: a nanoparticle based approach. Mol Pharm. 2010;7(5):1778–88.

    Article  CAS  PubMed  Google Scholar 

  81. Roy A, Chandra S, Mamilapally S, Upadhyay P, Bhaskar S. Anticancer and immunostimulatory activity by conjugate of paclitaxel and non-toxic derivative of LPS for combined chemo-immunotherapy. Pharm Res. 2012;29(8):2294–309.

    Article  CAS  PubMed  Google Scholar 

  82. Seth A, Heo MB, Lim YT. Poly (gamma-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials. 2014;35(27):7992–8001.

    Article  CAS  PubMed  Google Scholar 

  83. Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol. 2008;380(1):252–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tumban E, Peabody J, Peabody DS, Chackerian B. A universal virus-like particle-based vaccine for human papillomavirus: longevity of protection and role of endogenous and exogenous adjuvants. Vaccine. 2013;31(41):4647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tyler M, Tumban E, Peabody DS, Chackerian B. The use of hybrid virus-like particles to enhance the immunogenicity of a broadly protective HPV vaccine. Biotechnol Bioeng. 2014;111(12):2398–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Saboo S, Tumban E, Peabody J, et al. Optimized formulation of a thermostable spray-dried virus-like particle vaccine against human papillomavirus. Mol Pharm. 2016;13(5):1646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. HAHN TJ, WEBB B, KUTNEY J, et al. Rapid manufacture and release of a GMP batch of Zaire ebolavirus glycoprotein vaccine made using recombinant Baculovirus-Sf9 insect cell culture technology. Bioprocess J. 2015;14(1):6–14.

    Article  Google Scholar 

  88. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioengineering & translational medicine. 2016;1(1):10–29.

    Article  Google Scholar 

  89. Fries L, Shinde V, Stoddard JJ, et al. Immunogenicity and safety of a respiratory syncytial virus fusion protein (RSV F) nanoparticle vaccine in older adults. Immun Ageing. 2017;14(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Colosia AD, Yang J, Hillson E, et al. The epidemiology of medically attended respiratory syncytial virus in older adults in the United States: a systematic review. PLoS One. 2017;12(8):e0182321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. August A, Glenn GM, Kpamegan E, et al. A phase 2 randomized, observer-blind, placebo-controlled, dose-ranging trial of aluminum-adjuvanted respiratory syncytial virus F particle vaccine formulations in healthy women of childbearing age. Vaccine. 2017;35(30):3749–59.

    Article  CAS  PubMed  Google Scholar 

  92. Glenn GM, Fries LF, Smith G, et al. Modeling maternal fetal RSV F vaccine induced antibody transfer in Guinea pigs. Vaccine. 2015;33(47):6488–92.

    Article  CAS  PubMed  Google Scholar 

  93. Smith G, Liu Y, Flyer D, et al. Novel hemagglutinin nanoparticle influenza vaccine with matrix-M™ adjuvant induces hemagglutination inhibition, neutralizing, and protective responses in ferrets against homologous and drifted a (H3N2) subtypes. Vaccine. 2017;35(40):5366–72.

    Article  CAS  PubMed  Google Scholar 

  94. Liu YV, Massare MJ, Pearce MB, et al. Recombinant virus-like particles elicit protective immunity against avian influenza a (H7N9) virus infection in ferrets. Vaccine. 2015;33(18):2152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fries LF, Smith GE, Glenn GM. A recombinant viruslike particle influenza A (H7N9) vaccine. N Engl J Med. 2013;369(26):2564–6.

    Article  CAS  PubMed  Google Scholar 

  96. TJ HAHN, COURBRON D, HAMER M, MASOUD M, WONG J, TAYLOR K. Rapid manufacture and release of a GMP batch of avian influenza a (H7N9) virus-like particle vaccine made using recombinant baculovirus-Sf9 insect cell culture technology. BioProcessing. 2013;12(2):1538–8786.

    Google Scholar 

  97. Smith GE, Flyer DC, Raghunandan R, et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous a/Anhui/1/2013 (H7N9) protection and heterologous a/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine. 2013;31(40):4305–13.

    Article  CAS  PubMed  Google Scholar 

  98. Shinde V, Fries L, Wu Y, et al. Improved titers against influenza drift variants with a nanoparticle vaccine. N Engl J Med. 2018;378:2346–8.

    Article  PubMed  Google Scholar 

  99. Bengtsson KL, Song H, Stertman L, et al. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine. 2016;34(16):1927–35.

    Article  CAS  PubMed  Google Scholar 

  100. Raghunandan R, Lu H, Zhou B, et al. An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. Vaccine. 2014;32(48):6485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Coleman CM, Liu YV, Mu H, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32(26):3169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reimer JM, Karlsson KH, Lövgren-Bengtsson K, Magnusson SE, Fuentes A, Stertman L. Matrix-M™ adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS One. 2012;7(7):e41451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thomas DN. RSV-F vaccine and influenza vaccine co-administration study in the elderly. 2014.

    Google Scholar 

  104. Sridhar S. Clinical development of Ebola vaccines. Therapeutic advances in vaccines. 2015;3(5–6):125–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grippin AJ, Sayour EJ, Mitchell DA. Translational nanoparticle engineering for cancer vaccines. Oncoimmunology. 2017;6(10):e1290036.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Alamoudi K, Martins P, Croissant JG, Patil S, Omar H, Khashab NM. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape. Nanomedicine. 2017;12(12):1421–33.

    Article  CAS  PubMed  Google Scholar 

  107. Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artificial cells, nanomedicine, and biotechnology. 2016;44(1):381–91.

    Article  CAS  PubMed  Google Scholar 

  108. Yaroslavov AA, Efimova AA, Sybachin AV, Chvalun SN, Kulebyakina AI, Kozlova EV. Biodegradable multi-liposomal containers. RSC Adv. 2015;5(40):31460–4.

    Article  CAS  Google Scholar 

  109. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10(1):975–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Butts C, Murray N, Maksymiuk A, et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non–small-cell lung cancer. J Clin Oncol. 2005;23(27):6674–81.

    Article  CAS  PubMed  Google Scholar 

  111. Kruit WH, Suciu S, Dreno B, et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: results of a randomized phase II study of the European Organisation for Research and Treatment of Cancer melanoma Group in Metastatic Melanoma. J Clin Oncol. 2013;31(19):2413–20.

    Article  CAS  PubMed  Google Scholar 

  112. Berinstein NL, Karkada M, Morse MA, et al. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med. 2012;10(1):156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Berinstein NL, Karkada M, Oza AM, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4(8):e1026529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kitano S, Kageyama S, Nagata Y, et al. HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan. Clin Can Res. 2006;12(24):7397–405.

    Article  CAS  Google Scholar 

  115. Wada H, Sato E, Uenaka A, et al. Analysis of peripheral and local anti-tumor immune response in esophageal cancer patients after NY-ESO-1 protein vaccination. Int J Cancer. 2008;123(10):2362–9.

    Article  CAS  PubMed  Google Scholar 

  116. Maraskovsky E, Schnurr M, Wilson NS, Robson NC, Boyle J, Drane D. Development of prophylactic and therapeutic vaccines using the ISCOMATRIX adjuvant. Immunol Cell Biol. 2009;87(5):371–6.

    Article  CAS  PubMed  Google Scholar 

  117. Speiser DE, Schwarz K, Baumgaertner P, et al. Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients. J Immunother. 2010;33(8):848–58.

    Article  CAS  PubMed  Google Scholar 

  118. Bendandi M, Gocke CD, Kobrin CB, et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte–monocyte colony-stimulating factor against lymphoma. Nat Med (NY, NY, US). 1999;5(10):1171.

    Article  CAS  Google Scholar 

  119. Altin J, Atmosukarto I, De Wildt RM, Parish C, Price J. Composition for targeting dendritic cells. Google Patents; 2014.

    Google Scholar 

  120. Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401.

    Article  CAS  PubMed  Google Scholar 

  121. Thomas DN. Safety and immunogenicity of the RSV-F vaccine in older adults previously treated with the same vaccine or placebo in the prior year. 2017.

    Google Scholar 

  122. Thomas DN. Study to evaluate the immunogenicity and safety of an Ebola virus (EBOV) glycoprotein (GP) vaccine in healthy subjects. 2016.

    Google Scholar 

  123. Thomas DN. Evaluation of the safety and immunogenicity of a recombinant trivalent nanoparticle influenza vaccine with matrix M-1 adjuvant (NanoFlu). 2018.

    Google Scholar 

  124. Thomas DN. A Phase I Randomized, Observer-Blinded, Dose-Ranging Study in Healthy Subjects 24 to <72 Months of Age. 2016.

    Google Scholar 

  125. Thomas DN. A study to determine the safety and efficacy of the RSV F vaccine to protect infants via maternal immunization. 2018.

    Google Scholar 

  126. Thomas DN. RSV F Vaccine maternal immunization study in healthy third-trimester pregnant women. 2017.

    Google Scholar 

  127. Thomas DN. RSV-F vaccine dose ranging study in young women. 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita E. Serda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noureddine, A., Croissant, J.G., Davis, H.O., Friedrich, L.I., Serda, R.E. (2020). Nanoparticle Vaccines for Immunotherapy: From Design to Clinical Trials. In: Muttil, P., Kunda, N. (eds) Mucosal Delivery of Drugs and Biologics in Nanoparticles. AAPS Advances in the Pharmaceutical Sciences Series, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-35910-2_8

Download citation

Publish with us

Policies and ethics

Navigation