Bioglasses for Bone Tissue Engineering

  • Chapter
  • First Online:
Bio-Materials and Prototy** Applications in Medicine

Abstract

The field of bone tissue engineering, which is rapidly evolving, aims at the regeneration of the bone structure and its functions. In regenerative medicine, the use of 3D porous structures aims to mimic the bone structure and to promote cell attachment and tissue regeneration. Between the materials used for bone tissue engineering, bioactive glasses have shown high bioactivity and potential stimulation of osteogenesis and angiogenesis. This book chapter discusses key characteristics of bioglass materials and presents the main technologies being used to weak scaffolds incorporating bioglass materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Aebi, V. Arlet, J. Webb, AOspine Manual: Principle and Techniques Volume 1 (Thieme, New York, 2007)

    Google Scholar 

  2. S. Ahn, Y. Kim, H. Lee, G. Kim, A new hybrid scaffold constructed of solid freeform-fabricated PCL struts and collagen struts for bone tissue regeneration: Fabrication, mechanical properties, and cellular activity. J. Mater. Chem. 22(31), 15901 (2012)

    Article  CAS  Google Scholar 

  3. T. Albrektsson, C. Johansson, Osteoinductive, osteoconductive and osseointegration. Eur. Spine J. 10, 96–101 (2001)

    Article  Google Scholar 

  4. D. Arcos, M. Vallet-Regí, Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 6(8), 2874–2888 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. A. Bailón-Plaza, M. van der Meulen, Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J. Biomech. 36(8), 1069–1077 (2003)

    Article  PubMed  Google Scholar 

  6. A. Bari, N. Bloise, S. Fiorilli, G. Novajra, M. Vallet-Regí, G. Bruni, A. Torres-Pardo, J. González-Calbet, L. Visai, C. Vitale-Brovarone, Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater. 55, 493–504 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. P. Bartlett, Bioelectrochemistry (John Wiley & Sons, Chichester, 2008)

    Book  Google Scholar 

  8. C. Bergmann, M. Lindner, W. Zhang, K. Koczur, A. Kirsten, R. Telle, H. Fischer, 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 30(12), 2563–2567 (2010)

    Article  CAS  Google Scholar 

  9. S. Best, A. Porter, E. Thian, J. Huang, Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc. 28(7), 1319–1327 (2008)

    Article  CAS  Google Scholar 

  10. J. Bico, U. Thiele, D. Quéré, Wetting of textured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 206(1–3), 41–46 (2002)

    Article  CAS  Google Scholar 

  11. A. Boccaccini, J. Gough, Tissue Engineering Using Ceramics and Polymers (CRC Press, Boca Raton, 2007a)

    Book  Google Scholar 

  12. A. Boccaccini, J. Gough, Tissue Engineering Using Ceramics and Polymers (Woodhead Publishing limited, Cambridge, UK, 2007b)

    Book  Google Scholar 

  13. A. Boccaccini, X. Chatzistavrou, J. Blaker, S. Nazhat, Degradable and Bioactive Synthetic Composite Scaffolds for Bone Tissue Engineering, in Degradation on Implant Materials, (Springer, [Place of publication not identified], 2011)

    Google Scholar 

  14. S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomater. 8(4), 1401–1421 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. D. Brown, R. Neumann, Orthopedic Secrets (Elsevier Health Sciences, London, 2004)

    Google Scholar 

  16. E. Bueno, J. Glowacki, Biologic foundations for skeletal tissue engineering. Synth. Lect. Tissue Eng. 3(1), 1–220 (2011)

    Article  Google Scholar 

  17. M. Cerruti, Surface characterization of silicate bioceramics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370(1963), 1281–1312 (2012)

    Article  CAS  Google Scholar 

  18. N. Chartrain, C. Williams, A. Whittington, A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 74, 90–111 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. W. Chen, Oculoplastic Surgery (Thieme, New York, 2001)

    Google Scholar 

  20. Q. Chen, I. Thompson, A. Boccaccini, 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11), 2414–2425 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. P. Chu, X. Liu, Biomaterials Fabrication and Processing Handbook (CRC Press Taylor & Francis Group, Boca Raton [etc.], 2008a)

    Book  Google Scholar 

  22. P. Chu, X. Liu, Biomaterials Fabrication and Processing Handbook (Taylor & Francis, Boca Raton, 2008b)

    Book  Google Scholar 

  23. L. Claes, C. Heigele, C. Neidlinger-Wilke, D. Kaspar, W. Seidl, K. Margevicius, P. Augat, Effects of mechanical factors on the fracture healing process. Clin. Orthop. Relat. Res. 355S, S132–S147 (1998)

    Article  Google Scholar 

  24. A. Cormack, A. Tilocca, Structure and biological activity of. Glas. Ceram. 370, 1271–1280 (2012)

    CAS  Google Scholar 

  25. S. Di Nunzio, C. Vitale Brovarone, S. Spriano, D. Milanese, E. Verné, V. Bergo, G. Maina, P. Spinelli, Silver containing bioactive glasses prepared by molten salt ion-exchange. J. Eur. Ceram. Soc. 24(10–11), 2935–2942 (2004)

    Article  Google Scholar 

  26. J. Dias, P. Granja, P. Bártolo, Advances in electrospun skin substitutes. Prog. Mater. Sci. 84, 314–334 (2016)

    Article  Google Scholar 

  27. N. Doiphode, T. Huang, M. Leu, M. Rahaman, D. Day, Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair. J. Mater. Sci. Mater. Med. 22(3), 515–523 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. L. Elomaa, A. Kokkari, T. Närhi, J. Seppälä, Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos. Sci. Technol. 74, 99–106 (2013)

    Article  CAS  Google Scholar 

  29. H. Elsayed, P. Rebesan, M. Crovace, E. Zanotto, P. Colombo, E. Bernardo, Biosilicate® scaffolds produced by 3D-printing and direct foaming using preceramic polymers. J. Am. Ceram. Soc. 102(3), 1010–1020 (2018)

    Article  Google Scholar 

  30. M. Favus, Primer on the Metabolic Bone Diseases and Disorders or Mineral Metabolism (American Society for Bone and Mineral Research, Washington, DC, 2003)

    Google Scholar 

  31. Q. Fu, E. Saiz, M. Rahaman, A. Tomsia, Bioactive glass scaffolds for bone tissue engineering:State of the art and future perspectives. Mater. Sci. Eng. C 31(7), 1245–1256 (2011)

    Article  CAS  Google Scholar 

  32. L. Gerhardt, A. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3(7), 3867–3910 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Gibson, M. Ashby, B. Harley, Cellular Materials in Nature and Medicine (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  34. R. Gmeiner, G. Mitteramskogler, J. Stampfl, Stereolithographic ceramic manufacturing of high strength bioactive glass. Int. J. Appl. Ceram. Technol. 12(1), 38–45 (2014)

    Article  CAS  Google Scholar 

  35. L. González-Torres, M. Gómez-Benito, M. Doblaré, J. García-Aznar, Influence of the frequency of the external mechanical stimulus on bone healing: A computational study. Med. Eng. Phys. 32(4), 363–371 (2010)

    Article  PubMed  Google Scholar 

  36. D. Griffon, Evaluation of Osteoproductive Biomaterials: Allograft, Bone Inducing Agent, Bioactive Glass and Ceramics (University of Helsinki, Helsinki, 2002)

    Google Scholar 

  37. S. Hattar, A. Asselin, D. Greenspan, M. Oboeuf, A. Berdal, J. Sautier, Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. Biomaterials 26(8), 839–848 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. L. Hench, Bioactive Ceramics. Ann. N. Y. Acad. Sci. 523(1 Bioceramics), 54–71 (1988)

    Article  CAS  PubMed  Google Scholar 

  39. L. Hench, Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74(7), 1487–1510 (1991)

    Article  CAS  Google Scholar 

  40. L. Hench, Third-generation biomedical materials. Science 295(5557), 1014–1017 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. L. Hench, The story of bioglass®. J. Mater. Sci. Mater. Med. 17(11), 967–978 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. L. Hench, Chronology of bioactive glass development and clinical applications. New J. Glass Ceram. 03(02), 67–73 (2013)

    Article  Google Scholar 

  43. J. Hollinger, An Introduction to Biomaterials, 2nd edn. (CRC/Taylor & Francis, Boca Raton, 2011)

    Book  Google Scholar 

  44. A. Hoppe. Bioactive Glass Derived Scaffolds with Therapeutic Ion Releasing Capability for Bone Tissue Engineering, Thesis, 2014

    Google Scholar 

  45. T. Huang, M. Rahaman, N. Doiphode, M. Leu, B. Bal, D. Day, X. Liu, Porous and strong bioactive glass (13–93) scaffolds fabricated by freeze extrusion technique. Mater. Sci. Eng. C 31(7), 1482–1489 (2011)

    Article  CAS  Google Scholar 

  46. J. Jones, Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9(1), 4457–4486 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. J. Jones, L. Ehrenfried, L. Hench, Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27(7), 964–973 (2006a)

    Article  CAS  PubMed  Google Scholar 

  48. J. Jones, L. Ehrenfried, P. Saravanapavan, L. Hench, Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J. Mater. Sci. Mater. Med. 17(11), 989–996 (2006b)

    Article  CAS  PubMed  Google Scholar 

  49. J. Jones, O. Tsigkou, E. Coates, M. Stevens, J. Polak, L. Hench, Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 28(9), 1653–1663 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. V. KARAGEORGIOU, D. KAPLAN, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27), 5474–5491 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. R. Lanza, R. Langer, J. Vacanti, Methods of Tissue Engineering (Academic Press, San Diego, 2011)

    Google Scholar 

  52. S. Lee, D. Henthorn, Materials in Biology and Medicine (CRC/Taylor & Francis, Boca Raton, 2012)

    Book  Google Scholar 

  53. S. Lu, M. Hu, I. Gogotsi, Ceramic Nanomaterials and Nanotechnology III (John Wiley & Sons, Hoboken, 2012)

    Google Scholar 

  54. J. Maroothynaden, J. Hench, The effect of micro-gravity and bioactive surfaces on the mineralization of bone. JOM 8(1), 79–80 (2001)

    Google Scholar 

  55. A. Martínez, I. Izquierdo-Barba, M. Vallet-Regí, Bioactivity of a CaO−SiO2Binary glasses system. Chem. Mater. 12(10), 3080–3088 (2000)

    Article  Google Scholar 

  56. R. Narayan, Biomedical Materials (Springer, New York, 2009)

    Book  Google Scholar 

  57. D. Njobuenwu, E. Oboho, R. Gumus, Determination of contact angle from contact area of liquid droplet spreading on solid substrate. Leonardo Electron. J. Pract. Technol. 6(10), 29–38 (2007)

    Google Scholar 

  58. I. Ochoa, J. Sanz-Herrera, J. García-Aznar, M. Doblaré, D. Yunos, A. Boccaccini, Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. J. Biomech. 42(3), 257–260 (2009)

    Article  PubMed  Google Scholar 

  59. G. Owens, R. Singh, F. Foroutan, M. Alqaysi, C. Han, C. Mahapatra, H. Kim, J. Knowles, Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 77, 1–79 (2016)

    Article  CAS  Google Scholar 

  60. N. Pallua, Tissue Engineering (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  61. N. Patel, S. Best, I. Gibson, S. Ke, K. Hing, W. Bonfield, Preparation and characterisation of hydroxyapatite and carbonate substituted hydroxyapatite granules. Key Eng. Mater. 192-195, 7–10 (2000)

    Article  Google Scholar 

  62. R. Pereira, P. Bártolo, Traditional therapies for skin wound healing. Adv. Wound Care 5(5), 208–229 (2016)

    Article  Google Scholar 

  63. J. Polak, S. Mantalaris, S. Harding, Advances in Tissue Engineering (Imperial College Press, London, 2008)

    Book  Google Scholar 

  64. B. Ratner, A. Hoffman, F. Schoen, J. Lemons, Biomaterials Science: An Introduction to Materials in Medicine (Academic Press, Amsterdam, 2012)

    Google Scholar 

  65. P. Saravanapavan, L. Hench, Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J. Biomed. Mater. Res. 54(4), 608–618 (2001)

    Article  CAS  PubMed  Google Scholar 

  66. J. SHEA, S. MILLER, Skeletal function and structure: Implications for tissue-targeted therapeutics. Adv. Drug Deliv. Rev. 57(7), 945–957 (2005)

    Article  CAS  PubMed  Google Scholar 

  67. M. Singh, H. Haverinen, P. Dhagat, G. Jabbour, Inkjet Printing: Inkjet Printing-Process and Its Applications. Adv. Mater. 22(6), 673–685 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. S. Sohrabuddin, Mechanism of Nanoparticle and Nanotube Induced Cell Death (ProQuest, [Place of publication not identified], 2008)

    Google Scholar 

  69. D. Sommerfeldt, C. Rubin, Biology of bone and how it orchestrates the form and function of the skeleton. Eur. Spine J. 10(0), S86–S95 (2001)

    Article  PubMed  PubMed Central  Google Scholar 

  70. J. Suwanprateeb, R. Sanngam, W. Suvannapruk, T. Panyathanmaporn, Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J. Mater. Sci. Mater. Med. 20(6), 1281–1289 (2009)

    Article  CAS  PubMed  Google Scholar 

  71. B. Thavornyutikarn, P. Tesavibul, K. Sitthiseripratip, N. Chatarapanich, B. Feltis, P. Wright, T. Turney, Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds. Mater. Sci. Eng. C 75, 1281–1288 (2017)

    Article  CAS  Google Scholar 

  72. P. Tran, L. Sarin, R. Hurt, T. Webster, Opportunities for nanotechnology-enabled bioactive bone implants. J. Mater. Chem. 19(18), 2653 (2009)

    Article  CAS  Google Scholar 

  73. M. Vallet-Regí, Ceramics for medical applications. J. Chem. Soc. Dalton Trans. (2), 97–108 (2001)

    Google Scholar 

  74. M. Vallet-Regí, A. Salinas, D. Arcos, From the bioactive glasses to the star gels. J. Mater. Sci. Mater. Med. 17(11), 1011–1017 (2006)

    Article  PubMed  Google Scholar 

  75. M. Vallet-Regi, M.M. Garcia, M. Colilla, Biomedical applications of mesoporous ceramics: Drug delivery. Smart Mater. Bone Tissue Eng. 3(1), 231 (2012)

    Google Scholar 

  76. A. Winkel, R. Meszaros, S. Reinsch, R. Müller, N. Travitzky, T. Fey, P. Greil, L. Wondraczek, Sintering of 3D-printed glass/HAp composites. J. Am. Ceram. Soc. 95(11), 3387–3393 (2012)

    Article  CAS  Google Scholar 

  77. S. Wu, X. Liu, K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R. Rep. 80, 1–36 (2014)

    Article  Google Scholar 

  78. I. Xynos, A. Edgar, L. Buttery, L. Hench, J. Polak, Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem. Biophys. Res. Commun. 276(2), 461–465 (2000a)

    Article  CAS  PubMed  Google Scholar 

  79. I. Xynos, M. Hukkanen, J. Batten, L. Buttery, L. Hench, J. Polak, Bioglass ®45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcif. Tissue Int. 67(4), 321–329 (2000b)

    Article  CAS  PubMed  Google Scholar 

  80. S. Yang, K. Leong, Z. Du, C. Chua, The Design of Scaffolds for use in tissue engineering. Part II. Rapid prototy** techniques. Tissue Eng 8(1), 1–11 (2002)

    Article  CAS  PubMed  Google Scholar 

  81. Z. Zhou, L. Chen, Morphology expression proliferation of human osteoblasts on bioactive glass scaffold. Mater. Sci. Poland 26(3), 506–516 (2008)

    Google Scholar 

  82. M. Zilberman, Active Implants and Scaffolds for Tissue Regeneration (Springer Berlin, Berlin, 2011)

    Book  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Global Challenges Research Fund (CRF), grant number EP/R01513/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Jorge Bártolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daskalakis, E. et al. (2021). Bioglasses for Bone Tissue Engineering. In: Bártolo, P.J., Bidanda, B. (eds) Bio-Materials and Prototy** Applications in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-35876-1_9

Download citation

Publish with us

Policies and ethics

Navigation