Advanced Particle-Based Techniques for Complex Fluids and Multiscale Flow Processes

  • Chapter
  • First Online:
Transport Phenomena in Complex Fluids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 598))

Abstract

Particle-based methods represent a general multiscale framework to study complex flow problems at different space- and timescales. Whereas they rely on a general set of Newton’s equations of motion for a system of interacting elements, the very concept of ‘particle’ can assume different physical realizations depending on the targeted level of description and the physics of interest. At microscopic scales, particles can represent real molecules/atoms interacting with conservative classical potentials; at the mesoscale, a ‘particle’ represents a thermodynamic system containing potentially thousands of atoms/molecules and its dynamics is governed by a set of ordinary stochastic differential equations where the interaction forces are of conservative, dissipative and random nature. Finally, at the continuum macroscopic scales, it is possible to derive a suitable set of Newton’s equations such that the corresponding particle configurations represent an adaptive Lagrangian discretization of arbitrary sets of partial differential equations (e.g. Navier–Stokes), that is, a computational fluid dynamics technique. All the different levels can be integrated in a general thermodynamic framework for discrete systems which satisfies basic physical laws such as energy conservation, entropy increase or—in the case of Brownian systems—the fluctuation–dissipation theorem at the very discrete level. In this chapter, we review the use of mesoscopic and macroscopic particle techniques for the modelling and simulation of complex fluids such as polymer or particle suspensions. It will be shown how complex microstructural properties can be incorporated in different ways, i.e. from micro-mechanical to field-based equations, depending on the available information and computational requirements. The development of hybrid particle methods coupling simultaneously dynamics occurring at different scales will be also discussed in relation to the problem of cellular transport/adhesion in biofluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231(21):7057–7075

    Article  MathSciNet  Google Scholar 

  • Alizadehrad D, Fedosov DA (2018) Static and dynamic properties of smoothed dissipative particle dynamics. J Comput Phys 356:303–318

    Article  MathSciNet  MATH  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Alón R, Hammer DA, Springer TA (1995) Lifetime of the p-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374(6522):539–542

    Article  Google Scholar 

  • Arora K, Sureshkumar R, Khomami B (2002) Experimental investigation of purely elastic instabilities in periodic flows. J Non-Newtonian Fluid Mech 108(1):209–226

    Article  Google Scholar 

  • Backer JA, Lowe CP, Hoefsloot HCJ, Iedema PD (2005) Combined length scales in dissipative particle dynamics. J Chem Phys 123(11):114905

    Article  Google Scholar 

  • Batchelor GK, Green J-T (1972) The determination of the bulk stress in a suspension of spherical particles to order c\(^2\). J Fluid Mech 56(3):401–427

    Article  MATH  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618

    Article  Google Scholar 

  • Bell GI, Dembo M, Bongrand P (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45(6):1051–1064

    Article  Google Scholar 

  • Bertevas E, Fan X, Tanner RI (2009) Simulation of the rheological properties of suspensions of oblate spheroidal particles in a Newtonian fluid. Rheologica Acta 49(1):53–73

    Article  Google Scholar 

  • Bian X, Ellero M (2014) A splitting integration scheme for the SPH simulation of concentrated particle suspensions. Comput Phys Commun 185(1):53–62

    Article  MathSciNet  MATH  Google Scholar 

  • Bian X, Litvinov S, Qian R, Ellero M, Adams NA (2012) Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Phys Fluids 24(1):012002

    Article  Google Scholar 

  • Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol II. Wiley, New York, US

    Google Scholar 

  • Caballero A, Mao W, Liang L, Oshinski J, Primiano C, McKay R, Kodali S, Sun W (2017) Modeling left ventricular blood flow using smoothed particle hydrodynamics. Cardiovascular Eng Technol 8(4):465–479

    Article  Google Scholar 

  • Chesla SE, Selvaraj P, Zhu C (1998) Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys J 75(3):1553–1572

    Article  Google Scholar 

  • Chiu J-J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387

    Article  MathSciNet  Google Scholar 

  • Chmielewski C, Jayaraman K (1993) Elastic instability in crossflow of polymer solutions through periodic arrays of cylinders. J Non-Newtonian Fluid Mech 48(3):285–301

    Article  Google Scholar 

  • Cox RG, Brenner H (1967) The slow motion of a sphere through a viscous fluid towards a plane surface-II Small gap widths, including inertial effects. Chem Eng Sci 22(12):1753–1777

    Article  Google Scholar 

  • De Fabritiis G, Delgado-Buscalioni R, Coveney PV (2006) Multiscale modeling of liquids with molecular specificity. Phys Rev Lett 97(13):134501

    Article  Google Scholar 

  • de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press

    Google Scholar 

  • Delgado-Buscalioni R, Coveney PV (2003) Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. Phys Rev E 67(4):046704

    Article  Google Scholar 

  • Einstein A (1906) Eine neue bestimmung der moleküldimensionen. Annalen der Physik 324(2):289–306

    Article  MATH  Google Scholar 

  • Ellero M, Adams NA (2011) SPH simulations of flow around a periodic array of cylinders confined in a channel. Int J Numer Methods Eng 86(8):1027–1040

    Article  MATH  Google Scholar 

  • Ellero M, Español P (2018) Everything you always wanted to know about SDPD (but were afraid to ask). Appl Math Mech 39(1):103–124

    Article  MathSciNet  Google Scholar 

  • Ellero M, Tanner RI (2005) SPH simulations of transient viscoelastic flows at low Reynolds number. J Non-Newtonian Fluid Mech 132(1–3):61–72

    Article  MATH  Google Scholar 

  • Ellero M, Español P, Flekkøy EG (2003) Thermodynamically consistent fluid particle model for viscoelastic flows. Phys Rev E 68:041504

    Article  Google Scholar 

  • Ellero M, Español P, Adams N (2010) Implicit atomistic viscosities in smoothed particle hydrodynamics. Phys Rev E 82(4):1–6

    Article  Google Scholar 

  • Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360

    Article  Google Scholar 

  • Español P (1995) Hydrodynamics from dissipative particle dynamics. Phys Rev E 52:1734–1742

    Article  MathSciNet  Google Scholar 

  • Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67:026705

    Article  Google Scholar 

  • Español P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. EPL (Europhys Lett) 30(4):191

    Article  Google Scholar 

  • Español P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146:150901

    Article  Google Scholar 

  • Evans E, Berk D, Leung A (1991) Detachment of agglutinin-bonded red blood cells. I. forces to rupture molecular-point attachments. Biophys J 59(4):838–848

    Article  Google Scholar 

  • Fan XJ, Phan-Thien N, Chen S, Wu XH, Ng TY (2006) Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids 18:063102

    Article  MATH  Google Scholar 

  • Fedosov DA, Karniadakis GE (2009) Triple-decker: interfacing atomistic-mesoscopic-continuum flow regimes. J Comput Phys 228(4):1157–1171

    Article  MathSciNet  MATH  Google Scholar 

  • Fedosov DA, Peltomäki M, Gompper G (2014) Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10:4258–4267

    Article  Google Scholar 

  • Ferziger JH, Perić M (1999) Computational methods for fluid dynamics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264(5157):415–417

    Article  Google Scholar 

  • Fouxon A, Lebedev V (2003) Spectra of turbulence in dilute polymer solutions. Phys Fluids 15(7):2060–2072

    Article  MATH  Google Scholar 

  • Gan H, Lam Y, Nguyen N, Tam K, Yang C (2007) Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number. Microfluidics and Nanofluidics 3:101–108

    Article  Google Scholar 

  • Gholami B, Comerford A, Ellero M (2014) A SPH multiscale particle model of the near-wall dynamics of leukocites in flow. Int J Num Meth Biomed Eng 30:83–102

    Article  Google Scholar 

  • Gholami B, Comerford A, Ellero M (2015) SPH simulations of WBC adhesion to the endothelium: the role of haemodynamics and endothelial binding kinetics. Biomech Model Mechanobiol 14(6):1317–1333

    Article  Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Monthly Notices Royal Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  • Goldman AJ, Cox RG, Brenner H (1967a) Slow viscous motion of a sphere parallel to a plane wall-I motion through a quiescent fluid. Chem Eng Sci 22(4):637–651

    Article  Google Scholar 

  • Goldman AJ, Cox RG, Brenner H (1967b) Slow viscous motion of a sphere parallel to a plane wall-II Couette flow. Chem Eng Sci 22(4):653–660

    Article  Google Scholar 

  • Grilli M, Vázquez-Quesada A, Ellero M (2013) Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles. Phys Rev Lett 110:174501

    Article  Google Scholar 

  • Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56:6620–6632

    Article  MathSciNet  Google Scholar 

  • Groisman A, Steinberg V (2000) Elastic turbulence in a polymer solution flow. Nature 405(6782):53–55

    Article  Google Scholar 

  • Hinds MT, Park YJ, Jones SA, Giddens DP, Rita Alevriadou B (2001) Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with e-selectin. J Biomech 34(1):95–103

    Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett) 19(3):155

    Article  Google Scholar 

  • Howe AM, Clarke A, Giernalczyk D (2015) Flow of concentrated viscoelastic polymer solutions in porous media: effect of MW and concentration on elastic turbulence onset in various geometries. Soft Matter 11:6419–6431

    Article  Google Scholar 

  • Jeffrey DJ, Onishi Y (1984) Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J Fluid Mech 139:261–290

    Article  MATH  Google Scholar 

  • Klessinger UA, Wunderlich BK, Bausch AR (2013) Transient flow behavior of complex fluids in microfluidic channels. Microfluidics and Nanofluidics 15(4):533–540

    Article  Google Scholar 

  • Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-sphere suspensions under steady shear. EPL (Europhys Lett) 21(3):363

    Article  Google Scholar 

  • Koumoutsakos P (2005) Multiscale flow simulations using particles. Ann Rev Fluid Mech 37:457–487

    Article  MathSciNet  MATH  Google Scholar 

  • Ladd AJC, Verberg R (2001) Lattice-boltzmann simulations of particle-fluid suspensions. J Statist Phys 104(5):1191–1251

    Article  MathSciNet  MATH  Google Scholar 

  • Landau LD, Lifshitz EM (1987) Fluid mechanics. Course of theoretical physics. Butterworth-Heinemann, 2 edn

    Google Scholar 

  • Litvinov S, Ellero M, Hu X, Adams NA (2008) Smoothed dissipative particle dynamics model for polymer molecules in suspension. Phys Rev E 77:066703

    Article  Google Scholar 

  • Litvinov S, Ellero M, Hu X, Adams NA (2009) Self-diffusion coefficient in smoothed dissipative particle dynamics. J Chem Phys 130(2):021101

    Article  Google Scholar 

  • Litvinov S, Ellero M, Hu X, Adams NA (2010) Particle-layering effect in wall-bounded dissipative particle dynamics. Phys Rev E 82:066704

    Article  Google Scholar 

  • Litvinov S, Hu X, Ellero M, Adams N (2014) Mesoscopic simulation of the transient behavior of semi-diluted polymer solution in a microchannel following extensional flow. Microfluid Nanofluidics 16(1–2):257–264

    Article  Google Scholar 

  • Litvinov S, **e Q, Hu X, Adams N, Ellero M (2016) Simulation of individual polymer chains and polymer solutions with smoothed dissipative particle dynamics. Fluids 1(1):7

    Article  Google Scholar 

  • Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  MATH  Google Scholar 

  • Longest P, Kleinstreuer C, Buchanan J (2004) Efficient computation of micro-particle dynamics including wall effects. Comput Fluids 33(4):577–601

    Article  MATH  Google Scholar 

  • Loth E (2000) Numerical approaches for motion of dispersed particles, droplets and bubbles. Progress Energy Combust Sci 26(3):161–223

    Article  Google Scholar 

  • Marsh CA, Backx G, Ernst MH (1997) Fokker-planck-boltzmann equation for dissipative particle dynamics. EPL (Europhys Lett) 38(6):411

    Article  Google Scholar 

  • Martys NS, George WL, Chun B-W, Lootens D (2010) A smoothed particle hydrodynamics-based fluid model with a spatially dependent viscosity: application to flow of a suspension with a non-newtonian fluid matrix. Rheol Acta 49(10):1059–1069

    Article  Google Scholar 

  • Meulenbroek B, Storm C, Bertola V, Wagner C, Bonn D, van Saarloos W (2003) Intrinsic route to melt fracture in polymer extrusion: A weakly nonlinear subcritical instability of viscoelastic poiseuille flow. Phys Rev Lett 90:024502

    Article  Google Scholar 

  • Mewis J, Wagner NJ (2011) Colloidal suspension rheology. Cambridge University Press, 2011. Cambridge Books Online

    Google Scholar 

  • Monaghan JJ (2005) Smoothed particle hydrodynamics. Reports Progress Phys 68(8):1703

    Article  MathSciNet  MATH  Google Scholar 

  • Öttinger HC (2005) Complex fluids. pp 97–156. John Wiley Sons, Inc

    Google Scholar 

  • Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. ii. illustrations of a general formalism. Phys Rev E 56: 6633–6655

    Article  MathSciNet  Google Scholar 

  • Owens RG, Phillips TN (2002) computational rheology. World Scientific

    Google Scholar 

  • Pathak JA, Ross D, Migler KB (2004) Elastic flow instability, curved streamlines, and mixing in microfluidic flows. Phys Fluids 16(11):4028–4034

    Article  MATH  Google Scholar 

  • Pipe CJ, McKinley GH (2009) Microfluidic rheometry. Mech Res Commun 36(1):110–120, 2009. Recent Advances in Microfluidics

    Google Scholar 

  • Piper JW, Swerlick RA, Zhu C (1998) Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys J 74(1):492–513

    Article  Google Scholar 

  • Qiao R, He P (2008) Map** of dissipative particle dynamics in fluctuating hydrodynamics simulations. J Chem Phys 128(12):126101

    Article  Google Scholar 

  • Ripoll M, Mussawisade K, Winkler RG, Gompper G (2005) Dynamic regimes of fluids simulated by multiparticle-collision dynamics. Phys Rev E 72:016701

    Article  Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22(02):385–400

    Article  MATH  Google Scholar 

  • Seto R, Mari R, Morris JF, Denn MM (2013) Discontinuous shear thickening of frictional hard-sphere suspensions. Phys Rev Lett 111:218301

    Article  Google Scholar 

  • Shahriari S, Kadem L, Rogers BD, Hassan I (2012) Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity. Int J Numer Methods Biomed Eng 28(11):1121–1143

    Article  MathSciNet  Google Scholar 

  • Sierou A, Brady JF (2002) Rheology and microstructure in concentrated noncolloidal suspensions. J Rheol 46(5):1031–1056

    Article  Google Scholar 

  • Singh A, Mari R, Denn MM, Morris JF (2018) A constitutive model for simple shear of dense frictional suspensions. J Rheol 62(2):457–468

    Article  Google Scholar 

  • Talwar KK, Khomami B (1995) Flow of viscoelastic fluids past periodic square arrays of cylinders: inertial and shear thinning viscosity and elasticity effects. J Non-Newtonian Fluid Mech 57:177–202

    Article  Google Scholar 

  • Vázquez-Quesada A, Ellero M (2012) SPH simulations of a viscoelastic flow around a periodic array of cylinders confined in a channel. J Non-Newtonian Fluid Mech 167168:1–8

    Article  MATH  Google Scholar 

  • Vázquez-Quesada A, Ellero M (2016a) Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics. J Non-Newtonian Fluid Mech 233:37–47. Papers presented at the Rheology Symposium in honor of Prof. R. I. Tanner on the occasion of his 82nd birthday, in Vathi, Samos, Greece

    Article  MathSciNet  Google Scholar 

  • Vázquez-Quesada A, Ellero M (2016b) Analytical solution for the lubrication force between two spheres in a bi-viscous fluid. Phys Fluids 28(7):073101

    Article  Google Scholar 

  • Vázquez-Quesada A, Ellero M, Español P (2009a) Smoothed particle hydrodynamic model for viscoelastic fluids with thermal fluctuations. Phys Rev E 79:056707

    Google Scholar 

  • Vázquez-Quesada A, Ellero M, Español P (2009b) Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. J Chem Phys 130(3):034901

    Article  Google Scholar 

  • Vázquez-Quesada A, Ellero M, Español P (2012) A SPH-based particle model for computational microrheology. Microfluidics and Nanofluidics 13(2):249–260

    Article  Google Scholar 

  • Vázquez-Quesada A, Bian X, Ellero M (2015) Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics. Comput Part Mech, 1–12

    Google Scholar 

  • Vázquez-Quesada A, Tanner RI, Ellero M (2016) Shear thinning of noncolloidal suspensions. Phys Rev Lett 117:108001

    Article  Google Scholar 

  • Vázquez-Quesada A, Mahmud A, Dai S, Ellero M, Tanner RI (2017a) Investigating the causes of shear-thinning in non-colloidal suspensions: experiments and simulations. J Non-Newtonian Fluid Mech 248:1–7

    Article  MathSciNet  Google Scholar 

  • Vázquez-Quesada A, Wagner NJ, Ellero M (2017b) Planar channel flow of a discontinuous shear-thickening model fluid: theory and simulation. Phys Fluids 29(10):103104

    Article  Google Scholar 

  • Vázquez-Quesada A, Wagner NJ, Ellero M (2018) Normal lubrication force between spherical particles immersed in a shear-thickening fluid. Phys Fluids 30(12):123102

    Article  Google Scholar 

  • Vázquez-Quesada A,  Español P, Tanner RI, Ellero M (2019) Shear-thickening of a non-colloidal suspension with a viscoelastic matrix. J Fluid Mech. in press

    Google Scholar 

  • Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free- surface flows: past, present and future. J Hydraul Res 54:1–26

    Article  Google Scholar 

  • Waters ND, King MJ (1970) Unsteady flow of an elastico-viscous liquid. Rheol Acta 9(3):345–355

    Article  MATH  Google Scholar 

  • Xue S-C, Tanner RI, Phan-Thien N (2004) Numerical modelling of transient viscoelastic flows. J Non-Newtonian Fluid Mech 123(1):33–58

    Article  MATH  Google Scholar 

  • Ye T, Phan-Thien N, Lim CT (2015) Particle-based simulations of red blood cellsa review. J Biomech 49 (11):2255–2266. Selected Articles from the International Conference on CFD in Medicine and Biology (Albufeira, Portugal August 30th - September 4th, 2015)

    Article  Google Scholar 

  • Zarraga IE, Hill DA, Leighton DT (2000) The characterization of the total stress of concentrated suspensions of noncolloidal spheres in newtonian fluids. J Rheol 44(2):185–220

    Article  Google Scholar 

  • Zhu C (2000) Kinetics and mechanics of cell adhesion. J Biomech 33(1):23–33

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Ellero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences, Udine

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ellero, M. (2020). Advanced Particle-Based Techniques for Complex Fluids and Multiscale Flow Processes. In: Burghelea, T., Bertola, V. (eds) Transport Phenomena in Complex Fluids. CISM International Centre for Mechanical Sciences, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-030-35558-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35558-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35557-9

  • Online ISBN: 978-3-030-35558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation