Diseases of Basil

  • Living reference work entry
  • First Online:
Handbook of Vegetable and Herb Diseases

Part of the book series: Handbook of Plant Disease Management ((HPDM))

  • 113 Accesses

Abstract

Basil, Ocimum basilicum, a member of the Lamiaceae family, also known as sweet basil, is one of the most important fresh and dried culinary herbs worldwide and is also an important source of various essential oils. Its profitability can be decreased by a number of fungal, bacterial, viral, and nematode pathogens. Particularly challenging basil diseases are caused by Botrytis cinerea, Fusarium oxysporum, Peronospora belbarhii, and a number of orthotospoviruses. Management strategies for basil diseases recently studied include biological, chemical, cultural, and physical control, genetic resistance and induced resistance, and their integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aktaruzzaman MD, Kim JY, Afroz T, Hong SJ, Kim BS (2015) First report of gray mold disease of sweet basil (Ocimum basilicum) caused by Botrytis cinerea in Korea. Korean J Med Mycol 43(4):277–280

    Google Scholar 

  • al Inizi, H Mehrvar M, Zaki Aghl M (2016) Molecular identification and new host record for Cucumber mosaic virus infecting Ocimum basilicum in Iran. 09-01-2019 https://profdoc.um.ac.ir/paper-abstract-1077629.html (abstract in English)

  • Alippi AM, Wolcan S, Dal Bo E (1999) First Report of bacterial leaf spot of basil caused by Pseudomonas viridiflava in Argentina. Plant Dis 83(9):876

    Article  CAS  PubMed  Google Scholar 

  • Allen WR, Matteoni JA (1991) Petunia as an indicator plant for use by growers to monitor for thrips carrying the tomato spotted wilt virus in greenhouses. Plant Dis 75:78–82

    Article  Google Scholar 

  • Al-Sohaibani SA, Mahmoud MA, Al-Othman MR, Ragab MM, Abd El-Aziz SM (2011) Influence of some biotic and abiotic inducers on root rot disease incidence of sweet basil. African J Microbiol Res 5(22):3628–3639

    CAS  Google Scholar 

  • Amano K (Hirata) (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Sci Soc Press, Tokyo, 741 pp

    Google Scholar 

  • Ammara UE, Al-Ansari M, Al-Shihi A, Amin I, Mansoor S, Al-Maskari AY, Al-Sadi AM (2015) Association of three begomoviruses and a betasatellite with leaf curl disease of basil in Oman. Can J Plant Pathol 37(4):506–513

    Article  Google Scholar 

  • Anon (2019) Introducing Prospera: a new sweet basil hybrid resistant to Downy Mildew. Bar-Ilan University. https://phys.org/news/2019-01-prospera-sweet-basil-hybrid-resistant.html

    Google Scholar 

  • Arocha Y, Piñol B, Picornell B, Almeida R, Jones P, Boa E (2006) Basil little leaf: a new disease associated with a phytoplasma of the 16SrI (Aster Yellows) group in Cuba. Plant Pathol 55:822. https://doi.org/10.1111/j.1365-3059.2006.01481.x

    Article  Google Scholar 

  • Bag TK, Dutta S (2009) First report of Sclerotinia stem rot of Indian Sweet Basil (Ocimum basilicum). J Mycopathol Res 47(1):87–89

    Google Scholar 

  • Bashan Y, De-Bashan LE (2002) Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. Eur J Plant Pathol 108:821–829

    Article  CAS  Google Scholar 

  • Ben-Naim Y, Falach L, Cohen Y (2015) Resistance against basil downy mildew in Ocimum species. Phytopathology 105:778–785

    Article  CAS  PubMed  Google Scholar 

  • Bock KR, Conti M (1974) Cowpea aphid-borne moaic virus. Descriptions of Plant Viruses No. 134 http://www.dpvweb.net/dpv/showdpv.php?dpvno=134

  • Braun U, Hill CF, Dick M (2003) New cercosporoid leaf spot diseases from New Zealand. Australas Plant Pathol 2003(32):87–97

    Article  Google Scholar 

  • Brito JA, Stanley JD, Mendes ML, Cetintas R, Dickson DW (2007) Host status of selected cultivated plants to Meloidogyne mayaguensis in Florida. Nematropica 37:65–71

    Google Scholar 

  • Bruni R, Bellardi MG, Parrella G (2016) Change in Chemical Composition of Sweet Basil (Ocimum basilicum L.) Essential Oil Caused by Alfalfa mosaic virus. Change in Chemical Composition of Sweet Basil (Ocimum basilicum L.) Essential Oil Caused by Alfalfa mosaic virus. J Phytopathol 164(3):202–206

    Article  CAS  Google Scholar 

  • Chen LF, Natwick F, Cabrera S, Gilbertson RL (2014) First Report of Curly Top Disease of Basil Caused by Beet severe curly top virus in California. Plant Dis 98(2):286. https://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-07-13-0686-PDN

    Article  PubMed  Google Scholar 

  • Cohen Y, Rubin AE (2015) Daytime solar heating controls downy mildew Peronospora belbahrii in sweet basil. PLoS One 10(5):e0126103. https://doi.org/10.1371/journal.pone.0126103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen Y, Vaknin M, Ben-Naim Y, Rubin AE, Galperin M, Silverman D, Bitton S, Adler U (2013a) First Report of the Occurrence and Resistance to Mefenoxam of Peronospora belbahrii, Causal agent of downy mildew of basil (Ocimum basilicum) in Israel. Plant Dis 97(5):692

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Vaknin M, Ben-Naim Y, Rubin AE (2013b) Light Suppresses Sporulation and Epidemics of Peronospora belbahrii. PLoS One 8(11):e81282. https://doi.org/10.1371/journal.pone.0081282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen Y, Ben Naim Y, Falach L, Rubin AE (2017) Epidemiology of basil downy mildew. Phytopathology 107:1149–1160

    Article  PubMed  Google Scholar 

  • Datnoff LE, Liang LZ, Wick RL (1997) Recent outbreak of Fusarium Wilt of basil in Florida. Plant Dis 81(10):1214

    Article  CAS  PubMed  Google Scholar 

  • Daughtrey ML, Wick RL, Peterson JL (2000) Botrytis blight of flowering potted plants. Plant Heal Prog 1. https://doi.org/10.1094/PHP-2000-0605-01-HM

  • David DR, Yermiyahu U, Fogel M, Faingold I, Elad Y (2019) Plant nutrition for management of white mold in sweet basil. Phytoparasitica 47:99–115

    Article  Google Scholar 

  • Davino SW, Accotto GP, Masenga V, Torta L, Davino M, Davino S, Accotto GP, Masenga V, Torta L, Davino M (2009) Basil (Ocimum basilicum), a new host of Pepino mosaic virus. Plant Pathol 58(2):407. https://doi.org/10.1111/j.1365-3059.2009.02026.x

    Article  Google Scholar 

  • De Corato U, Salimbeni R, De Pretis A (2018) Suppression of soil-borne pathogens in container media amended with on-farm composted agro-bioenergy wastes and residues under glasshouse condition. J Plant Dis Prot 125:213–226

    Google Scholar 

  • Déniel F, Rey P, Chérif M, Guillou A, Tirilly Y (2004) Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation. Can J Microbiol 50:499–508. https://doi.org/10.1139/w04-034

    Article  PubMed  Google Scholar 

  • Dias-Arieira CR, da Cunha TP, Chiamolera FM, Puerari HH, Biela F, Santana SD (2012) Reaction of vegetables and aromatic plants toMeloidogyne javanica and M. incognita. Hortic Bras 30(2):322–326. https://doi.org/10.1590/S0102-05362012000200023

    Article  Google Scholar 

  • Dik AJ, Wubben JP (2007) Epidemiology of Botrytis cinerea diseases in greenhouses. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Springer, Dordrecht, pp 322–334

    Google Scholar 

  • Dikova B (2011) Tomato spotted wilt virus on some medicinal and essential oil-bearing plants in Bulgaria. Bulg J Agric Sci 17:306–313

    Google Scholar 

  • Dikova B (2016) Cucumber mosaic virus on aromatic and medicinal plants of Lamiaceae and Asteraceae Families. Actamicrobio BG June 126–132 https://actamicrobio.bg/archive/june-2016/amb-june-2016-article-5.pdf

  • Djalali Farahani-Kofoet R, Römer P, Grosch R (2012) Systemic spread of downy mildew in basil plants and detection of the pathogen in seed and plant samples. Mycol Prog 11(4):961–966

    Article  Google Scholar 

  • Dudai N, Chaimovitsh D, Reuveni R, Ravid U, Larkov O, Putievsky E (2002) Breeding of sweet basil (Ocimum basilicum) esistant to Fusarium rwilt caused by Fusarium oxysporum f.sp. basilicum. J Herbs Spices Med Plant 9(2–3):45–51. https://doi.org/10.1300/J044v09n02_07

    Article  CAS  Google Scholar 

  • Elad Y, Israeli L, Fogel M, David DR, Kenigsbuch D, Chalupowicz D, Maurer D, Lichter A, Silverman D, Biton S, Yitzhak S (2014) Conditions influencing the development of sweet basil grey mould and cultural measures for disease management. Crop Prot 64:67–77

    Article  Google Scholar 

  • Elad Y, Israeli L, Fogel M, David DR, Kenigsbuch D, Chalupowicz D, Maurer D, Lichter A, Silverman D, Biton S, Yitzhak S (2015) White mould of sweet basil: conditions influencing its development in greenhouses and cultural measures for disease management. Plant Pathol 64:951–960. https://doi.org/10.1111/ppa.12317

    Article  Google Scholar 

  • Elad Y, David DR, Israeli L, Fogel M (2017) Passive heat treatment of sweet basil crops suppresses white mould and grey mould. Plant Pathol 66:105–114

    Article  CAS  Google Scholar 

  • El-Gholl NE, Coile NC, Schubert TS (1997) Diseases and disorders of plants in Florida, Division of plant industry bulletin no. 14, Supplement no. 1. Florida Department of Agriculture and Consumer Services, Gainesville

    Google Scholar 

  • Ellis MB, Waller JM (1974) Sclerotinia fuckeliana, CMI descriptions of pathogenic fungi and bacteria no. 431. CAB International

    Google Scholar 

  • Elmer WH, Wick RL, Haviland P (1994) Vegetative compatability among Fusarium oxysporum f. sp. basilicum isolates recovered from basil seed and infected plants. Plant Dis 78:789–791

    Article  Google Scholar 

  • El-Sadek SAM, Abd-El-Latif MR, Abd-El-Gawad TI, El-Sakawy FS (1991) Occurance of leaf blight of basil caused by in Egypt [1991]. Assiut J Ag Sci (Egypt) 22(2):91–109

    Google Scholar 

  • El-Sheshtawi M, Darweesh M, Temraz RM (2016) Thrichoderma spp. as safe bio-control tool against Rhizoctonia solani root Rot on Basil Plants. J Plant Protect Pathol 7(11):689–693

    Article  Google Scholar 

  • Falach-Block L, Ben-Naim Y, Cohen Y (2019) Investigation of seed transmission in Peronospora belbahrii the causal agent of basil downy mildew. Agronomy 2019(9):205. https://doi.org/10.3390/agronomy9040205

    Article  CAS  Google Scholar 

  • Farr DF, Rossman AY (2020) Fungal databases, U.S. National Fungus Collections, ARS, USDA. Retrieved May 29, 2020, from https://nt.ars-grin.gov/fungaldatabases/

  • Fatmi MB, Collmer A, Sante Iacobellis N, Mansfield JW, Murillo J, Schaad NW, Ullrich M (eds) (2008) Pseudomonas syringae pathovars and related pathogens – identification, epidemiology, and genomics. Springer, Dordrecht, 433 pp

    Google Scholar 

  • Feldman JM, Garcia O (1970) Two new natural hosts of Alfalfa mosaic virus. Plant Dis Rep 54(8):722–723

    Google Scholar 

  • Fravel DR, Larkin RP (2002) Reduction of fusarium wilt of hydroponically grown basil by Fusarium oxysporum strain CS-20. Crop Protect 21:539p Pr

    Article  Google Scholar 

  • Fuchs JG, Hedrich T, Hofer V, Koller M, Oberhaensli T, Ribera Regal J, Tamm L, Thuerig B, Schwarze FW, Herforth-Rahmé J (2017) Development of disease-suppressive organic growing media. Acta Hortic 1164:181–188. https://doi.org/10.17660/ActaHortic.2017.1164.23

    Article  Google Scholar 

  • Gamliel A, Yarden O (1998) Diversification of diseases affecting herb crops in Israel accompanies the increase in herb crop production. Phytoparasitica 26(1):53–58

    Article  Google Scholar 

  • Gamliel A, Katan T, Yunis H, Katan J (1996) Fusarium wilt and crown rot of sweet basil: involvement of soilborne and airborne inoculum. Phytopathology 86(1):56–62

    Article  Google Scholar 

  • Garcia-Arenal F, Palukaitis P (2008) Cucumber mosaic virus. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology. Elsevier/Academic Press, Amsterdam, pp 171–176

    Google Scholar 

  • Garibaldi A, Gullino ML, Minuto G (1997) Diseases of basil and their management. Plant Dis 81(2):124–132

    Article  PubMed  Google Scholar 

  • Garibaldi A, Minuto G, Bertetti D, Gullino ML (2004) Seed transmission of Peronospora sp. of Basil. J Plant Dis Protect 111(5):465–469

    Google Scholar 

  • Garibaldi A, Rapetti S, Rossi J, Gullino ML (2007) First report of leaf spot caused by Corynespora cassiicola on basil (Ocimum basilicum) in Italy. Plant Dis 91(10):1361

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi A, Gilardi G, Bertoldo C, Gullino ML (2011) First report of a leaf spot of sweet basil (Ocimum basilicum) caused by Alternaria alternata in Italy. J Plant Pathol 93(4, Supplement):63–89

    Google Scholar 

  • Gilardi G, Gullino ML, Garibaldi A (2013) Occurrence of Alternaria spp. in the seeds of basil and its pathogenicity. J Plant Pathol 95(1):41–47

    Google Scholar 

  • Gilardi G, Pintore I, Demarchi S, Gullino ML, Garibaldi A (2015) Seed dressing to control downy mildew of basil. Phytoparasitica 43:531–539

    Article  CAS  Google Scholar 

  • Gilardi G, Garibaldi A, Gullino ML (2020) Integrated management of downy mildew of basil. Crop Protect 137:105202. https://doi.org/10.1016/j.cropro.2020.105202

    Article  CAS  Google Scholar 

  • Gillespie DP (2010) Effects of low nutrient solution pH on hydroponic leafy green plant growth, nutrient concentration of leaf tissue, and Pythium Zoospore infection. M.S. thesis, Ohio State University, Horticulture and Crop Science http://rave.ohiolink.edu/etdc/view?acc_num=osu1563205720634412. Accessed 27 July 2020

  • Gingade S, Mineval P, Varghese TS (2013) Cultivation of Ocimum. ICAR – Directorate of Medicinal and Aromatic Plants Research Boriavi, Gujarat

    Google Scholar 

  • Grausgruber-Gröger S (2012) First report of Impatiens necrotic spot virus on Ocimum basilicum, Eruca sativa and Anthriscus cerefolium in Austria. BSPP New Dis Rep 26:12. https://doi.org/10.5197/j.2044-0588.2012.026.012

    Article  Google Scholar 

  • Guarnaccia V, Gilardi G, Martino H, Garibaldi A, Gullino ML (2019) Species diversity in Colletotrichum causing anthracnose of aromatic and ornamental Lamiaceae in Italy. Agronomy 9(10). https://doi.org/10.3390/agronomy9100613

  • Guirado Moya ML, Aguilar MI, Blanco IR, Kenig A, Gomez J, Tello JC (2004) Fusarium wilt on sweet basil: cause and sources in Southeastern Spain. Phytoparasitica 32(4):395–401

    Article  Google Scholar 

  • Gull C, Labuschagne N, Botha WJ (2004) Pythium species associated with wilt and root rot of hydroponically grown crops in South Africa. Afr Plant Protect 10(2):109–116

    Google Scholar 

  • Gullino ML, Garibaldi A, Minuto G (1995) First report of ‘black spot’ of basil incited by Colletotrichum gloeosporioides in Italy. Plant Dis 79:539

    Article  Google Scholar 

  • Gullino ML, Minuto A, Garibaldi A (1998) Improved method of bench solarization for the control of soilborne diseases in basil. Crop Prot 17(6):497–501

    Article  Google Scholar 

  • Gupta R, Pandey R (2015) Microbial interference ameliorates essential oil yield and diminishes rootknot infestation in sweet basil under field conditions. Biocontrol Sci Tech 25(10):1165–1179

    Article  Google Scholar 

  • Hahm SS, Kim BR, Han KS, Kwon MK, Park IH (2017) Sclerotinia rot on basil caused by Sclerotinia sclerotiorum in Korea. Res Plant Dis 23(1):56–59. (in Korean)

    Article  CAS  Google Scholar 

  • Halva S (1987) Studies on fertilization of dill (Anethum graveolens L.) and basil (Ocimum basilicum L.) III. Oil yield of basil affected by fertilization. J Agric Sci in Finland 59:25–29

    Google Scholar 

  • Hamasaki RT, Valenzuela HR, Tsuda DM, Uchida JY (1994) Fresh basil production guidelines for Hawai’i. Research extension series 154, College of Tropical Agriculture and Human Resources, University of Hawai, 10 pp

    Google Scholar 

  • Hassan MAE, Abo-Elyousr KAM (2013) Impact of compost application on Fusarium wilt disease incidence and microelements contents of basil plants. Arch Phytopathol Plant Protect 46(16):1904–1918

    Article  Google Scholar 

  • Hay M (2017) Where and when were various plants and animals domesticated? Eupedia available online at: https://www.eupedia.com/history/timeline_of_plant_and_animal_domestication.shtml

  • Heffer Link V, Johnson KB (2007) White mold. Plant Heal Instruct. https://doi.org/10.1094/PHI-I-2007-0809-01

  • Holcomb GE (1994) Stem rot of basil caused by Sclerotinia sclerotiorum. Plant Dis 78(9):924. https://doi.org/10.1094/PD-78-0924E

    Article  Google Scholar 

  • Holcomb GE, Cox PJ (1998) First report of basil leaf spot caused by Pseudomonas cichorii in Louisiana and cultivar screening results. Plant Dis 82(11):1283

    Article  CAS  PubMed  Google Scholar 

  • Holcomb GE, Valverde RA, Sim J, Nuss J (1999) First report on natural occurrence of tomato spotted wilt tospovirus in basil (Ocimum basilicum). Plant Dis 83:966

    Article  CAS  PubMed  Google Scholar 

  • Holevas CD, Chitzanidis A, Pappas AC, Tzamos EC, Elena K, Psallidas PG, Alivizatos AS, Panagopoulos CG, Kyriakopoulou PE, Bem FP, Lascaris DN (2000) Disease agents of cultivated plants observed in Greece from 1981 to 1990. Benaki Phytopathol Inst Kiphissia Athens 19:1–96

    Google Scholar 

  • Homa K, Barney WP, Ward DL, Wyenandt CA, Simon JE (2014) Evaluation of fungicides for the control of Peronospora belbahrii on sweet basil in New Jersey. Plant Dis 98:1561–1566

    Article  CAS  PubMed  Google Scholar 

  • Jaspars EMJ, Bos L (1980) Alfalfa mosaic virus. No. 229 in: Descriptions of plant viruses. Commonw Mycol Inst/Assoc Appl Biol, Kew

    Google Scholar 

  • Javad SS, Ismaeil RS (2018) Effects of potassium nitrate on growth and photosynthetic pigments of basil infected by Colletotrichum gloeosporioides. Hort Plant Nutr 1(1):49–58

    Google Scholar 

  • Jewett T, Jarvis W (2001) Management of the greenhouse microclimate in relation to disease control: a review. Agronomie 21:351–366

    Article  Google Scholar 

  • Kanebashi K, Ebihara Y, Uematsu S, Negishi H, Matsuyama N, Suyama K (2006) Bacterial black spot of basil caused by Pseudomonas cichorii (swingle 1925) Stapp1928, new found in Japan. J Ag Sci 51(10):14–20. (in Japanese)

    Google Scholar 

  • Koike S (1995) Basil as a host of Sclerotinia minor. Plant Dis 79(8):859

    Google Scholar 

  • Koike S (2000) Occurrence of stem rot of basil, caused by Sclerotinia sclerotiorum, in coastal California. Plant Dis 84(12):1342–1342 https://doi.org/10.1094/PDIS.2000.84.12.1342B

  • Korolev N, Mamiev M, Elad Y (2010) Monitoring for resistance to fungicides in Botrytis cinerea and Sclerotinia sclerotiorum, the pathogens of sweet basil. Comm Ag Applied Bio Sci 75(4):705–707

    CAS  Google Scholar 

  • Kritzman G, Zutra L (1983) Survival of Pseudomonas syringae pv. lachrymans in soil, plant debris and in the rhizosphere of non host plants. Phytoparasitica 11:99–108

    Article  Google Scholar 

  • Lamichhane JR, Varvaro L, Parisi L, Audergon J-M, Morris CE (2014) Disease and frost damage of woody plants caused by Pseudomonas syringe: seeing the forest for the trees. Adv Agron 126:235–295

    Article  Google Scholar 

  • Lamichhane JR, Messean A, Morris CE (2015) Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. J Gen Plant Pathol 81(5):331–350. https://doi.org/10.1007/s10327-015-0605-z

    Article  Google Scholar 

  • Little EL, Gilbertson RL, Koike S (1994) First report of Pseudomonas viridiflava causing a leaf necrosis on basil. Plant Dis 78(8):831

    Article  Google Scholar 

  • Litzenberger SC, Farr M, Lip HT (1962) A preliminary list of Cambodian plant diseases. Div Agric Nat Res, USAID, Minist Agric, Phnom-Penh, 29 pp

    Google Scholar 

  • Lopez-Lopez AM, Koller C, Herb H-J, Schn PL (2014) Influence of light management on the sporulation of downy mildew on sweet basil. Acta Hort 1041:213–219. https://doi.org/10.17660/ActaHortic.2014.1041.24

    Article  Google Scholar 

  • Lopez-Reyes JG, Gilardi G, Garibaldi A, Gullino ML (2016) In vivo evaluation of essential oils and biocontrol agents combined with heat treatments on basil cv Genovese Gigante seeds against Fusarium oxysporum f. sp. basilica. Phytoparasitica 44:35–45

    Article  CAS  Google Scholar 

  • Louws FJ, Wilson M, Campbell HL, Cuppels DA, Jones JB, Shoemaker PB, Sahin F et al (2001) Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Dis 85:481–488

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Aimonino DR, Gilardi G, Gullino ML (2010) Garibaldi A (2010) Efficacy of different steam distribution systems against fives oilborne pathogens under controlled laboratory conditions. Phytoparasitica 38:175–189

    Article  Google Scholar 

  • Luvisi A, Materazzi A, Triolo E (2006) Steam and exothermic reactions as alternative techniques to control soil-borne diseases in basil. Agron Sustain Dev 26:201–207

    Article  Google Scholar 

  • Mansilla AY, Albertengo L, Rodrıguez MS, Debbaudt A, Zuniga A, Casalongue CA (2013) Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Appl Microbiol Biotechnol 97:6957–6966

    Article  CAS  PubMed  Google Scholar 

  • Marini E (1955) Una virosi apparsa sul basilica (Ocimum basilicum). Rivista dell Ortoflorofrutticultura Italiana 39:360–362. (in Italian)

    Google Scholar 

  • Martin NA, Workman PJ, Butler RC (2003) Insecticide resistance in onion thrips (Thrips tabaci) (Thysanoptera: Thripidae). N Z J Crop Hortic Sci 31(2):99–106. https://doi.org/10.1080/01140671.2003.9514242

    Article  CAS  Google Scholar 

  • Martinez DR, Crozzoli R, Aguirre Y (2014) Pathogenicity of the root-knot nematode Meloidogyne enterolobii, on sweet basil (Ocimun basilicum L.) in pots. Revista de la Facultad de Agronomm L. in pots. cidel Zulia 31(4): 558–575

    Google Scholar 

  • Martini P, Gullino ML (1991) Seed transmission of Fusarium oxysporum f.sp. basilicum, causal agent of basil vascular wilt. Inf Fitopatol 9:59–61. (in Italian)

    Google Scholar 

  • McGovern RJ (2018) Disease of lisianthus. In: McGovern RJ, Elmer WH (eds) Handbook of florist crop diseases. Springer Inc, New York, pp 583–632

    Chapter  Google Scholar 

  • McGovern RJ, McSorley R, Millen JA, Seijo TE (2002) Evaluation of biological control and cultivar resistance for management of basil diseases, 2001. Biological & cultural tests to control plant disease 17 V01 American Phytopathological Society, Minneapolis

    Google Scholar 

  • McGrath MT (2019) Expect and prepare for downy mildew in basil. Vegetable MD Online, Plant Pathology and Plant-Microbe Biology Section, Cornell University published online: http://vegetablemdonline.ppath.cornell.edu/NewsArticles/BasilDowny.html

  • McGrath MT (2020) Efficacy of conventional fungicides for downy mildew in field-grown sweet basil in the US. Plant Dis. Published online: https://apsjournals.apsnet.org/doi/10.1094/PDIS-11-19-2382-RE

  • McLeod A, Coertze S, Mostert L (2007) First Report of a Peronospora Species on Sweet Basil in South Africa. Plant Dis 90(8):1115

    Article  Google Scholar 

  • Mersha Z, Zhang S, Raid RN (2012) Evaluation of systemic acquired resistance inducers for control of downy mildew on basil. Crop Protect 40:83–90

    Article  CAS  Google Scholar 

  • Milicic D, Plakolli M (1974) Spontaneous infection of some labiates with alfalfa mosaic virus. Acta Bot Croat 33:9–15

    Google Scholar 

  • Minuto A, Aloi C, Mocioni M, Garibaldi A (1994) Effetto della concia del seme sulla trasmissione di Fusarium oxysporum f. sp. basilicum. Atti Giornate Fitopatol 3:293–296. (in Italian)

    Google Scholar 

  • Minuto G, Mocioni M, Garibaldi A (1997) Evaluation of fungicides to control Rhizoctonia solani on basil [Ocimum basilicum - Liguria]. Informatore Fitopatologico 47(10):36–42. (in Italian)

    Google Scholar 

  • Minuto A, MinutoA G, MartiniB P, OdassoB M, Biondi CE, MuciniC S, ScortichiniD M (2008) First report of Pseudomonas viridiflava in basil seedlings and plants in soilless crop in Italy. Aust Plant Dis Notes 3:165

    Google Scholar 

  • Minuto A, Bogliolo A, Minuto G, Vovlas N, Troccoli A, Scortichini M (2010) Pests and diseases of sweet basil after methyl bromide phase out: the Northern Italian experience. Acta Hort 883:107–110. https://doi.org/10.17660/ActaHortic.2010.883.10

    Article  Google Scholar 

  • Momol MT, Olson SM, Funderburk JE, Stavisky J, Marois JJ (2004) Integrated management of tomato spotted wilt on field-grown tomatoes. Plant Dis 88:882–890

    Article  CAS  PubMed  Google Scholar 

  • Morales Moreira ZP, Oliveira dos Santos P, Santos de Oliveira TA, de Souza JT (2015) Occurrence of basil leaf spot caused by Pseudomonas cichorii in Bahia State, Brazil. Summa Phytopathol Botucatu 41(1):73

    Article  Google Scholar 

  • Mordue JEM (1974) Thanatephorus cucumeris, CMI descriptions of pathogenic fungi and bacteria no. 406. CAB International

    Google Scholar 

  • Nagy G (2007) First report of Botrytis Blight caused by Botrytis cinerea on sweet basil in Hungary. Plant Dis 91(8):1052. https://doi.org/10.1094/PDIS-91-8-1052C

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Horvath A (2011) Occurrence of downy mildew caused by Peronospora belbahrii on sweet basil in Hungary. Plant Dis 95:1034.1

    Article  Google Scholar 

  • Pande A (2008) Ascomycetes of Peninsular India. Scientific Publishers (India), Jodhpur, p 584

    Google Scholar 

  • Patel JS, Zhang S, McGrath MT (2016) Red Light increases suppression of downy mildew in basil by chemical and organic products. J Phytopathol 164(11–12):1022–1029

    Article  CAS  Google Scholar 

  • Patel N, Kobayashi DY, Noto AJ, Baldwin AC, Simon JE, Wyenandt CA (2019) First report of Pseudomonas cichorii causing Bacterial Leaf Spot on sweet basil (Ocimum basilicum) in New Jersey. Plant Dis 103(10):2666

    Article  Google Scholar 

  • Paton A (1992) A synopsis of Ocimum L. (Labiatae) in Africa. Kew Bul 47:403–435

    Article  Google Scholar 

  • Paulitz TC (1997) First Report of Sclerotinia sclerotiorum on basil in Canada. Plant Dis 81(2):229. https://doi.org/10.1094/PDIS.1997.81.2.229B

    Article  CAS  PubMed  Google Scholar 

  • Pintore L, Gilardi G, Gullino ML, Garibaldi A (2016) Detection of mefenoxam-resistant strains of Peronospora belbahrii, the causal agent of basil downy mildew, transmitted through infected seeds. Phytoparasitica 44:563–569

    Article  CAS  Google Scholar 

  • Poojari S, Naidu RA (2013) First Report of Impatiens necrotic spot virus (INSV) infecting Basil (Ocimum basilicum) in the United States. Plant Dis 97(6):850. https://doi.org/10.1094/PDIS-11-12-1101-PDN

    Article  CAS  PubMed  Google Scholar 

  • Pugliese M, Gullino ML, Garibaldi A, Marenco M (2014) Control of soilborne pathogens on vegetables grown in greenhouse by microorganisms isolated from compost. Acta Hortic 1044:253–256. https://doi.org/10.17660/ActaHortic.2014.1044.30

    Article  Google Scholar 

  • Ragab MM, Saber MM, El-Morsy SA, El-Aziz AR (2009) Induction of systemic resistance against root rot of basil usingsome chemical inducers. Egypt J Phytopathol 7(1):59–70

    Google Scholar 

  • Raimondo ML, Carlucci A (2018) Characterization and pathogenicity of Plectosphaerella spp. collected from basil and parsley in Italy. Phytopathol Mediterr 57:284–295

    Google Scholar 

  • Raj SK, Chandra G, Singh BP (1997) Some Indian strains of Cucumber mosaic virus lacking satellite RNA. Ind J Exper Biol 35:1128–1131

    CAS  Google Scholar 

  • Ravichandra NG (2014) Horticultural nematology. Springer, Delhi. 412 pp

    Book  Google Scholar 

  • Refshauge SJ, Nayudu M, Vranjic J, Bock CH (2010) Infection and dispersal processes of Pseudomonas syringae pv. coriandricola on coriander. Phytopathol Mediterr 49:42–50

    Google Scholar 

  • Reitz SR, Funderburk J (2012) Management strategies for western flower thrips and the role of insecticides. In: Perveen F (ed) Insecticides – pests engineering. InTech, Rijeka, pp 355–384. http://cdn.intechopen.com/pdfs-wm/28269.pdf. Accessed 22 Oct 2016

    Google Scholar 

  • Reuveni R, Dudai N, Putievsky E, Elmer WH, Wick RL (1997) Evaluation and identification of basil germ plasm for resistance to Fusarium oxysporum f. sp. basilicum. Plant Dis 81:1077–1081

    Article  PubMed  Google Scholar 

  • Reuveni R, Raviv M, Krasnovsky A, Freiman L, Medina SH, Bar A, Orion D (2002) Compost induces protection against Fusarium oxysporum in sweet basil. Crop Prot 21(583):587

    Google Scholar 

  • Rhoades HL (1988) Effects of several phytoparasitic nematodes on the growth of basil, Ocimum basilicum. Ann Appl Nematology 2:22–24

    Google Scholar 

  • Riley DG, Joseph SV, Srinivasan R, Diffie S (2011) Thrips vectors of tospoviruses. J Integ Pest Mngmt 1(2):1–10. https://doi.org/10.1603/IPM10020

    Article  Google Scholar 

  • Robb KL, Newman J, Virzi JK, Parella MP (1995) Insecticide resistance in the western flower thrips. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 341–346

    Chapter  Google Scholar 

  • Roberts PD, Raid RN, Harmon PF, Jordan SA, Palmateer AJ (2009) First report of downy mildew caused by a Peronospora sp. on basil in Florida and the United States. Plant Dis 93:199

    Article  CAS  PubMed  Google Scholar 

  • Saleh FEM, Abdel-Kader AAS, Eraky AMI (2018) Studies on sweet basil mosaic virus disease and its control by using some essential oils. Sci J Flower Ornament Plant 5(1):1–13. https://sjfop.journals.ekb.eg/article_12813_bcaed094d5272eba4e65e566597e550c.pdf

    Article  Google Scholar 

  • Sanz NT, Chen T-H, Lai P-Y (2001) A newly discovered mosaic disease of bush basil (Ocimum basilicum) in Taiwan. Plant Pathol Bull 10:155–164

    Google Scholar 

  • Saroj A, Chanotiya CS, Maurya R, Pragadheesh VS, Yadav A, Samad A (2019) Antifungal action of Lippia alba essential oil in Rhizoctonia solani disease management. SN Appl Sci 1:1144. https://doi.org/10.1007/s42452-019-1207-8

    Article  CAS  Google Scholar 

  • Sayama H (1996) Viral resistant tomato seedling production using attenuated cucumber mosaic virus (in Japanese). Plant Prot 50:20–25

    Google Scholar 

  • Schneider B, Marcone C, Kampmann M, Ragozzino A, Lederer W, Cousin MT, Seemüller E (1997) Characterization and classification of phytoplasmas from wild and cultivated plants by RFLP and sequence analysis of ribosomal DNA. Euro J Plant Pathol 103:675–686

    Article  CAS  Google Scholar 

  • Sener K, Soylu EM, Soylu S (2010) First report of botrytis blight caused by Botrytis cinerea on sweet basil in Turkey. J Plant Pathol 92(4):s110–s110

    Google Scholar 

  • Sepulveda-Chavera G, Huanca-Mamani W, Cardenas S, Arismendi M, Salinas F, Ferrada EF, Latorre BA (2016) First report of gray mold (Botrytis cinerea) on sweet basil (Ocimum basilicum var. pilosum) in northern Chile. Plant Dis 100(2):520

    Article  Google Scholar 

  • Shafie MSA, Zaher NA, El-Kady MAS, Abu-Zeid AA (1997) Natural occurrence of Alfalfa mosaic virus on Basil plants in Egypt. J Appl Sci 12:15–30

    Google Scholar 

  • Sharabani G, Shtienberg D, Elad Y, Dinoor A (1999) Epidemiology of Botrytis cinerea in sweet basil and implications for disease management. Plant Dis 83(6):554–560

    Google Scholar 

  • Shivas RG, Tan YP, Edwards J, Dinh Q, Maxwell A, Andjic V, Liberato JR, Anderson C, Beasley DR, Bransgrove K, Coates LM (2016) Colletotrichum species in Australia. Australas Pl Pathol 45(5):447–464

    Article  Google Scholar 

  • Siciliano I, Ortega SF, Gilardi G, Bosio P, Garibaldi A, Gullino ML et al (2018) Molecular phylogeny and characterization of secondary metabolite profile of plant pathogenic Alternaria species isolated from basil. Food Microbiol 73:264–274

    Article  CAS  PubMed  Google Scholar 

  • Sipes BS, Arakaki AS, Schmitt D, Hamasaki RT (1999) Root-Knot nematode management in tropical crop** systems with organic products. J Sustainable Ag 15(2–3):69–76

    Article  Google Scholar 

  • Sirakov I, Lutz M, Graber A, Mathis A, Staykov Y, Smits TH, Junge R (2016) Potential for combined biocontrol activity against fungal fish and plant pathogens by bacterial isolates from a model aquaponics system. Water 8(11):518. https://doi.org/10.3390/w8110518

    Article  Google Scholar 

  • Srinivasan R, Sundaraj S, Pappu HR, Diffie S, Riley DR, Gitaitis RD (2012) Transmission of Iris yellow spot virus by Frankliniella fusca and Thrips tabaci (Thysanoptera: Thripidae). J Econ Entomol 105(1):40–47. https://doi.org/10.1603/EC11094

    Article  CAS  PubMed  Google Scholar 

  • Stouvenakers G, Dapprich P, Massart S, Jijakli MH (2019) Plant pathogens and control strategies in aquaponics. In: Goddek S et al (eds) . Aquaponics food production systems, Springer, Cham, pp 353–382. https://doi.org/10.1007/978-3-030-15943-6_14

    Chapter  Google Scholar 

  • Summerell BA, Gunn LV, Bullock S, Tesoriero LT, Burgess LW (2006) Vascular wilt of basil in Australia. Austral Plant Pathol 35:65–67

    Article  CAS  Google Scholar 

  • Swart L, van Niekerk JM (2003) First record of Fusarium oxysporum f. sp. basilici occurring on sweet basil in South Africa. Austral Plant Pathol 32:125–126. https://doi.org/10.1071/AP02075

    Article  Google Scholar 

  • Taba S, Ooshiro A, Takaesu K (2002) Black stem and root rot of basil (Ocimum basilicum L.) caused by Corynespora citricola. J J Phytopathol 68(1):43–45. https://doi.org/10.3186/jjphytopath.68.43

    Article  Google Scholar 

  • Taba S, Takara A, Nasu K, Miyahira N, Takushi T, Moromizato ZI (2009) Alternaria leaf spot of basil caused by Alternaria alternata in Japan. Gen Plant Pathol 75:160–162. https://doi.org/10.1007/s10327-1009-0148-2

    Article  Google Scholar 

  • Taylor AL, Sasser JN (1978) Biology, identification, and control of root-knot nematodes (Meloidogyne species). North Carolina State University Graphics, Raleigh

    Google Scholar 

  • Tesoriero LA (2016) Diseases of leafy vegetables and herbs in Austrailia. Acta Hort:1123. https://doi.org/10.17660/ActaHortic.2016.1123.15

  • Tiwari S, Pandey S, Chauhan PS, Pandey R (2017) Biocontrol agents in co-inoculation manages root knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and enhances essential oil content in Ocimum basilicum L. Ind Crop Prod 97:292

    Article  Google Scholar 

  • Tok EM (2008) First report of white mold caused by Sclerotinia sclerotiorum on sweet basil in Turkey. Plant Dis 92(10):1471

    Article  CAS  PubMed  Google Scholar 

  • Toth EK, Kriston É, Takács A, Bajtek M, Kazinczi G, Horváth J (2007) First report of Impatiens necrotic spot virus in ornamental plants in Hungary. Plant Dis 91(3):334

    Article  Google Scholar 

  • Trueman SL, Wick RL (1996) Fusarium wilt of herbs. Acta Hortic 426:365–374. https://doi.org/10.17660/ActaHortic.1996.426.41

    Article  Google Scholar 

  • Urushibara T, Sakai H, Shiraishi T, Chigira K (2001) Occurrence of Fusarium wilt of sweet basil [Ocimum basilicum] caused by Fusarium oxysporum. Res Bull Gunma Hort Exper Station 6:65–71. (in Japanese)

    Google Scholar 

  • Valenzuela HR, Hamazaki R (1995) Effect of composts and synthetic nitrogen fertilizer on growth and nematode infestation in lettuce and Basil. Hort Sci, Proc. ASHS Annual Meeting Abstract 973

    Google Scholar 

  • Vegh A, Hevesi M, Nemethy Z, Palkovics L (2011) First report of bacterial leaf spot of Basil caused by Pseudomonas viridiflava in Hungary. Plant Dis 96(1):141

    Article  Google Scholar 

  • Vovlas N, Troccoli A, Minuto A, Bruzzone C, Sasanelli N, Castillo P (2008) Pathogenicity and host–parasite relationships of Meloidogyne arenaria in wweet basil. Plant Dis 92(9):1329–1335. https://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-92-9-1329

    Article  CAS  PubMed  Google Scholar 

  • Williamson J (2019) Basil. Home and Garden Information Center, Clemson University Cooperative Extension. https://hgic.clemson.edu/factsheet/basil/. Accessed 26 July 2020

  • Wintermantle W, Natwick E (2012) First Report of Alfalfa mosaic virus infecting basil (Ocimum basilicum) in California. Plant Dis 96(2):295–295

    Article  Google Scholar 

  • Wyenandt CA (2020) Rutgers downy mildew resistant sweet basils available around the world; Research efforts continue. Plant & Pest Advisory, Rutgers Cooperative Extension published online: https://plant-pest-advisory.rutgers.edu/an-introduction-to-rutgers-downy-mildew-resistant-sweet-basils-2/#:~:text=2020%20Andy%20Wyenandt-,Rutgers%20downy%20mildew%20resistant%20sweet%20basils,the%20world%3B%20Research%20efforts%20continue&text=After%20a%20decade's%20worth%20of,home%20gardeners%20around%20the%20world

  • Wyenandt CA, Simon JE, McGrath MT, Ward DL (2010) Susceptibility of Basil Cultivars and Breeding Lines to Downy Mildew (Peronospora belbahrii). Hort Sci 45(9):1416–1419

    Google Scholar 

  • Wyenandt CA, Simon JE, Pyne RM, Homa K, McGrath MT, Zhang S, Raid RN, Ma LJ, Wick R, Guo L, Madeiras A et al (2015) Basil downy mildew (Peronospora belbahrii): Discoveries and challenges relative to its control. Phytopathology 105(7):885–894

    Article  PubMed  Google Scholar 

  • Yermiyahu U, Shamai I, Peleg R, Dudai N, Shtienberg D (2006) Reduction of Botrytis cinerea sporulation in sweet basil by altering the concentrations of nitrogen and calcium in the irrigation solution. Plant Pathol 55(4):544–542

    Article  CAS  Google Scholar 

  • Yermiyahu U, Israeli L, David DR, Faingold I, Elad Y (2015) Higher potassium concentration in shoots reduces gray mold in sweet basil. Phytopathology 105:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Yunis H, Elad Y (1989) Survival of Botrytis cinerea in plant debris during summer in Israel. Phytoparasitica 17:13–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. McGovern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McGovern, R.J. (2023). Diseases of Basil. In: Elmer, W.H., McGrath, M., McGovern, R.J. (eds) Handbook of Vegetable and Herb Diseases. Handbook of Plant Disease Management. Springer, Cham. https://doi.org/10.1007/978-3-030-35512-8_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35512-8_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35512-8

  • Online ISBN: 978-3-030-35512-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation