Nitric Oxide-Releasing Nanomaterials and Skin Infections

  • Chapter
  • First Online:
Nanotechnology in Skin, Soft Tissue, and Bone Infections

Abstract

The free radical nitric oxide (NO) is an important endogenous molecule that controls several biological processes, ranging from the promotion of vasodilatation to the acceleration of wound repair process and potent antimicrobial effects. NO is synthesized in human skin through the action of three isoforms of nitric oxide synthase (NOS), with an important role in dermal vasodilatation, wound healing process, tissue repair, and skin defense against pathogens. During the past few years, interest has increased in the development of biologically friendly and versatile NO-releasing materials for biomedical applications, in particular, for topical/dermatological applications. Recently, the combination of NO donors/generations with nanomaterials has been emerging as a suitable strategy to carry and deliver therapeutic amounts of NO directly to the target site of application, including human skin, as discussed in this chapter. Thus, NO-releasing nanomaterials present great potential to treat skin diseases, highlighting skin infections caused by pathogens, because of the broad spectrum of antimicrobial activity of NO. In this sense, NO donors/generators have been incorporated in nanoparticles, leading to a sustained and localized delivery of NO. This chapter presents and discusses the recent advantages on the design and applications of NO-releasing nanomaterials for dermatological applications, mainly in promoting wound healing and in combating resistant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AgNPs:

Silver nanoparticles

AuNPs:

Gold nanoparticles

eNOS:

Endothelial nitric oxide synthase

GSNO:

S-Nitroso glutathione

iNOS:

Inducible nitric oxide synthase

MRSA:

Methicillin-resistant Staphylococcus aureus

MSSA:

Methicillin-sensitive Staphylococcus aureus

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NO2−:

Nitrite

NO3−:

Nitrate

NOS:

Nitric oxide synthase

O2:

Oxygen

RONO2:

NO-releasing organic nitrates

RSNO:

S-Nitroso molecules

UV:

Ultraviolet radiation

UVA:

Ultraviolet A radiation

References

  • Adler BL, Friedman AJ (2015) Nitric oxide therapy for dermatologic disease. Future Sci OA 1:FSO37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653

    Article  CAS  PubMed  Google Scholar 

  • Amadeu TP, Seabra AB, de Oliveira MG, Costa AMA (2007) S-Nitrosoglutathione containing hydrogel accelerates rat cutaneous wound repair. J Eur Acad Dermatol Venereol 21:629–637

    CAS  PubMed  Google Scholar 

  • Barraud N, Kardak BG, Yepuri NR, Howlin RP, Webb JS, Faust SN, Kjelleberg S, Rice SA, Kelso MJ (2012) Cephalosporin-3′-diazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. Angew Chem Int Ed Engl 51:9057–9060

    Article  CAS  PubMed  Google Scholar 

  • Basha M, Abou Samra MM, Awad GA, Mansy SS (2018) A potential antibacterial wound dressing of cefadroxil chitosan nanoparticles in situ gel: fabrication, in vitro optimization and in vivo evaluation. Int J Pharm 544:129–140

    Article  CAS  PubMed  Google Scholar 

  • Basnet P, Skalko-Basnet N (2013) Nanodelivery systems for improved topical antimicrobial therapy. Curr Pharm Des 19:7237–7243

    Article  CAS  PubMed  Google Scholar 

  • Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandwein M, Steinberg D, Meshner S (2016) Microbial biofilms and the human skin microbiome. NPJ Biofilms Microbiomes 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrales P, Han G, Roche C, Nacharaju P, Friedman AJ, Friedman JM (2010) Sustained release nitric oxide from long-lived circulating nanoparticles. Free Radic Biol Med 49:530–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cals-Grierson MM, Ormerod AD (2004) Nitric oxide function in the skin. Biol Chem 10:179–193

    CAS  Google Scholar 

  • Carpenter AW, Worley BV, Slomberg DL, Schoenfisch MH (2012) Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles. Biomacromolecules 13:3334–3342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter P, Narasimhan B, Wang Q (2019) Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int J Pharm 555:49–62

    Article  CAS  PubMed  Google Scholar 

  • Chevalier Y, Bolzinger M (2015) Percutaneous penetration enhancers chemical methods in penetration enhancement, 1st edn. Springer, Berlin

    Google Scholar 

  • Clebak K, Malone M (2018) Skin infections. Prim Care 45:433–454

    Article  PubMed  Google Scholar 

  • Doyle MP, Hoekstra JW (1981) Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem 14:351–358

    Article  CAS  PubMed  Google Scholar 

  • Duong HTT, Adnan NNM, Barraud N, Basuki JS, Kutty SK, Kenward J, Kumar N, Davis TP, Boyer C (2014) Functional gold nanoparticles for the storage and controlled release of nitric oxide: applications in biofilm dispersal and intracellular delivery. J Mater Chem B 2:5003–5011

    Article  CAS  PubMed  Google Scholar 

  • Eileen O, Marika VD, Eoin S, Andrew H (2016) Novel targets in the glutamate and nitric oxide neurotransmitter systems for the treatment of depression. In: Systems neuroscience in depression. Academic Press, Cambridge, pp 81–113

    Google Scholar 

  • Engelman D, Fuller LC, Solomon AW (2016) Opportunities for integrated control of neglected tropical diseases that affect the skin. Trends Parasitol 32:843–854

    Article  PubMed  Google Scholar 

  • Englander L, Friedman A (2010) Nitric oxide nanoparticle technology: a novel antimicrobial agent in the context of current treatment of skin and soft tissue infection. J Clin Aesthet Dermatol 3:45–50

    PubMed  PubMed Central  Google Scholar 

  • Fang FC (1997) Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99:2818–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang CL, Aljuffali IA, Li YC, Fang JY (2014) Delivery and targeting of nanoparticles into hair follicles. Ther Deliv 5:991–1006

    Article  CAS  PubMed  Google Scholar 

  • Feldmeier H, Heukelbach J (2009) Epidermal parasitic skin diseases: a neglected category of poverty-associated plagues. Bull World Health Organ 87:152–159

    Article  PubMed  Google Scholar 

  • Friedman AJ, Han G, Navati MS, Chacko M, Gunther L, Alfieri A, Friedman JM (2008) Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide 19:12–20

    Article  CAS  PubMed  Google Scholar 

  • Georgii JL, Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A (2011) Topical S-nitrosoglutathione-releasing hydrogel improves healing of rat ischaemic wounds. J Tissue Eng Regen Med 5:612–619

    Article  CAS  PubMed  Google Scholar 

  • Goyal R, Macri LK, Kaplan HM, Kohn J (2016) Nanoparticles and nanofibers for topical drug delivery. J Control Release 240:77–92

    Article  CAS  PubMed  Google Scholar 

  • Grumezescu AM (2016) Nanobiomaterials in galenic formulations and cosmetics applications, 1st edn. William Andrew, Elsevier, Amsterdam

    Google Scholar 

  • GutiĂ©rrez V, Seabra AB, Reguera RM et al (2016) New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 45:152–168

    Article  PubMed  Google Scholar 

  • Halpenny GM, Mascharak PK (2010) Emerging antimicrobial applications of nitric oxide (NO) and NO-releasing materials. Antiinfect Agents Med Chem 9:187–197

    Article  CAS  Google Scholar 

  • Hamblin MR, Avci P, Prow TW (2016) Nanoscience in dermatology, 1st edn. Academic Press, Cambridge

    Google Scholar 

  • Hasan S, Thomas N, Thierry B, Prestidge CA (2017) Biodegradable nitric oxide precursor-loaded micro- and nanoparticles for the treatment of Staphylococcus aureus biofilms. J Mater Chem B 5:1005–1014

    Article  CAS  PubMed  Google Scholar 

  • Hetrick EM, Shin JH, Paul HS, Schoenfisch MH (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30:2782–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer K, Hoffmanns MA, Demir E, Baldus S, Christine MV, Röhle M, Fuchs PC, Awakowicz P, Suschek CV, Opländer C (2015) The topical use of non-thermal dielectric barrier discharge (DBD): nitric oxide related effects on human skin. Nitric Oxide 44:52–60

    Article  CAS  PubMed  Google Scholar 

  • Holliman G, Lowe D, Cohen H, Felton H, Felton S, Raj K (2017) Ultraviolet radiation-induced production of nitric oxide: a multi-cell and multi-donor analysis. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  • Huang Y, Yu F, Park YS, Wang J, Shin MC, Chung HS, Yang VC (2010) Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 31:9086–9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignarro LJ (1999) Nitric oxide: a unique endogenous signaling molecule in vascular biology (Nobel lecture). Angew Chem Int Ed 38:1882–1892

    Article  CAS  Google Scholar 

  • Ignarro LJ (2000) Nitric oxide, biology and pathobiology, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  • Jankovic A, Ferreri C, Filipovic M, Ivanovic-Burmazovic I, Stancic A, Otasevic V, Korac A, Buzadzic B, Korac B (2016) Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin. Free Radic Res 50:S51–S63

    Article  CAS  PubMed  Google Scholar 

  • Keefer LK (2011) Fifty years of diazeniumdiolate research: from laboratory curiosity to broad-spectrum biomedical advances. ACS Chem Biol 6:1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kon K, Rai M (2016) Antibiotic resistance: mechanisms and new antimicrobial approaches, 1st edn. Academic Press, Cambridge

    Google Scholar 

  • Koshland DE Jr (1992) The molecule of the year. Science 258:186

    Google Scholar 

  • Kraeling MEK, Top** VD, Keltner ZM, Belgrave KR, Bailey KD, Gao X, Yourick JJ (2018) In vitro percutaneous penetration of silver nanoparticles in pig and human skin. Regul Toxicol Pharmacol 95:314–322

    Article  CAS  PubMed  Google Scholar 

  • Kuhn A, Fehsel K, Lehmann P, Krutmann J, Ruzicka T, Kolb-Bachofen V (1998) Aberrant timing in epidermal expression of inducible nitric oxide synthase after UV irradiation in cutaneous lupus derythematosus. J Invest Dermatol 111:149–153

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ (2018) Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv Healthc Mater 7:1–13

    Article  CAS  Google Scholar 

  • Landriscina A, Rosen J, Blecher-Paz K, Long L, Ghannoum MA, Nosanchuk JD, Friedman AJ (2015) Nitric oxide-releasing nanoparticles as a treatment for cutaneous dermatophyte infections. Sci Lett J 4:193–198

    Google Scholar 

  • Liu D, Fernandez BO, Hamilton A, Lang NN, Gallagher JMC, Newby DE, Feelisch M, Weller RB (2014) UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J Invest Dermatol 134:1839–1846

    Article  CAS  PubMed  Google Scholar 

  • LĂ³pez-Jaramillo P, RincĂ³n MY, GarcĂ­a RG, Silva SY, Smith E, Kamoeerapappun P, GarcĂ­a C, Smith DJ, LĂ³pez M, VĂ©lez ID (2010) A controlled, randomized-blinded clinical trial to assess the efficacy of a nitric oxide releasing patch in the treatment of cutaneous leishmaniasis by Leishmania (V.) panamensis. Am J Trop Med Hyg 83:97–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyons CR (1995) The role of nitric oxide in inflammation. Adv Immunol 60:323–371

    Article  CAS  PubMed  Google Scholar 

  • Macherla C, Sanchez DA, Ahmadi MS, Vellozzi EM, Friedman AJ, Nosanchuk JD, Martinez LR (2012) Nitric oxide releasing nanoparticles for treatment of Candida albicans burn infections. Front Microbiol 3:1–9

    Article  CAS  Google Scholar 

  • Martinez LR, Han G, Chacko M, Mihu MR, Jacobson M, Gialanella P, Friedman AJ, Nosanchuk JD, Friedman JM (2009) Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection. J Invest Dermatol 129:2463–2469

    Article  CAS  PubMed  Google Scholar 

  • Mihu MR, Sandkovsky U, Han G, Friedman JM, Nosanchuk JD, Martinez LR (2010) Nitric oxide releasing nanoparticles are therapeutic for Acinetobacter baumannii wound infections. Virulence 1:62–67

    Article  PubMed  Google Scholar 

  • Mihu MR, Cabral V, Pattabhi R, Tar MT, Davies KP, Friedman AJ, Martinez LR, Nosanchuk JD (2017) Sustained nitric oxide-releasing nanoparticles interfere with methicillin-resistant Staphylococcus aureus adhesion and biofilm formation in a rat central venous catheter model. Antimicrob Agents Chemother 61:1–11

    Article  Google Scholar 

  • Mollick MMR, Rana D, Dash SK, Chattopadhyay S, Bhowmick B, Maity D, Mondal D, Pattanayak S, Roy S, Chakraborty M, Chattopadhyay D (2015) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab J Chem 2015:1–13

    Google Scholar 

  • Mordorski B, Costa-Orlandi CB, Baltazar LM, Carreño LJ, Landriscina A, Rosen J, Navati M, Mendes-Giannini MJS, Friedman JM, Nosanchuk JD, Friedman AJ (2017) Topical nitric oxide releasing nanoparticles are effective in a murine model of dermal Trichophyton rubrum dermatophytosis. Nanomedicine 13:2267–2270

    Article  CAS  PubMed  Google Scholar 

  • Moreno E, Schwartz J, FernĂ¡ndez C et al (2014) Nanoparticles as multifunctional devices for the topical treatment of cutaneous leishmaniasis. Expert Opin Drug Deliv 11:579–597

    Article  CAS  PubMed  Google Scholar 

  • Mowbray M, McLintock S, Weerakoon R, Lomatschinsky N, Jones S, Rossi AG, Weller RB (2009) Enzyme-independent NO stores in human skin: quantification and influence of UV radiation. J Invest Dermatol 129:834–842

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TK, Selvanayagam R, Ho KKK, Chen R, Kutty SK, Rice SA, Kumar N, Barraud N, Doung HTT, Boyer C (2016) Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chem Sci 7:1016–1027

    Article  CAS  PubMed  Google Scholar 

  • Nusbaum AG, Kirsner RS, Charles CA (2012) Biofilms in dermatology. Skin Therapy Lett 17(7):1–5

    CAS  PubMed  Google Scholar 

  • Opländer C, Suschek CV (2013) The role of photolabile dermal nitric oxide derivates in ultraviolet radiation (UVR)-induced cell death. Int J Mol Sci 14:191–204

    Article  CAS  Google Scholar 

  • Opländer C, Deck A, Volkmar CM, Kirsch M, Liebmann J, Born M, van Abeelen F, van Faassen EE, Kröncke KD, Windolf J, Suschek CV (2013) Mechanism and biological relevance of blue-light (420–453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. Free Radic Biol Med 65:1363–1377

    Article  PubMed  CAS  Google Scholar 

  • Parani M, Lokhande G, Singh A, Gaharwar AK (2016) Engineered nanomaterials for infection control and healing acute and chronic wounds. Appl Mater Interfaces 8:10049–10069

    Article  CAS  Google Scholar 

  • Pelegrino MT, Weller RB, Chen X, Bernardes JS, Seabra AB (2017) Chitosan nanoparticles for nitric oxide delivery in human skin. Med Chem Commun 8:713–719

    Article  CAS  Google Scholar 

  • Pelegrino MT, de AraĂºjo DR, Seabra AB (2018) S-Nitrosoglutathione-containing chitosan nanoparticles dispersed in Pluronic F-127 hydrogel: potential uses in topical applications. J Drug Delivery Sci Technol 43:211–220

    Article  CAS  Google Scholar 

  • Percival SL, Emanuel C, Cutting KF, Williams DW (2012) Microbiology of the skin and the role of biofilms in infection. Int Wound J 9:14–32

    Article  PubMed  Google Scholar 

  • Privett BJ, Nutz ST, Schoenfisch MH (2010) Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation. Biofouling 26:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JF, Whittaker MR, Davis TP (2015) Delivering nitric oxide with nanoparticles. J Control Release 205:190–205

    Article  CAS  PubMed  Google Scholar 

  • Sakdiset P, Okada A, Todo H, Sugibayashi K (2018) Selection of phospholipids to design liposome preparations with high skin penetration-enhancing effects. J Drug Delivery Sci Technol 44:58–64

    Article  CAS  Google Scholar 

  • Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ (2012) The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 3:271–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Seabra AB (2011) Nitric oxide-releasing nanomaterials and skin care. In: Beck R, Pohlmann A, Guterres S (eds) Nanocosmetics and nanomedicines, 1st edn. Springer, New York, pp 253–268

    Chapter  Google Scholar 

  • Seabra AB (2017) Nitric oxide donors: novel biomedical applications and perspectives, 1st edn. Elsevier, New York

    Google Scholar 

  • Seabra AB, DurĂ¡n N (2017a) Nanoparticulated nitric oxide donors and their biomedical applications. Mini Rev Med Chem 17(3):216–223

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, DurĂ¡n N (2017b) Nitric oxide donors for treating neglected diseases. In: Nitric oxide donors: novel biomedical applications and perspectives, 1st edn. Elsevier, Amsterdam, pp 25–54

    Chapter  Google Scholar 

  • Seabra AB, DurĂ¡n N (2018) Nitric oxide donors for prostate and bladder cancers: current state and challenges. Eur J Pharmacol 826:158–168

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Fitzpatrick A, Paul J, De Oliveira MG, Weller R (2004) Topically applied S-nitrosothiol-containing hydrogels as experimental and pharmacological nitric oxide donors in human skin. Br J Dermatol 151:977–983

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Justo GZ, Haddad PS (2015) State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications. Biotechnol Adv 33:1370–1379

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Pelegrino MT, Haddad PS (2016) Can nitric oxide overcome bacterial resitance to antibiotics? In: Antibiotic resistance: mechanisms and new antimicrobial approaches, 1st edn. Elsevier, Amsterdam, pp 187–204

    Chapter  Google Scholar 

  • Slomberg DL, Lu Y, Broadnax AD, Hunter RA, Carpenter AW, Schoenfisch MH (2013) Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces 5:9322–9329

    Article  CAS  PubMed  Google Scholar 

  • Sonesson A, Przybyszewska K, Eriksson S, Mörgelin M, Kjellström K, Davies J, Potempa J, Schmidtchen A (2017) Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Stancic A, Jankovic A, Koracb A et al (2019) The role of nitric oxide in diabetic skin (patho)physiology. Mech Ageing Dev 172:21–29

    Article  CAS  Google Scholar 

  • Stuehr DJ, Haque MM (2018) Nitric oxide synthase enzymology in the twenty years after the Nobel prize. Br J Pharmacol 176(2):177–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, **a Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364

    CAS  Google Scholar 

  • Wang PG, **an M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002) Nitric oxide donors: chemical activities and biological applications. Chem Rev 102:1091–1134

    Article  CAS  PubMed  Google Scholar 

  • Weller RB (2016) Sunlight has cardiovascular benefits independently of vitamin D. Blood Purif 41:130–134

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Qi PK, Yang ZL, Huang N (2015) Nitric oxide based strategies for applications of biomedical devices. Biosurf Biotribol 1(3):177–201

    Article  Google Scholar 

  • Yarlagadda K, Hassani J, Foote IP, Markowitz J (2017) The role of nitric oxide in melanoma. Biochim Biophys Acta Rev Cancer 1868:500–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB (2013) Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(3):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y, Liu G (2016) Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190:1174–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the support from CNPq (404815/2018-9) and FAPESP (2018/08194-2, 2018/02832-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedea B. Seabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pieretti, J.C., Seabra, A.B. (2020). Nitric Oxide-Releasing Nanomaterials and Skin Infections. In: Rai, M. (eds) Nanotechnology in Skin, Soft Tissue, and Bone Infections. Springer, Cham. https://doi.org/10.1007/978-3-030-35147-2_1

Download citation

Publish with us

Policies and ethics

Navigation