Megascopic Quantum Phenomena

A Critical Study of Physical Interpretations

  • Conference paper
  • First Online:
Advances in Quantum Systems in Chemistry, Physics, and Biology (QSCP 2018)

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 32))

  • 570 Accesses

Abstract

A historical study of metaphysical interpretations is presented. A megascopic revalidation is offered providing responses and resolutions of current inconsistencies and existing contradictions in present-day quantum theory. As the core of this study we present an independent proof of the Goldstone theorem for a quantum field formulation of molecules and solids. Along with phonons two types of new quasiparticles appear: rotons and translons. In full analogy with Lorentz covariance, combining space and time coordinates, a new covariance is necessary, binding together the internal and external degrees of freedom, without explicitly separating the centre-of-mass, which normally applies in both classical and quantum mechanical formulations. The generally accepted view regarding the lack of a simple correspondence between the Goldstone modes and broken symmetries, has significant consequences: an ambiguous BCS theory as well as a subsequent Higgs mechanism. The application of the archetype of the classical spontaneous symmetry breaking, i.e. the Mexican hat, as compared to standard quantum relations, i.e. the Jahn-Teller effect, superconductivity or the Higgs mechanism, becomes a disparity. In short, symmetry broken states have a microscopic causal origin, but transitions between them have a teleological component. The different treatments of the problem of the centre of gravity in quantum mechanics and in field theories imply a second type of Bohr complementarity on the many-body level opening the door for megascopic representations of all basic microscopic quantum axioms with further readings for teleonomic megascopic quantum phenomena, which have no microscopic rationale: isomeric transitions, Jahn-Teller effect, chemical reactions, Einstein-de Haas effect, superconductivity-superfluidity, and brittle fracture. We demonstrate how the megascopic extension of the microscopic theory deals with the various paradoxes, such as the arrow of time, the Jordan-von Weizsäcker problem, to explain classicality, Santilli’s “no reduction theorem”, the Schrödinger cat paradox and Wigner’s friend, and the Kauzmann paradox of residual entropy. Only the Copenhagen interpretation seems to be able to incorporate telicity via mega-scopic mirroring of each of its basic axioms, and in that way does confront the above mentioned paradoxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Einstein A, Podolsky B, Rosen N (1935) Phys Rev 47:777–780

    Article  CAS  Google Scholar 

  2. Bell JS (1964) Physics 1:195–200

    Article  Google Scholar 

  3. Born M, Oppenheimer R (1927) Ann Phys (Leipzig) 84:457

    Article  CAS  Google Scholar 

  4. Sutcliffe B, Woolley RG (2013) Progr Theoret Chem Phys 27(Part 1):3–40 (Springer)

    Article  CAS  Google Scholar 

  5. Monkhorst HJ (1999) Int J Quantum Chem 72:281

    Article  CAS  Google Scholar 

  6. Monkhorst HJ (1987) Phys Rev A 36:1544

    Article  CAS  Google Scholar 

  7. Born M, Huang K (1954) The dynamical theory of crystal lattices. Oxford University Press, London

    Google Scholar 

  8. Kutzelnigg W (1997) Mol Phys 90:909

    Article  CAS  Google Scholar 

  9. Cafiero M, Adamowicz L (2004) Chem Phys Lett 387:136–141

    Article  CAS  Google Scholar 

  10. Jahn HA, Teller E (1937) Proc R Soc Lond A 161:220

    Article  CAS  Google Scholar 

  11. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Google Scholar 

  12. Bersuker IB, Polinger BZ (1983) Vibronic interactions in molecules and crystals. Nauka, Moscow (in Russian)

    Google Scholar 

  13. Santilli RM (1967) Nuovo Cimento 51:570

    Article  Google Scholar 

  14. Bohm D (1952) Phys Rev 85:166–179

    Article  CAS  Google Scholar 

  15. Bohm D (1980) Wholeness and the implicate order. Routledge Classics, London, New York

    Google Scholar 

  16. Sheldrake R, Bohm D (1982) Morphogenetic fields and the implicate order. ReVision 5:41

    Google Scholar 

  17. Everett H (1957) Rev Mod Phys 29:454

    Article  Google Scholar 

  18. Norton JD (2015) The measurement problem. Selected courses in history and philosophy of science. University of Pittsburgh

    Google Scholar 

  19. Einstein A (1949) Reply to criticisms in Albert Einstein: philosopher-scientist. The library of living philosophers series. Cambridge University Press

    Google Scholar 

  20. Carpenter RHS, Anderson AJ (2006) Ann Fond Louis Broglie 31:1

    Google Scholar 

  21. Schreiber Z (1995) The nine lives of Schrödinger’s cat. ar**v:9501014 [quant-ph]

  22. Schlosshauer M, Camilleri K (2011) AIP Conf Proc 1327:26–35

    Article  Google Scholar 

  23. Bohr N (1985) Collected works. In: Kalckar J (ed) Foundations of quantum mechanics I (1926–1932), vol 6. North-Holland, Amsterdam

    Google Scholar 

  24. Heisenberg W (1958) Physics and philosophy. Harper & Bros, New York

    Google Scholar 

  25. Heelan P (1975) Z Allg Wiss 6:113–138

    Google Scholar 

  26. Heisenberg W (1952) Questions of principle in modern physics. Philosophic problems in nuclear science. Faber and Faber, London, pp 41–52

    Google Scholar 

  27. von Weizsäcker CF (1971) The Copenhagen interpretation. In: Bastin T (ed) Quantum theory and beyond. Cambridge University, Cambridge, pp 25–31

    Google Scholar 

  28. von Neumann J (1955) Mathematical foundations of quantum mechanics (1932). Princeton University Press

    Google Scholar 

  29. London F, Bauer E (1983) La théorie de l’observation en mécanique quantique (1939). In: Wheeler JA, Zurek WH (eds and trans) Quantum theory and measurement. Princeton University, Princeton

    Google Scholar 

  30. Davies PCW, Brown JR (eds) (1986) The ghost in the atom. Cambridge University Press

    Google Scholar 

  31. Wigner EP (1964) Two kinds of reality. Monist 48:248–264

    Article  Google Scholar 

  32. Faye J (2014) Copenhagen interpretation of quantum mechanics. In: Stanford encyclopedia of philosophy

    Google Scholar 

  33. Howard D (2004) Who invented the ‘Copenhagen interpretation?’ a study in mythology. Philos Sci 71:669–682

    Article  Google Scholar 

  34. Heisenberg W (1955) The development of the interpretation of the quantum theory. In: Pauli W (ed) Niels Bohr and the development of physics. Pergamon, London, pp 12–29

    Google Scholar 

  35. Henderson JR (2010) Classes of Copenhagen interpretations: mechanisms of collapse as a typologically determinative. Stud Hist Philos Mod Phys 41:1–8

    Article  Google Scholar 

  36. Primas H, Esfeld M (1997) A critical review of Wigner’s work on the conceptual foundations of quantum theory. philsci-archive.pitt.edu/1574

  37. Wigner EP (1973) Epistemological perspective on quantum theory. In: Hooker CA (ed) Contemporary research in the foundations and philosophy of quantum theory. Reidel, Dordrecht

    Google Scholar 

  38. Wigner EP (1962) Remarks on the mind-body question. In: Good IJ (ed) The scientist speculates. Heinemann, London

    Google Scholar 

  39. Wigner EP (1977) Physics and its relation to human knowledge. Hellenike Anthropistike Hetaireia, Athens, pp 283–294

    Google Scholar 

  40. Einstein A (1955) Einleitende Bemerkung über Grundbegriffe, Louis de Broglie und die Physiker. Hamburg, Claassen Verlag

    Google Scholar 

  41. Wigner EP (1969) Are we machines? Proc Am Philos Soc 113:95–101

    Google Scholar 

  42. Mach E (1886) Die Analyse der Empfindungen und das Verhältnis des Psychischen zum Physischen. G. Fischer, Prag

    Google Scholar 

  43. Goethe JW (2006) Maximen und Reflexionen. Helmut Koopmann (Hrsg.), Deutscher Taschenbuch Verlag und C. H. Beck, München

    Google Scholar 

  44. Tegmark M (2007) Found Phys 11(07):116

    Google Scholar 

  45. Zurek WH (1982) Phys Rev D 26:1862

    Article  Google Scholar 

  46. Kastner RE (2014) Studies in history and philosophy of modern physics. Preprint, philsci-archive.pitt.edu/id/eprint/10757

  47. Zurek WH (2009) Quantum darwinism. Nat Phys 5:181–188

    Article  CAS  Google Scholar 

  48. Lennox JG (1993) Darwin was a teleologist. Biol Philos 8:409–421

    Article  Google Scholar 

  49. Mayr EW (1992) The idea of teleology. J Hist Ideas 53:117–135

    Article  Google Scholar 

  50. Madrell SHP (1998) Why are there no insects in the open sea? J Exp Biol 201:2461–2464

    Google Scholar 

  51. Maxwell JC, Garber E, Brush SG, Everitt CWF (1995) Maxwell on heat and statistical mechanics: on “avoiding all personal enquiries” of molecules. Lehigh University Press, Bethlehem

    Google Scholar 

  52. Norton JD (2003) Causation as Folk Science. Philosopher’s Imprint 3(4):1–22

    Google Scholar 

  53. Doyle B (2011) Free will: the Scandal in philosophy. I-Phi Press, Cambridge, MA

    Google Scholar 

  54. James W (1956) The Dilemma of determinism. Republished in The will to believe. Dover

    Google Scholar 

  55. Poincaré H (1914) Science and method. In: Mathematical discovery (Chapter 3)

    Google Scholar 

  56. Penrose R (1989) The emperor’s new mind: concerning computers, minds, and the laws of physics. Oxford University Press, USA

    Google Scholar 

  57. Compton A, Johnston M (ed) (1967) The cosmos of Arthur Holly Compton. A. A, Knopf, New York

    Google Scholar 

  58. Flanagan O (2003) The problem of the soul. Basic Books, New York

    Google Scholar 

  59. Popper K (1978) Natural selection and the emergence of mind. Dialectica 32:339–355

    Article  Google Scholar 

  60. Eccles JC, Popper KR (1977) The self and its brain. Springer, Berlin, Heidelberg, London, New York

    Google Scholar 

  61. Bohr N (1958) Atomic physics and human knowledge. Wiley, New York

    Google Scholar 

  62. Kamerlingh-Onnes H (1911) Comm Phys Lab Univ Leiden, pp 122b & 124c

    Google Scholar 

  63. Becker R, Heller G, Sauter F (1933) Z Phys 85:772

    Article  Google Scholar 

  64. Meissner W, Ochsenfeld R (1933) Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21(44):787–788

    Article  Google Scholar 

  65. London F, London H (1935) Proc Roy Soc Lond A 149:71

    Google Scholar 

  66. London F (1950) Superfluids, vol I. Wiley, New York

    Google Scholar 

  67. Hildebrandt AF (1964) Phys Rev Lett 12:190

    Article  Google Scholar 

  68. de Gennes PG (1999) Superconductivity of metals and alloys. Perseus Books, Reading, MA, pp 4–7

    Google Scholar 

  69. Essén H, Fiolhais MCN (2012) Meissner effect, diamagnetism, and classical physics—a review. Am J Phys 80:164–169

    Article  Google Scholar 

  70. von Laue M (1952) Theory of superconductivity. Academic Press, New York, pp 6–7

    Google Scholar 

  71. Cullwick EG (1956) Magnetic energy and electron inertia in a superconducting sphere. Proc IEE Part C Monogr 103:441–446

    Article  Google Scholar 

  72. Pfleiderer J (1966) Meissner effect in a classical electron gas. Nature 210:614

    Article  Google Scholar 

  73. Karlsson PW (1984) Inductance inequalities for ideal conductors. Arch Elektrotech 67:29–33

    Article  Google Scholar 

  74. Badía-Majós A (2006) Understanding stable levitation of superconductors from intermediate electromagnetics. Am J Phys 74:1136–1142

    Article  Google Scholar 

  75. Kudinov EK (2006) Thermodynamics of current in superconductors and superfluids. Phys Solid State 48:1447–1454

    Article  CAS  Google Scholar 

  76. Mahajan SM (2008) Classical perfect diamagnetism, expulsion of current from the plasma interior. Phys Rev Lett 100:075001-1–075001-4

    Article  CAS  Google Scholar 

  77. Ginzburg VL, Landau LD (1950) Zh Eksp Teor Fiz 20:1064

    CAS  Google Scholar 

  78. Bardeen J, Cooper LN, Schrieffer JR (1957) Phys Rev 108:1175

    Article  CAS  Google Scholar 

  79. Kozynchenko A (2005) Apeiron 12(3):330–350

    Google Scholar 

  80. Hirsch JE (2016) Europhys Lett 113:37001

    Article  CAS  Google Scholar 

  81. Hirsch JE (2012) Phys Scr 85:035704

    Article  CAS  Google Scholar 

  82. Hirsch JE (2016) Europhys Lett 114:57001

    Article  CAS  Google Scholar 

  83. Frenkel J (1933) Phys Rev 43:907

    Article  CAS  Google Scholar 

  84. Smith HG (1935) University of Toronto studies. Low Temp Ser 76:23; Smith HG, Wilhelm JO (1935) Rev Mod Phys 7:237

    Google Scholar 

  85. Slater JC (1937) Phys Rev 52:214

    Google Scholar 

  86. Hirsch JE (2014) Phys Scr 89:015806

    Article  CAS  Google Scholar 

  87. Hirsch JE (2016) What is the speed of the supercurrent in superconductors? ar**v:1605.09469

  88. Comay E (2015) Inherent contradictions in Higgs boson theory. Am J Mod Phys. 5(1–1):18–22 (Special issue: Physics without Higgs and without supersymmetry)

    Google Scholar 

  89. Dirac PAM (1978) Mathematical foundations of quantum theory. A. R. Marlow, New York

    Book  Google Scholar 

  90. Nambu Y, Jona-Lasinio G (1961) Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys Rev 122:345–358

    Article  CAS  Google Scholar 

  91. Goldstone J (1961) Nuovo Cimento 19:154–164

    Article  Google Scholar 

  92. Goldstone J, Salam A, Weinberg S (1962) Broken symmetries. Phys Rev 127:965–970

    Article  Google Scholar 

  93. Schwinger J (1962) Phys Rev 125:397+128:2425

    Google Scholar 

  94. Yang CN, Mills R (1954) Conservation of isotopic spin and isotopic gauge invariance. Phys Rev 96(1):191–195

    Article  CAS  Google Scholar 

  95. Anderson PW (1963) Plasmons, gauge invariance, and mass. Phys Rev 130:439–442

    Article  Google Scholar 

  96. Earman J (2002) Laws, symmetry, and symmetry breaking; invariance, conservation principles, and objectivity. Philsci-archive.pitt.edu/id/eprint/878

  97. Higgs PW (2014) Nobel lecture: evading the Goldstone theorem. Rev Mod Phys 86:851

    Article  Google Scholar 

  98. Goldstone J (1957) Proc R Soc Lond Ser A 239:267

    CAS  Google Scholar 

  99. Brueckner KA (1955) Phys Rev 97:1353; Phys Rev 100:36 (1955)

    Google Scholar 

  100. Paldus J, Čížek J (1975) Advan Quant Chem 9:105

    Article  CAS  Google Scholar 

  101. Svrček M (1986) Ph.D. thesis. Faculty of Mathematics and Physics. Comenius University, Bratislava

    Google Scholar 

  102. Fröhlich H (1952) Proc R Soc Lond A215:291

    Google Scholar 

  103. Svrček M. (1992) In: Methods in computational chemistry, vol 4. Molecular vibrations. Plenum Press, New York, pp 150–202 (Chapter 2–6.2) & 204–229 (Chapter 7)

    Google Scholar 

  104. Pople JA, Raghavachari K, Schlegel HB, Binkley JS (1979) Int J Quant Chem Symp 13:225

    CAS  Google Scholar 

  105. Fröhlich H (1950) Phys Rev 79:845

    Article  Google Scholar 

  106. Lee TD, Low FE, Pines D (1953) Phys Rev 90:192

    Article  Google Scholar 

  107. Svrček M (2012) Prog Theor Chem Phys 22(Part 7):511–552 (Springer)

    Article  CAS  Google Scholar 

  108. Lenz P, Wegner F (1996) Nucl Phys B 482:693–712

    Article  Google Scholar 

  109. Svrček M (2013) Prog Theor Chem Phys 27(Part 1):41–52 (Springer)

    Article  Google Scholar 

  110. Handy NC, Lee AM (1996) Chem Phys Lett 252:425

    Article  CAS  Google Scholar 

  111. Weinberg S (1996) The quantum theory of fields, vol 2: modern applications. Cambridge University Press, Cambridge

    Google Scholar 

  112. Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, Cambridge

    Book  Google Scholar 

  113. Newton I (1686) Philosophiæ Naturalis Principia Mathematica. S. Pepys, Reg. Soc. Præses. Londini, 5 Julii 1686

    Google Scholar 

  114. Weyl H (1952) Symmetry. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  115. Leibniz GW (1875) Philosophische Schriften (in particular Leibniz' third letter, §5). Gerhardt, Berlin, pp. 352–440

    Google Scholar 

  116. Curie P (1894) Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J Phys Theor Appl 3(1):393–415

    Article  Google Scholar 

  117. Brading K, Castellani E (2003) In: Brading K, Castellani E (eds) Introduction in symmetries in physics: philosophical reflections. Cambridge University Press

    Google Scholar 

  118. Einstein A, de Haas WJ (1915) Experimenteller Nachweis der Ampereschen Molekularströme, Deutsche Physikalische Gesellschaft, Verhandlungen, p 17

    Google Scholar 

  119. van Fraassen BC (1989) Laws and symmetry. Oxford University Press, Oxford, New York

    Book  Google Scholar 

  120. Stewart I, Golubitsky M (1992) Fearful symmetry. Is God a geometer?. Blackwell Publishers, Cambridge, MA

    Google Scholar 

  121. Norton JD (2008) The dome: an unexpectedly simple failure of determinism. Philos Sci 75(5):786–798

    Article  Google Scholar 

  122. Malament D (2008) Norton’s slippery slope. Philos Sci 75:5

    Article  Google Scholar 

  123. van Strien M (2014) J Gen Philos Sci 45:167

    Article  Google Scholar 

  124. Boussinesq MJ (1879) Conciliation du véritable déterminisme mécanique avec l’existence de la vie et de la liberté morale. In: Mémoires de la société des sciences, de l’agriculture et des arts de Lille, t. VI, 4e série, pp 1–257

    Google Scholar 

  125. Collected works of Charles Sanders Peirce (1964), vol 45–6. Cambridge, MA

    Google Scholar 

  126. Weinberg S (1995) The quantum theory of fields, vol 1: foundations. Cambridge University Press, Cambridge

    Article  Google Scholar 

  127. Brading K, Castellani E (2013) Symmetry and symmetry breaking. The Stanford Encyclopedia of Philosophy

    Google Scholar 

  128. van Dam S (2012) Spontaneous symmetry breaking in the Higgs, philsci-archive.pitt.edu/9295

  129. Elitzur S (1975) Impossibility of spontaneously breaking local symmetries. Phys Rev D 12:3978–3982

    Article  Google Scholar 

  130. Peierls R, Kaplan TA, Anderson PW (1991) Reflections on Broken symmetry. Phys Today 44(2):13

    Article  Google Scholar 

  131. Unzicker A (2013) The Higgs Fake: how particle physicists fooled the nobel committee. Createspace Independent Publishing Platform

    Google Scholar 

  132. Primas H, Müller-Herold U (1984) Elementare Quantenchemie (Stuttgart: Teubner), p 147 ff

    Chapter  Google Scholar 

  133. Berry MV (1984) Proc R Soc Lond A 392:45–57

    Article  Google Scholar 

  134. Jordan P (1949) Philos Sci 16(4):269–278

    Article  Google Scholar 

  135. Vaidman L (2002) Many-worlds interpretation of quantum mechanics. In: Zalta EN (ed) Stanford encyclopedia of philosophy

    Google Scholar 

  136. Bell JS (1987) Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  137. Rowlands P (2015) The foundations of physical law. World Scientific Publishing Co. Pte. Ltd

    Google Scholar 

  138. van Vleck JH (1939) J Chem Phys 7:61

    Article  Google Scholar 

  139. Low W (1960) Paramagnetic resonance in solids. Academic Press, New York

    Google Scholar 

  140. Plato in twelve volumes (1925) (transl: Lamb WRM). Cambridge, MA, Harvard University Press, London, William Heinemann Ltd

    Google Scholar 

  141. Smolin L (2006) The trouble with physics. Houghton Mifflin Co., New York

    Google Scholar 

  142. Hardie RP, Gaye RK (2014) Aristotle’s physics: entire. The University of Adelaide, ebooks.adelaide.edu.au/a/aristotle

  143. Josephson BD (1962) Possible new effects in superconductive tunnelling. Phys Lett 1:251–253

    Article  Google Scholar 

  144. Feynman R, Leighton R, Sands M (1965) The Feynman lectures on physics, vol III: quantum mechanics. Addison-Wesley, Reading, MA

    Google Scholar 

  145. Richardson OW (1908) A mechanical effect accompanying magnetization. Phys Rev Ser I 26(3):248–253

    Google Scholar 

  146. Maruani J (2018) Progress in theoretical chemistry and physics, vol 31. Springer

    Google Scholar 

  147. Maruani J (2016) The Dirac electron: from quantum chemistry to holistic cosmology. J Chin Chem Soc 63:33–48 and references therein

    Article  CAS  Google Scholar 

  148. Pauling L (1970) General chemistry. W. H. Freeman & Co., San Francisco

    Google Scholar 

  149. Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43(2):219

    Article  CAS  Google Scholar 

  150. Anderson PW (1995) Through the glass lightly. Science 267:1616

    Article  Google Scholar 

  151. Field JE (1971) Brittle fracture: its study and application. Contemp Phys 12(1):1–31

    Article  Google Scholar 

  152. Campbell FC (2012) Fatigue and fracture: understanding the basics. ASM International, Materials Park, Ohio

    Google Scholar 

  153. Heisenberg W (1977) Physik und Philosophie. Ullstein Verlag, Ebner, Ulm

    Google Scholar 

  154. Whyte LL (1960) The unconscious before Freud. Basic Books, New York

    Google Scholar 

  155. Jung CG (1991) The archetypes and the collective unconscious. Collected works of C. G. Jung, vol 9, Part 1. 2nd edn. Routledge, London

    Google Scholar 

  156. Linden SJ (1996) Darke Hierogliphicks: alchemy in english literature from Chaucer to the restoration. University Press of Kentucky

    Google Scholar 

  157. Brändas EJ (2017) Per-Olov Löwdin—father of quantum chemistry. Mol Phys 115(17–18):1995–2024

    Article  CAS  Google Scholar 

  158. Zeh HD (1993) Phys Lett A 172:189

    Article  Google Scholar 

  159. Bell JS (1981) In: Isham CJ, Penrose R, Sciama DW (eds) Quantum gravity II. Clarendon Press

    Google Scholar 

  160. Weinberg S (1989) Phys Rev Lett 62:485; Polchinski J (1991) Phys Rev Lett 66:397; Squires EJ (1992) Phys Lett A 163:356

    Google Scholar 

  161. Mackey AG, McClenachan CT (1884) An encyclopædia of freemasonry and its kindred sciences: comprising the whole range of arts, sciences and literature as connected with the institution. L. H. Everts & Co., Philadelphia

    Google Scholar 

  162. Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 1st edn. John Murray, London

    Google Scholar 

  163. Darwin C (2013) Descent of man, vol 1, p 201. The Project Gutenberg EBook #2300

    Google Scholar 

  164. Beato G (1613) Aurelium Occultae Philosophorum. In: Theatrum Chemicum, vol IV. Zetzner, Strasbourg

    Google Scholar 

  165. Josephus F (2009) The antiquities of the Jews. Project Gutenberg, EBook #2848

    Google Scholar 

  166. van Bladel K (2009) The Arabic Hermes. From pagan sage to prophet of science. Oxford University Press

    Google Scholar 

Download references

Acknowledgements

The author would like to express his greatest appreciation to E. Brändas for his careful reading of the manuscript, offering many linguistic improvements, as well as extensive constructive suggestions for valuable reformulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Svrček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Svrček, M. (2020). Megascopic Quantum Phenomena. In: Mammino, L., Ceresoli, D., Maruani, J., Brändas, E. (eds) Advances in Quantum Systems in Chemistry, Physics, and Biology. QSCP 2018. Progress in Theoretical Chemistry and Physics, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-34941-7_14

Download citation

Publish with us

Policies and ethics

Navigation