Microelectrode Recording in Neurosurgical Patients

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery
  • 1226 Accesses

Abstract

Microelectrode recording (MER) is used to localize and map deep brain structures during neurosurgical procedures and has been a fruitful technique in human neuroscience research. In this chapter, we briefly review the biophysical principles of MER, discuss the use of the technique for targeting as it relates to movement disorders, and conclude with a comparison of the accuracy obtained with MER and with direct targeting with imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 163.51
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AC-PC:

Anterior commissure–posterior commissure

CT:

Computed tomography

DBS:

Deep brain stimulation

DSP:

Digital signal processing

EMG:

Electromyography

GPe:

Globus pallidus externus

GPi:

Globus pallidus internus

LFP:

Local field potential

MER:

Microelectrode recording

MRI:

Magnetic resonance imaging

PD:

Parkinson disease

SNr:

Substantia nigra pars reticulate

STN:

Subthalamic nucleus

UPDRS:

Unified Parkinson’s Disease Rating Scale

Vc:

Ventrocaudalis

Vim:

Ventral intermediate nucleus of the thalamus

Voa:

Ventralis oralis anterior

Vop:

Ventralis oralis posterior

References

  1. Starr PA. Technical considerations in movement disorder surgery. In: Schulder M, Gandhi C, editors. Handbook of stereotactic and functional neurosurgery. 1st ed. New York: Marcel Decker Inc; 2003.

    Google Scholar 

  2. Satzer D, Lanctin D, Eberly LE, Abosch A. Variation in deep brain stimulation electrode impedance over years following electrode implantation. Stereotact Funct Neurosurg [Internet]. 2014 [cited 2018 Dec 12];92(2):94–102. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531050/pdf/nihms554312.pdf.

    Article  PubMed  Google Scholar 

  3. Johnson JB. Thermal agitation of electricity in conductors. Phys Rev [Internet]. 1928 [cited 2018 Dec 12];32(1):97–109. Available from: https://link.aps.org/doi/10.1103/PhysRev.32.97.

    Article  CAS  Google Scholar 

  4. Desai SA. Improving impedance of implantable microwire multi-electrode arrays by ultrasonic electroplating of durable platinum black. Front Neuroeng [Internet]. 2010;3(May):1–11. Available from: http://journal.frontiersin.org/article/10.3389/fneng.2010.00005/abstract.

    Google Scholar 

  5. Shils JL, Patterson T, Stecker MM. Electrical properties of metal microelectrodes. Am J Electroneurodiagnostic Technol [Internet]. 2000 [cited 2018 Dec 14];40(2):143–53. Available from: https://www.tandfonline.com/doi/full/10.1080/1086508X.2000.11079297.

  6. Spiegel EA, Wycis HT. Ansotomy in paralysis agitans. Arch Neurol Psychiatry [Internet]. 1954 [cited 2018 Dec 14];71(5):598. Available from: http://archneurpsyc.jamanetwork.com/article.aspx?doi=10.1001/archneurpsyc.1954.02320410060005.

  7. Spiegel E, Wycis T. Stereoencephalotomy. Part II. Clinical and physiological application. In: Clinical and physiological applications. New York: Grune and Straton; 1962.

    Google Scholar 

  8. Albe-Fessard D, Arfel G, Guiot G, Derome P, Hertzog E, Vourc’h G, et al. Electrophysiological studies of some deep cerebral structures in man. J Neurol Sci [Internet]. 1966 [cited 2018 Nov 14];3(1):37–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5331941.

    Article  CAS  PubMed  Google Scholar 

  9. Meyers R. Surgical procedure for postencephalitic tremor, with notes on the physiology of the premotor fibers. Arch Neurol Psychiatr. 1940:455–9.

    Google Scholar 

  10. Wetzel N, Snider R. Neurophysiological correlates in human stereotaxis. Q Bull Northwest universirty Med Sch. 1958;32(4):386–92.

    CAS  Google Scholar 

  11. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Stereotact Funct Neurosurg [Internet]. 1987 [cited 2018 Dec 14];50(1–6):344–6. Available from: https://www.karger.com/Article/FullText/100803.

    Article  CAS  Google Scholar 

  12. Benabid AL, Pollak P, Gao D, Hoffmann D, Limousin P, Gay E, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg [Internet]. 1996;84(2):203–14. Available from: http://thejns.org/doi/abs/10.3171/jns.1996.84.2.0203.

    Article  CAS  PubMed  Google Scholar 

  13. Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all parkinsonian symptoms. Neurosurgery [Internet]. 1994;35(6):1126–9; discussion 1129–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7885558.

    Article  CAS  Google Scholar 

  14. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas J-F, Perret JE, et al. Effect on parkinsonian signs and symptoms of bilateral STN stimulation. Lancet [Internet]. 1995 [cited 2018 Dec 14];345(8942):91–5. Available from: https://www.sciencedirect.com/science/article/pii/S0140673695900624?via%3Dihub.

  15. Pinsker MO, Volkmann J, Falk D, Herzog J, Steigerwald F, Deuschl G, et al. Deep brain stimulation of the internal globus pallidus in dystonia: target localisation under general anaesthesia. Acta Neurochir. 2009;151(7):751–8.

    Article  CAS  PubMed  Google Scholar 

  16. Harries AM, Kausar J, Roberts SAG, Mocroft AP, Hodson JA, Pall HS, et al. Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. J Neurosurg [Internet]. 2012;116(1):107–13. Available from: http://thejns.org/doi/10.3171/2011.7.JNS11319.

    Article  PubMed  Google Scholar 

  17. Schwalb J, Hamani C, Lozano A. Thalamic deep brain stimulation for the control of tremor. In: Starr P, Barbaro N, Larson P, editors. Neurosurgical operative atlas: functional neurosurgery. 2nd ed. New York: Thieme; 2009.

    Google Scholar 

  18. Kopell B, Machado A, Rezai A. Chronic subthalamic nucleus stimulation for Parkinson’s disease. In: Starr P, Barbaro N, Larson P, editors. Neurosurgical operative atlas: functional neurosurgery. 2nd ed. New York: Thieme; 2009.

    Google Scholar 

  19. Pollak P, Krack P, Fraix V, Mendes A, Moro E, Chabardes S, et al. Intraoperative micro- and macrostimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2002;17(SUPPL. 3)

    Google Scholar 

  20. Bejjani B-P, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, et al. Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg [Internet]. 2000 [cited 2018 Dec 13];92(4):615–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10761650.

    Article  CAS  PubMed  Google Scholar 

  21. Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–8.

    Article  PubMed  Google Scholar 

  22. Sansur CA, Frysinger RC, Pouratian N, Fu K-M, Bittl M, Oskouian RJ, et al. Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg [Internet]. 2007;107(5):998–1003. Available from: http://thejns.org/doi/10.3171/JNS-07/11/0998.

    Article  Google Scholar 

  23. Zrinzo L, Foltynie T, Limousin P, Hariz MI. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg [Internet]. 2012;116(1):84–94. Available from: http://thejns.org/doi/10.3171/2011.8.JNS101407.

    Article  Google Scholar 

  24. Starr PA, Rau GM, Davis V, Marks WJ, Ostrem JL, Simmons D, et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol [Internet]. 2005;93(6):3165–76. Available from: http://www.physiology.org/doi/10.1152/jn.00971.2004.

    Article  Google Scholar 

  25. Panov F, Larson P, Martin A, Starr P. Deep brain stimulation for Parkinson’s disease. In: Winn H, editor. Youman’s neurological surgery. 7th ed. Philadelphia: Elsevier; 2016. p. 619–26.

    Google Scholar 

  26. Anderson WS, Winberry J, Liu CC, Shi C, Lenz FA. Applying microelectrode recordings in neurosurgery. Contemp Neurosurg [Internet]. 2010 [cited 2018 Dec 19];32(3):1–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28316357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hutchison WD, Lozano AM, Davis KD, Saint-Cyr JA, Lang AE, Dostrovsky JO. Differential neuronal activity in segments of globus pallidus in Parkinson’s disease patients. Neuroreport [Internet]. 1994 [cited 2018 Oct 31];5(12):1533–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7948856.

    Article  CAS  PubMed  Google Scholar 

  28. Shils J, Arle J. Neurophysiologic monitoring for movement disorders surgery. In: Winn H, editor. Youman’s neurological surgery. 7th ed. Philadelphia: Elsevier; 2016. p. 654–76.

    Google Scholar 

  29. Taha JM, Favre J, Baumann TK, Burchiel KJ. Characteristics and somatotopic organization of kinesthetic cells in the globus pallidus of patients with Parkinson’s disease. J Neurosurg [Internet]. 1996 [cited 2018 Nov 14];85(6):1005–12. Available from: http://thejns.org/doi/10.3171/jns.1996.85.6.1005.

    Article  CAS  PubMed  Google Scholar 

  30. Hamani C, Schwalb J, Hutchinson W, Lozano A. Microelectrode-guided pallidotomy. In: Starr PA, Barbaro N, Larson P, editors. Neurosurgical operative atlas: functional neurosurgery. 2nd ed. New York: Thieme; 2009.

    Google Scholar 

  31. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, Luo P, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med [Internet]. 2010 [cited 2018 Dec 14];362(22):2077–91. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0907083.

  32. Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol [Internet]. 2005 [cited 2018 Dec 14];62(4):554. Available from: http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.62.4.554.

  33. Okun MS, Wu SS, Fayad S, Ward H, Bowers D, Rosado C, et al. Acute and chronic mood and apathy outcomes from a randomized study of unilateral STN and GPi DBS. PLoS One. 2014;9(12):1–16.

    Article  CAS  Google Scholar 

  34. Temel Y, Wilbrink P, Duits A, Boon P, Tromp S, Ackermans L, et al. Single electrode and multiple electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. Oper Neurosurg [Internet]. 2007 [cited 2018 Nov 11];61(5 Suppl 2):346–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18091250.

  35. Bjerknes S, Toft M, Konglund AE, Pham U, Waage TR, Pedersen L, et al. Multiple microelectrode recordings in STN-DBS surgery for Parkinson’s disease: a randomized study. Mov Disord Clin Pract. 2018;5(3):296–305.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kutz S, Bakay R. Thalamotomy for tremor. In: Starr PA, Barbaro N, Larson PS, editors. Neurosurgical operative atlas: functional neurosurgery. 2nd ed. New York: Thieme; 2009.

    Google Scholar 

  37. Hutchinson W, Dostrovsky J, Hodaie M, Cavis K, Lozano A, Tasker R. Microelectrode recoding in functional neurosurgery. In: Lozano A, Gildernberg P, Tasker R, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer; 2009. p. 1283–323.

    Chapter  Google Scholar 

  38. Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT. Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol [Internet]. 1988;59(2):299–316. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3351564.

    Article  CAS  Google Scholar 

  39. Lenz F, Kwan HC, Martin R, Tasker R, Dostrovsky J, Lenz YE. Single unit analysis of the human ventral thalamic nuclear group: tremor-related activity in fucntionally identified cells. Brain. 1994;117:531–43.

    Article  PubMed  Google Scholar 

  40. Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT. Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol [Internet]. 1988 [cited 2018 Oct 31];59(2):299–316. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3351564.

    Article  CAS  PubMed  Google Scholar 

  41. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci [Internet]. 2000;20(20):7766–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11027240.

    Article  CAS  Google Scholar 

  42. Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR, Murphy JT, Lenz YE. Single unit analysis of the human ventral thalamic nuclear group. Activity correlated with movement. Brain [Internet]. 1990 [cited 2018 Oct 31];113(Pt 6):1795–821. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2276045.

    Article  PubMed  Google Scholar 

  43. Lenz FA, Kwan HC, Martin R, Tasker R, Richardson RT, Dostrovsky JO. Characteristics of somatotopic organization and spontaneous neuronal activity in the region of the thalamic principal sensory nucleus in patients with spinal cord transection. J Neurophysiol [Internet]. 1994 [cited 2018 Oct 31];72(4):1570–87. Available from: http://www.physiology.org/doi/10.1152/jn.1994.72.4.1570.

    Article  CAS  PubMed  Google Scholar 

  44. Dostrovsky JO, Sher GD, Davis KD, Parrent AG, Hutchison WD, Tasker RR. Microinjection of lidocaine into human thalamus: a useful tool in stereotactic surgery. Stereotact Funct Neurosurg [Internet]. 1993 [cited 2018 Dec 14];60(4):168–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8327796.

    Article  CAS  PubMed  Google Scholar 

  45. Jones MW, Tasker RR. The relationship of documented destruction of specific cell types to complications and effectiveness in thalamotomy for tremor in Parkinson’s disease. Stereotact Funct Neurosurg [Internet]. 1990 [cited 2018 Oct 31];54(1–8):207–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2080337.

    Article  PubMed  Google Scholar 

  46. Fiegele T, Feuchtner G, Sohm F, Bauer R, Anton JV, Gotwald T, et al. Accuracy of stereotactic electrode placement in deep brain stimulation by intraoperative computed tomography. Parkinsonism Relat Disord [Internet]. 2008 [cited 2018 Nov 14];14(8):595–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1353802008000308.

    Article  Google Scholar 

  47. Kelman C, Ramakrishnan V, Davies A, Holloway K. Analysis of stereotactic accuracy of the cosman-robert-wells frame and nexframe frameless systems in deep brain stimulation surgery. Stereotact Funct Neurosurg [Internet]. 2010 [cited 2018 Nov 14];88(5):288–95. Available from: https://www.karger.com/Article/FullText/316761.

    Article  PubMed  Google Scholar 

  48. Lee PS, Weiner GM, Corson D, Kappel J, Chang YF, Suski VR, et al. Outcomes of interventional-MRI versus microelectrode recording-guided subthalamic deep brain stimulation. Front Neurol. 2018;9(APR):1–8.

    Google Scholar 

  49. Nowacki A, Debove I, Fiechter M, Rossi F, Oertel MF, Wiest R, et al. Targeting accuracy of the subthalamic nucleus in deep brain stimulation surgery: comparison between 3 T T2-weighted magnetic resonance imaging and microelectrode recording resultEs. Oper Neurosurg (Hagerstown, Md) [Internet]. 2018 [cited 2018 Nov 14];15(1):66–71. Available from: https://academic.oup.com/ons/article/15/1/66/4060570.

    Article  Google Scholar 

  50. Brahimaj B, Kochanski RB, Sani S. Microelectrode accuracy in deep brain stimulation surgery. J Clin Neurosci [Internet]. 2018 [cited 2018 Nov 14];50:58–61. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0967586817312377.

  51. Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg [Internet]. 2010 [cited 2018 Nov 14];112(3):479–90. Available from: http://thejns.org/doi/10.3171/2009.6.JNS081161.

  52. Saleh S, Swanson KI, Lake WB, Sillay KA. Awake neurophysiologically guided versus asleep MRI-guided STN DBS for Parkinson disease: a comparison of outcomes using levodopa equivalents. Stereotact Funct Neurosurg [Internet]. 2015 [cited 2018 Nov 14];93(6):419–26. Available from: https://www.karger.com/Article/FullText/442425.

    Article  PubMed  Google Scholar 

  53. Brodsky MA, Anderson S, Murchison C, Seier M, Wilhelm J, Vederman A, et al. Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology [Internet]. 2017 [cited 2018 Nov 14];89(19):1944–50. Available from: http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000004630.

    Article  PubMed  Google Scholar 

  54. Ho AL, Ali R, Connolly ID, Henderson JM, Dhall R, Stein SC, et al. Awake versus asleep deep brain stimulation for Parkinson’s disease: a critical comparison and meta-analysis. J Neurol Neurosurg Psychiatry [Internet]. 2018 [cited 2018 Nov 14];89(7):687–91. Available from: http://jnnp.bmj.com/lookup/doi/10.1136/jnnp-2016-314500.

  55. Wang SY, Aziz TZ, Stein JF, Liu X. Time-frequency analysis of transient neuromuscular events: dynamic changes in activity of the subthalamic nucleus and forearm muscles related to the intermittent resting tremor. J Neurosci Methods. 2005;145(1–2):151–8.

    Article  PubMed  Google Scholar 

  56. Bakstein E, Burgess J, Warwick K, Ruiz V, Aziz T, Stein J. Parkinsonian tremor identification with multiple local field potential feature classification. J Neurosci Methods [Internet]. 2012;209(2):320–30. Available from: https://doi.org/10.1016/j.jneumeth.2012.06.027.

    Article  PubMed  Google Scholar 

  57. Kühn AA, Williams D, Kupsch A, Limousin P, Hariz M, Schneider G-H, et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain [Internet]. 2004 [cited 2018 Nov 7];127(Pt 4):735–46. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awh106.

    Article  PubMed  Google Scholar 

  58. Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord [Internet]. 2003 [cited 2018 Nov 7];18(4):357–63. Available from: http://doi.wiley.com/10.1002/mds.10358.

    Article  PubMed  Google Scholar 

  59. Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol [Internet]. 2006;96(6):3248–56. Available from: http://jn.physiology.org/cgi/doi/10.1152/jn.00697.2006.

    Article  Google Scholar 

  60. Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z. Subthalamic span of β oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain. 2010;133(7):2007–21.

    Article  PubMed  Google Scholar 

  61. Feingold J, Gibson DJ, DePasquale B, Graybiel AM. Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks. Proc Natl Acad Sci [Internet]. 2015;112(44):13687–92. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1517629112.

    Article  CAS  Google Scholar 

  62. Tinkhauser G, Pogosyan A, Tan H, Herz DM, Kühn AA, Brown P. Beta burst dynamics in Parkinson’s disease off and on dopaminergic medication. Brain. 2017;140(11):2968–81.

    Article  PubMed  Google Scholar 

  63. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci [Internet]. 2001;21 [cited 2018 Dec 14]. Available from: http://www.jneurosci.org/content/jneuro/21/3/1033.full.pdf.

  64. Brown P, Williams D. Basal ganglia local field potential activity: Character and functional significance in the human. Clin Neurophysiol [Internet]. 2005 [cited 2018 Dec 14];116(11):2510–9. Available from: https://www.sciencedirect.com/science/article/pii/S1388245705002142?via%3Dihub.

    Article  PubMed  Google Scholar 

  65. Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci [Internet]. 2009 [cited 2012 Mar 10];29(43):13613–20. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3001247&tool=pmcentrez&rendertype=abstract.

  66. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, et al. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A [Internet]. 2013 [cited 2014 May 27];110(12):4780–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3606991&tool=pmcentrez&rendertype=abstract.

  67. de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci [Internet]. 2015;18(5):779–86. Available from: https://doi.org/10.1038/nn.3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marsden JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P. Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain [Internet]. 2000 [cited 2018 Dec 14];123(Pt 7:1459–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10869057.

    Article  PubMed  Google Scholar 

  69. Wang DD, de Hemptinne C, Miocinovic S, Ostrem JL, Galifianakis NB, San Luciano M, et al. Pallidal deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson’s disease. J Neurosci [Internet]. 2018;38(19):4556–68. Available from: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0431-18.2018.

    Article  CAS  Google Scholar 

  70. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008;453(7198):1098–101.

    Article  CAS  PubMed  Google Scholar 

  71. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet [Internet]. 2013 [cited 2014 Jan 26];381(9866):557–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23253623.

    Article  Google Scholar 

  72. Nicolelis MA, Lebedev MA. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci [Internet]. 2009;10(7):530–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19543222.

    Article  CAS  PubMed  Google Scholar 

  73. O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, et al. Active tactile exploration using a brain–machine–brain interface. Nature [Internet]. 2011 [cited 2018 Dec 18];479(7372):228–31. Available from: http://www.nature.com/articles/nature10489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Shanechi M, Rollin R, Powers M, Wornell G, Brown E, Williams Z. Neural population partitioning and a concurrent brain-machine interface for sequential motor function. Nat Neurosciu. 2012;15(12):1–23.

    Google Scholar 

  75. Kundu B, Brock AA, Englot DJ, Butson CR, Rolston JD. Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review. Neurosurg Focus. 2018;45(August):1–8.

    Google Scholar 

  76. Engel AK, Moll CKE, Fried I, Ojemann GA. Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci [Internet]. 2005 [cited 2014 Jul 19];6(1):35–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15611725.

  77. Canolty RT, Ganguly K, Kennerley SW, Cadieu CF, Koepsell K, Wallis JD, et al. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc Natl Acad Sci [Internet]. 2010;107(40):17356–61. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1008306107.

    Article  CAS  Google Scholar 

  78. Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron [Internet]. 2011 [cited 2013 Jan 30];69(2):387–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21262474.

    Article  CAS  PubMed  Google Scholar 

  79. Kreiman G, Koch C, Fried I. Imagery neurons in the human brain. Nature [Internet]. 2000;408(6810):357–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11099042.

    Article  CAS  Google Scholar 

  80. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012;488(7410):218–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kamiński J, Sullivan S, Chung JM, Ross IB, Mamelak AN, Rutishauser U. Persistently active neurons in human medial frontal and medial temporal lobe support working memory. Nat Neurosci. 2017;20(4):590–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ezzyat Y, Kragel JE, Burke JF, Levy DF, Lyalenko A, Wanda P, et al. Direct brain stimulation modulates encoding states and memory performance in humans. Curr Biol [Internet]. 2017;27(9):1251–8. Available from: https://doi.org/10.1016/j.cub.2017.03.028.

    Article  CAS  PubMed  Google Scholar 

  83. Ojemann GA, Dodrill CB. Verbal memory deficits after left temporal lobectomy for epilepsy. Mechanism and intraoperative prediction. J Neurosurg [Internet]. 1985;62(1):101–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3964840.

    Article  CAS  Google Scholar 

  84. Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD. Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat Neurosci [Internet]. 2013 [cited 2014 Jul 11];16(3):349–56. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3581758&tool=pmcentrez&rendertype=abstract.

  85. Mukamel R, Fried I. Human intracranial recordings and cognitive neuroscience. Annu Rev Psychol [Internet]. 2012;63(1):511–37. Available from: http://www.annualreviews.org/doi/10.1146/annurev-psych-120709-145401.

    Article  Google Scholar 

  86. Neumann WJ, Huebl J, Brücke C, Gabriëls L, Bajbouj M, Merkl A, et al. Different patterns of local field potentials from limbic DBS targets in patients with major depressive and obsessive compulsive disorder. Mol Psychiatry. 2014;19(11):1186–92.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dyster TG, Mikell CB, Sheth SA. The co-evolution of neuroimaging and psychiatric neurosurgery. Front Neuroanat [Internet]. 2016;10(June):1–12. Available from: http://journal.frontiersin.org/Article/10.3389/fnana.2016.00068/abstract.

    Google Scholar 

  88. Cash SS, Hochberg LR. The emergence of single neurons in clinical neurology. Neuron [Internet]. 2015;86(1):79–91. Available from: https://doi.org/10.1016/j.neuron.2015.03.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smith EH, Liou J-Y, Davis TS, Merricks EM, Kellis SS, Weiss SA, et al. The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nat Commun [Internet]. 2016;7:11098. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84962683987&partnerID=tZOtx3y1.

    Article  CAS  Google Scholar 

  90. Weiss SA, Banks GP, McKhann GM, Goodman RR, Emerson RG, Trevelyan AJ, et al. Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain [Internet]. 2013 [cited 2018 Dec 18];136(12):3796–808. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awt276.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Rolston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, B., Brock, A.A., Thompson, J.A., Rolston, J.D. (2020). Microelectrode Recording in Neurosurgical Patients. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation