The Design of Clinical Studies for Neuromodulation

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery

Abstract

Creating successful new neuromodulation therapies requires innovative trial design and the balancing of a wide variety of complex factors. The ultimate goal is to advance our ability to restore appropriate brain function through the targeted manipulation of neural circuits and, to this end, clinical trials should be just as informative in failure as they are in success. Some aspects of neuromodulation trials are common to all clinical studies, while other aspects are fairly specific to invasive neurosurgical interventions for complex neurological and psychiatric disease. This chapter examines the major factors to be considered in constructing clinical studies to investigate the various forms and applications of novel neuromodulation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Teskey GC, Monfils MH, VandenBerg PM, Kleim JA. Motor map expansion following repeated cortical and limbic seizures is related to synaptic potentiation. Cereb Cortex. 2002;12:98–105.

    Article  PubMed  Google Scholar 

  2. van Rooyen F, Young NA, Larson SE, Teskey GC. Hippocampal kindling leads to motor map expansion. Epilepsia. 2006;47:1383–91.

    Article  PubMed  Google Scholar 

  3. Kupsch A, Benecke R, Muller J, Trottenberg T, Schneider GH, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355:1978–90.

    Article  CAS  PubMed  Google Scholar 

  4. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006;355:896–908.

    Article  CAS  PubMed  Google Scholar 

  5. Odekerken VJJ, van Laar T, Staal MJ, Mosch A, Hoffmann CFE, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12:37–44.

    Article  PubMed  Google Scholar 

  6. Weaver FM, Follett K, Stern M, Hur K, Harris C, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA. 2009;301:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Follett KA, Weaver FM, Stern M, Hur K, Harris CL, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362:2077–91.

    Article  CAS  PubMed  Google Scholar 

  8. Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2016;375:730–9.

    Article  PubMed  Google Scholar 

  9. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10:309–19.

    Article  CAS  PubMed  Google Scholar 

  10. Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9:1164–72.

    Article  CAS  PubMed  Google Scholar 

  11. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59:459–66.

    Article  CAS  PubMed  Google Scholar 

  12. Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4:839–49.

    Article  PubMed  Google Scholar 

  13. Dougherty DD, Rezai AR, Carpenter LL, Howland RH, Bhati MT, et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol Psychiatry. 2015;78:240–8.

    Article  PubMed  Google Scholar 

  14. Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med. 2008;359:2121–34.

    Article  CAS  PubMed  Google Scholar 

  15. Lopes AC, Greenberg BD, Canteras MM, Batistuzzo MC, Hoexter MQ, et al. Gamma ventral capsulotomy for obsessive-compulsive disorder: a randomized clinical trial. JAMA Psychiat. 2014;71:1066–76.

    Article  Google Scholar 

  16. Lozano AM, Fosdick L, Chakravarty MM, Leoutsakos JM, Munro C, et al. A phase II study of fornix deep brain stimulation in mild Alzheimer’s disease. J Alzheimers Dis. 2016;54:777–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry. 2010;67:1061–8.

    Article  PubMed  Google Scholar 

  18. Bergfeld IO, Mantione M, Hoogendoorn ML, Ruhe HG, Notten P, et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiat. 2016;73:456–64.

    Article  Google Scholar 

  19. Wiebe S, Blume WT, Girvin JP, Eliasziw M, Group EaEoSfTLES. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311–8.

    Article  CAS  PubMed  Google Scholar 

  20. Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia. 2014;55:432–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Barbaro NM, Quigg M, Ward MM, Chang EF, Broshek DK, et al. Radiosurgery versus open surgery for mesial temporal lobe epilepsy: the randomized, controlled ROSE trial. Epilepsia. 2018;59:1198–207.

    Article  PubMed  Google Scholar 

  22. Barbaro NM, Quigg M, Broshek DK, Ward MM, Lamborn KR, et al. A multicenter, prospective pilot study of gamma knife radiosurgery for mesial temporal lobe epilepsy: seizure response, adverse events, and verbal memory. Ann Neurol. 2009;65:167–75.

    Article  PubMed  Google Scholar 

  23. Fisher R, Salanova V, Witt T, Worth R, Henry T, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51:899–908.

    Article  PubMed  Google Scholar 

  24. North RB, Kidd DH, Farrokhi F, Piantadosi SA. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery. 2005;56:98–106; discussion 06–7.

    Article  PubMed  Google Scholar 

  25. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain. 2007;132:179–88.

    Article  PubMed  Google Scholar 

  26. Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, et al. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology. 2015;123:851–60.

    Article  PubMed  Google Scholar 

  27. Penn RD, Savoy SM, Corcos D, Latash M, Gottlieb G, et al. Intrathecal baclofen for severe spinal spasticity. N Engl J Med. 1989;320:1517–21.

    Article  CAS  PubMed  Google Scholar 

  28. Brown JA, Lutsep HL, Weinand M, Cramer SC. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery. 2006;58:464–73.

    Article  PubMed  Google Scholar 

  29. Broadway JM, Holtzheimer PE, Hilimire MR, Parks NA, Devylder JE, et al. Frontal theta cordance predicts 6-month antidepressant response to subcallosal cingulate deep brain stimulation for treatment-resistant depression: a pilot study. Neuropsychopharmacology. 2012;37:1764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chow SC. Adaptive clinical trial design. Annu Rev Med. 2014;65:405–15.

    Article  CAS  PubMed  Google Scholar 

  31. Mansournia MA, Higgins JP, Sterne JA, Hernan MA. Biases in randomized trials: a conversation between trialists and epidemiologists. Epidemiology. 2017;28:54–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pearl J. An introduction to causal inference. Int J Biostat. 2010;6:Article 7.

    Article  PubMed  Google Scholar 

  33. Porta M, Vineis P, Bolumar F. The current deconstruction of paradoxes: one sign of the ongoing methodological “revolution”. Eur J Epidemiol. 2015;30:1079–87.

    Article  PubMed  Google Scholar 

  34. Weintraub WS, Luscher TF, Pocock S. The perils of surrogate endpoints. Eur Heart J. 2015;36:2212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alonso A, Van der Elst W, Molenberghs G, Buyse M, Burzykowski T. On the relationship between the causal-inference and meta-analytic paradigms for the validation of surrogate endpoints. Biometrics. 2015;71:15–24.

    Article  PubMed  Google Scholar 

  36. Molenberghs G, Burzykowski T, Alonso A, Assam P, Tilahun A, Buyse M. A unified framework for the evaluation of surrogate endpoints in mental-health clinical trials. Stat Methods Med Res. 2010;19:205–36.

    Article  PubMed  Google Scholar 

  37. Landau S, Emsley R, Dunn G. Beyond total treatment effects in randomised controlled trials: baseline measurement of intermediate outcomes needed to reduce confounding in mediation investigations. Clin Trials. 2018;15:247–56.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Probst P, Grummich K, Harnoss JC, Huttner FJ, Jensen K, et al. Placebo-controlled trials in surgery: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e3516.

    Article  CAS  Google Scholar 

  39. Niethammer M, Tang CC, LeWitt PA, Rezai AR, Leehey MA, et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight. 2017;2:e90133.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cohen PD, Isaacs T, Willocks P, Herman L, Stamford J, et al. Sham neurosurgical procedures: the patients’ perspective. Lancet Neurol. 2012;11:1022.

    Article  PubMed  Google Scholar 

  41. Harary M, Segar DJ, Hayes MT, Cosgrove GR. Unilateral thalamic deep brain stimulation versus focused ultrasound thalamotomy for essential tremor. World Neurosurg, vol. 126; 2019. p. e144.

    Google Scholar 

  42. Leoutsakos J-MS, Yan H, Anderson WS, Asaad WF, Baltuch G, et al. Deep brain stimulation targeting the fornix for mild Alzheimer dementia (the ADvance trial): a two year follow-up including results of delayed activation. J Alzheimers Dis. 2018;64:597–606.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bourne SK, Sheth SA, Neal J, Strong C, Mian MK, et al. Beneficial effect of subsequent lesion procedures after nonresponse to initial cingulotomy for severe, treatment-refractory obsessive-compulsive disorder. Neurosurgery. 2013;72:196–202; discussion 02.

    Article  PubMed  Google Scholar 

  44. Bartolomei F, Lagarde S, Wendling F, McGonigal A, Jirsa V, et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia. 2017;58:1131–47.

    Article  PubMed  Google Scholar 

  45. Bernhardt BC, Bonilha L, Gross DW. Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav. 2015;50:162–70.

    Article  PubMed  Google Scholar 

  46. Laxpati NG, Kasoff WS, Gross RE. Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics. 2014;11:508–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43:219–27.

    Article  PubMed  Google Scholar 

  48. Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15:683–95.

    Article  CAS  PubMed  Google Scholar 

  49. Baizabal-Carvallo JF, Roze E, Aya-Kombo M, Romito L, Navarro S, et al. Combined pallidal and subthalamic nucleus deep brain stimulation in secondary dystonia-parkinsonism. Parkinsonism Relat Disord. 2013;19:566–8.

    Article  PubMed  Google Scholar 

  50. Boel JA, Odekerken VJJ, Schmand BA, Geurtsen GJ, Cath DC, et al. Cognitive and psychiatric outcome 3 years after globus pallidus pars interna or subthalamic nucleus deep brain stimulation for Parkinson’s disease. Parkinsonism Related Disord. 2016;33:90–5.

    Article  Google Scholar 

  51. Weaver FM, Follett KA, Stern M, Luo P, Harris CL, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology. 2012;79:55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circuits. 2017;11:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010;13:1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee SH, Dan Y. Neuromodulation of brain states. Neuron. 2012;76:209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin SC, Brown RE, Hussain Shuler MG, Petersen CC, Kepecs A. Optogenetic dissection of the basal forebrain neuromodulatory control of cortical activation, plasticity, and cognition. J Neurosci. 2015;35:13896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, et al. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013;497(7451):585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rasmussen SA, Norén G, Greenberg BD, Marsland R, McLaughlin NC, et al. Gamma ventral capsulotomy in intractable obsessive-compulsive disorder. Biol Psychiatry. 2018;84(5):355–64.

    Article  PubMed  Google Scholar 

  58. Kartsounis LD, Poynton A, Bridges PK, Bartlett JR. Neuropsychological correlates of stereotactic subcaudate tractotomy. A prospective study. Brain. 1991;114(Pt6):2657–73.

    Article  PubMed  Google Scholar 

  59. Nyman H, Andreewitch S, Lundback E, Mindus P. Executive and cognitive functions in patients with extreme obsessive-compulsive disorder treated by capsulotomy. Appl Neuropsychol. 2001;8:91–8.

    Article  CAS  PubMed  Google Scholar 

  60. Ochsner KN, Kosslyn SM, Cosgrove GR, Cassem EH, Price BH, et al. Deficits in visual cognition and attention following bilateral anterior cingulotomy. Neuropsychologia. 2001;39:219–30.

    Article  CAS  PubMed  Google Scholar 

  61. Ridout N, O’Carroll RE, Dritschel B, Christmas D, Eljamel M, Matthews K. Emotion recognition from dynamic emotional displays following anterior cingulotomy and anterior capsulotomy for chronic depression. Neuropsychologia. 2007;45:1735–43.

    Article  PubMed  Google Scholar 

  62. Subramanian L, Bracht T, Jenkins P, Choppin S, Linden DE, et al. Clinical improvements following bilateral anterior capsulotomy in treatment-resistant depression. Psychol Med. 2017;47:1097–106.

    Article  CAS  PubMed  Google Scholar 

  63. Williams ZM, Bush G, Rauch SL, Cosgrove GR, Eskandar EN. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat Neurosci. 2004;7:1370–5.

    Article  CAS  PubMed  Google Scholar 

  64. Batistuzzo MC, Hoexter MQ, Taub A, Gentil AF, Cesar RC, et al. Visuospatial memory improvement after gamma ventral capsulotomy in treatment refractory obsessive-compulsive disorder patients. Neuropsychopharmacology. 2015;40:1837–45.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Daniels C, Krack P, Volkmann J, Pinsker MO, Krause M, et al. Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord. 2010;25:1583–9.

    Article  PubMed  Google Scholar 

  66. Riva-Posse P, Choi KS, Holtzheimer PE, Crowell AL, Garlow SJ, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23:843–9.

    Article  CAS  PubMed  Google Scholar 

  67. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23:28–38.

    Article  CAS  PubMed  Google Scholar 

  68. Gentil AF, Lopes AC, Dougherty DD, Rück C, Mataix-Cols D, et al. Hoarding symptoms and prediction of poor response to limbic system surgery for treatment-refractory obsessive-compulsive disorder. J Neurosurg. 2014;121:123–30.

    Article  PubMed  Google Scholar 

  69. Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 2013;11:126.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Salanova V, Witt T, Worth R, Henry TR, Gross RE, et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology. 2015;84:1017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kupsch A, Tagliati M, Vidailhet M, Aziz T, Krack P, et al. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord. 2011;26 Suppl 1:S37–53.

    Article  PubMed  Google Scholar 

  72. Rasmussen SA, Noren G, Greenberg BD, Marsland R, McLaughlin NC, et al. Gamma ventral capsulotomy in intractable obsessive-compulsive disorder. Biol Psychiatry. 2018;84:355–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael F. Asaad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asaad, W.F., Lauro, P.M., Lee, S. (2020). The Design of Clinical Studies for Neuromodulation. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation