Develo** New Indications: Strategies and Hurdles to Discovery

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery

Abstract

Traditional strategies to develop new indications in functional neurosurgery include the translation of lesioning targets and the development of model-based approaches. These strategies have yielded some success, but the overall progress of neuromodulation has been limited by a few significant challenges. In particular, optimal clinical trial duration and device programming algorithms are questions that remain largely unanswered. New strategies are emerging that will attempt to address these hurdles and move the field of neuromodulation forward. By studying lessons from the past, we can identify a conceptual framework that organizes conditions in neuromodulation terms. It is then possible to deliberately align recent discoveries and technological advances toward the development of new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooper IS. Ligation of the anterior choroidal artery for involuntary movements; parkinsonism. Psychiatry Q. 1953;27(2):317–9.

    Article  CAS  Google Scholar 

  2. Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  3. Duker AP, Espay AJ. Surgical treatment of Parkinson disease: past, present, and future. Neurol Clin. 2013;31(3):799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gardner J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc Stud Sci. 2013;43:707–28. © The Author(s) 2013.

    Article  PubMed Central  Google Scholar 

  5. Baier RR, Gardner RL, Coleman EA, Jencks SF, Mor V, Gravenstein S. Shifting the dialogue from hospital readmissions to unplanned care. Am J Manag Care. 2013;19(6):450–3.

    PubMed  Google Scholar 

  6. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50(1–6):344–6.

    CAS  PubMed  Google Scholar 

  7. Benabid AL, Wallace B, Mitrofanis J, et al. Therapeutic electrical stimulation of the central nervous system. C R Biol. 2005;328(2):177–86.

    Article  PubMed  Google Scholar 

  8. Stone JL. Dr. Gottlieb Burckhardt–the pioneer of psychosurgery. J Hist Neurosci. 2001;10(1):79–92.

    Article  CAS  PubMed  Google Scholar 

  9. O’Neal CM, Baker CM, Glenn CA, Conner AK, Sughrue ME. Dr. Robert G. Heath: a controversial figure in the history of deep brain stimulation. Neurosurg Focus. 2017;43(3):E12.

    Article  PubMed  Google Scholar 

  10. Heath RG. Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm. J Nerv Ment Dis. 1972;154(1):3–18.

    Article  CAS  PubMed  Google Scholar 

  11. Heath RG, Monroe RR, Mickle WA. Stimulation of the amygdaloid nucleus in a schizophrenic patient. Am J Psychiatry. 1955;111(11):862–3.

    Article  CAS  PubMed  Google Scholar 

  12. Nudeshima J, Taira T. A brief note on the history of psychosurgery in Japan. Neurosurg Focus. 2017;43(3):E13.

    Article  PubMed  Google Scholar 

  13. Patel SR, Aronson JP, Sheth SA, Eskandar EN. Lesion procedures in psychiatric neurosurgery. World Neurosurg. 2013;80(3–4):S31.e39–16.

    Google Scholar 

  14. Ballantine HT Jr, Bouckoms AJ, Thomas EK, Giriunas IE. Treatment of psychiatric illness by stereotactic cingulotomy. Biol Psychiatry. 1987;22(7):807–19.

    Article  PubMed  Google Scholar 

  15. Mindus P, Rasmussen SA, Lindquist C. Neurosurgical treatment for refractory obsessive-compulsive disorder: implications for understanding frontal lobe function. J Neuropsychiatry Clin Neurosci. 1994;6(4):467–77.

    Article  CAS  PubMed  Google Scholar 

  16. Jenike MA, Baer L, Ballantine T, et al. Cingulotomy for refractory obsessive-compulsive disorder. A long-term follow-up of 33 patients. Arch Gen Psychiatry. 1991;48(6):548–55.

    Article  CAS  PubMed  Google Scholar 

  17. Baer L, Rauch SL, Ballantine HT Jr, et al. Cingulotomy for intractable obsessive-compulsive disorder. Prospective long-term follow-up of 18 patients. Arch Gen Psychiatry. 1995;52(5):384–92.

    Article  CAS  PubMed  Google Scholar 

  18. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet. England;. 1999;354:1526.

    Article  CAS  PubMed  Google Scholar 

  19. Nuttin BJ, Gabriels LA, Cosyns PR, et al. Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery. 2003;52(6):1263–72; discussion 1272–1264.

    Article  PubMed  Google Scholar 

  20. Melega WP, Lacan G, Gorgulho AA, Behnke EJ, De Salles AA. Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model. PLoS One. 2012;7(1):e30672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Torres N, Chabardes S, Piallat B, Devergnas A, Benabid AL. Body fat and body weight reduction following hypothalamic deep brain stimulation in monkeys: an intraventricular approach. Int J Obes. 2012;36(12):1537–44.

    Article  CAS  Google Scholar 

  22. Mayberg HS, Lozano AM, Voon V, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Article  CAS  PubMed  Google Scholar 

  23. Lipsman N, Woodside B, Lozano AM. Evaluating the potential of deep brain stimulation for treatment-resistant anorexia nervosa. Handb Clin Neurol. 2013;116:271–6.

    Article  PubMed  Google Scholar 

  24. Lipsman N, Woodside DB, Giacobbe P, et al. Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet. 2013;381(9875):1361–70.

    Article  PubMed  Google Scholar 

  25. Lipsman N, Lam E, Volpini M, et al. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial. Lancet Psychiatry. 2017;4(4):285–94.

    Article  PubMed  Google Scholar 

  26. Ho AL, Sussman ES, Zhang M, et al. Deep brain stimulation for obesity. Cureus. 2015;7(3):e259.

    PubMed  PubMed Central  Google Scholar 

  27. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164(10):1476–88.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Whiting AC, Oh MY, Whiting DM. Deep brain stimulation for appetite disorders: a review. Neurosurg Focus. 2018;45(2):E9.

    Article  PubMed  Google Scholar 

  29. Shin LM, Orr SP, Carson MA, et al. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry. 2004;61(2):168–76.

    Article  PubMed  Google Scholar 

  30. Mayberg HS, Liotti M, Brannan SK, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999;156(5):675–82.

    CAS  PubMed  Google Scholar 

  31. Holtzheimer PE, Husain MM, Lisanby SH, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4(11):839–49.

    Article  PubMed  Google Scholar 

  32. Lujan JL, Chaturvedi A, Choi KS, et al. Tractography-activation models applied to subcallosal cingulate deep brain stimulation. Brain Stimul. 2013;6(5):737–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Riva-Posse P, Choi KS, Holtzheimer PE, et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2014;76(12):963–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Howell B, Choi KS, Gunalan K, Rajendra J, Mayberg HS, McIntyre CC. Quantifying the axonal pathways directly stimulated in therapeutic subcallosal cingulate deep brain stimulation. Hum Brain Mapp. 2019;40(3):889–903.

    Article  PubMed  Google Scholar 

  35. Riva-Posse P, Choi KS, Holtzheimer PE, et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol Psychiatry. 2018;23(4):843–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ahmari SE, Dougherty DD. Dissecting OCD circuits: from animal models to targeted treatments. Depress Anxiety. 2015;32(8):550–62.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–9.

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Bina RW, Wingard JC, Terwilliger EF, Hammer RP Jr, Nikulina EM. Knockdown of tropomyosin-related kinase B receptor expression in the nucleus accumbens shell prevents intermittent social defeat stress-induced cross-sensitization to amphetamine in rats. Eur J Neurosci. 2014;39(6):1009–17.

    Article  PubMed  Google Scholar 

  39. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38.

    Article  PubMed  Google Scholar 

  40. Luthi A, Luscher C. Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci. 2014;17(12):1635–43.

    Article  CAS  PubMed  Google Scholar 

  41. Luigjes J, van den Brink W, Feenstra M, et al. Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry. 2012;17(6):572–83.

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Bastle RM, Nikulina EM. VTA BDNF enhances social stress-induced compulsive cocaine bingeing. Oncotarget. 2017;8:5668–9.

    PubMed  Google Scholar 

  43. Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol. 2012;52:321–36.

    Article  CAS  PubMed  Google Scholar 

  44. Gao G, Wang X, He S, et al. Clinical study for alleviating opiate drug psychological dependence by a method of ablating the nucleus accumbens with stereotactic surgery. Stereotact Funct Neurosurg. 2003;81(1–4):96–104.

    Article  PubMed  Google Scholar 

  45. Li N, Wang J, Wang XL, et al. Nucleus accumbens surgery for addiction. World Neurosurg. 2013;80(3–4):S28.e29–19.

    Google Scholar 

  46. Orellana C. Controversy over brain surgery for heroin addiction in Russia. Lancet Neurol. England;. 2002;1:333.

    Article  PubMed  Google Scholar 

  47. Voges J, Muller U, Bogerts B, Munte T, Heinze HJ. Deep brain stimulation surgery for alcohol addiction. World Neurosurg. 2013;80(3–4):S28.e21–31.

    Article  Google Scholar 

  48. Muller UJ, Sturm V, Voges J, et al. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry. 2009;42(6):288–91.

    Article  CAS  PubMed  Google Scholar 

  49. Muller UJ, Voges J, Steiner J, et al. Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann N Y Acad Sci. 2013;1282:119–28.

    Article  PubMed  CAS  Google Scholar 

  50. Muller UJ, Sturm V, Voges J, et al. Nucleus accumbens deep brain stimulation for alcohol addiction - safety and clinical long-term results of a pilot trial. Pharmacopsychiatry. 2016;49(4):170–3.

    Article  CAS  PubMed  Google Scholar 

  51. Clinical Trials. https://clinicaltrials.gov/ct2/show/NCT01245075; https://clinicaltrials.gov/ct2/show/NCT02282072. Accessed 2 Jan 2019; 2019.

  52. Tovote P, Fadok JP, Luthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16(6):317–31.

    Article  CAS  PubMed  Google Scholar 

  53. Pelletier JG, Likhtik E, Filali M, Pare D. Lasting increases in basolateral amygdala activity after emotional arousal: implications for facilitated consolidation of emotional memories. Learn Mem. 2005;12(2):96–102.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Stidd DA, Vogelsang K, Krahl SE, Langevin JP, Fellous JM. Amygdala deep brain stimulation is superior to paroxetine treatment in a rat model of posttraumatic stress disorder. Brain Stimul. 2013;6(6):837–44.

    Article  PubMed  Google Scholar 

  55. Langevin JP, De Salles AA, Kosoyan HP, Krahl SE. Deep brain stimulation of the amygdala alleviates post-traumatic stress disorder symptoms in a rat model. J Psychiatr Res. 2010;44(16):1241–5.

    Article  PubMed  Google Scholar 

  56. Langevin JP. The amygdala as a target for behavior surgery. Surg Neurol Int. 2012;3(Suppl 1):S40–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Langevin JP, Chen JW, Koek RJ, et al. Deep brain stimulation of the basolateral amygdala: targeting technique and electrodiagnostic findings. Brain Sci. 2016;6(3)

    Article  PubMed Central  CAS  Google Scholar 

  58. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64(6):461–7.

    Article  PubMed  Google Scholar 

  59. Greenberg BD, Malone DA, Friehs GM, et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacology. 2006;31(11):2384–93.

    Article  PubMed  Google Scholar 

  60. Raymaekers S, Vansteelandt K, Luyten L, et al. Long-term electrical stimulation of bed nucleus of stria terminalis for obsessive-compulsive disorder. Mol Psychiatry. 2017;22(6):931–4.

    Article  CAS  PubMed  Google Scholar 

  61. Widge AS, Deckersbach T, Eskandar EN, Dougherty DD. Deep brain stimulation for treatment-resistant psychiatric illnesses: what has gone wrong and what should we do next? Biol Psychiatry. 2016;79(4):e9–10.

    Article  PubMed  Google Scholar 

  62. Fenton GE, Spicer CH, Halliday DM, Mason R, Stevenson CW. Basolateral amygdala activity during the retrieval of associative learning under anesthesia. Neuroscience. 2013;233:146–56.

    Article  CAS  PubMed  Google Scholar 

  63. Stujenske JM, Likhtik E, Topiwala MA, Gordon JA. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron. 2014;83(4):919–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci. 2014;17(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  65. Popa D, Duvarci S, Popescu AT, Lena C, Pare D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci U S A. 2010;107(14):6516–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seidenbecher T, Laxmi TR, Stork O, Pape HC. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science. 2003;301(5634):846–50.

    Article  CAS  PubMed  Google Scholar 

  67. Pare D, Collins DR. Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J Neurosci. 2000;20(7):2701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu H, Miller KJ, Blumenfeld Z, et al. Closing the loop on impulsivity via nucleus accumbens delta-band activity in mice and man. Proc Natl Acad Sci U S A. 2018;115(1):192–7.

    Article  CAS  PubMed  Google Scholar 

  69. Lee AK, Brecht M. Elucidating neuronal mechanisms using intracellular recordings during behavior. Trends Neurosci. 2018;41(6):385–403.

    Article  CAS  PubMed  Google Scholar 

  70. Harvey CD, Collman F, Dombeck DA, Tank DW. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature. 2009;461(7266):941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Suthana N, Haneef Z, Stern J, et al. Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med. 2012;366(6):502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fountas KN, Smith JR. A novel closed-loop stimulation system in the control of focal, medically refractory epilepsy. Acta Neurochir Suppl. 2007;97(Pt 2):357–62.

    Article  CAS  PubMed  Google Scholar 

  73. Morrell MJ. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77(13):1295–304.

    Article  PubMed  Google Scholar 

  74. Sprengers M, Vonck K, Carrette E, Marson AG, Boon P. Deep brain and cortical stimulation for epilepsy. Cochrane Database Syst Rev. 2017;7:Cd008497.

    PubMed  Google Scholar 

  75. M Aghajan Z, Schuette P, Fields TA, et al. Theta oscillations in the human medial temporal lobe during real-world ambulatory movement. Curr Biol. 2017;27(24):3743–3751.e3743.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Langevin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bina, R.W., Langevin, JP. (2020). Develo** New Indications: Strategies and Hurdles to Discovery. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation