Intraoperative Magnetic Resonance Imaging and Computed Tomography

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery
  • 1019 Accesses

Abstract

The availability of intraoperative computed tomography (CT) and magnetic resonance imaging (MRI) in neurosurgery has steadily grown over the past 15 years. CT scanners are used routinely for the placement of spinal instrumentation, while intraoperative MRI is used in brain tumor surgery to assess degree of resection. These imaging platforms are increasingly being incorporated into deep brain stimulation (DBS) surgery. Common data points for determining final lead placement in DBS surgery are test stimulation of the lead—to determine clinical benefit and side effects—and microelectrode recording (MER). Intraoperative three-dimensional imaging allows the surgeon to quantify stereotactic accuracy at the time of surgery. While intraoperative CT and MRI can be used in conjunction with test stimulation and MER, there has been a growing interest in using stereotactic accuracy alone in determining target engagement. As this approach to DBS surgery evolves, the role of intraoperative CT and MRI in DBS surgery will become increasingly fundamental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANT:

Anterior nucleus of the thalamus

CT:

Computed tomography

DBS:

Deep brain stimulation

FGATIR:

Fast gray matter acquisition T1 inversion recovery

GPe:

Globus pallidus externa

GPi:

Globus pallidus interna

MER:

Microelectrode recording

MRI:

Magnetic resonance imaging

MTT:

Mammillothalamic tract

STN:

Subthalamic nucleus

UPDRS:

Unified Parkinson’s Disease Rating Scale

VIM:

Ventral intermediate nucleus

References

  1. Ko AL, Magown P, Ozpinar A, Hamzaoglu V, Burchiel KJ. Asleep deep brain stimulation reduces incidence of intracranial air during electrode implantation. Stereotact Funct Neurosurg. 2018;96(2):83–90. Epub 2018/05/31.

    Article  PubMed  Google Scholar 

  2. Starr PA, Turner RS, Rau G, et al. Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. J Neurosurg. 2006;104(4):488–501. Epub 2006/04/20.

    Article  PubMed  Google Scholar 

  3. Saint-Cyr JA, Hoque T, Pereira LC, et al. Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging. J Neurosurg. 2002;97(5):1152–66. Epub 2002/11/27.

    Article  PubMed  Google Scholar 

  4. McClelland S 3rd, Ford B, Senatus PB, et al. Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy. Neurosurg Focus. 2005;19(5):E12. Epub 2006/01/10.

    PubMed  Google Scholar 

  5. Zonenshayn M, Sterio D, Kelly PJ, Rezai AR, Beric A. Location of the active contact within the subthalamic nucleus (STN) in the treatment of idiopathic Parkinson’s disease. Surg Neurol. 2004;62(3):216–25; discussion 25–6. Epub 2004/09/01.

    Article  PubMed  Google Scholar 

  6. Lanotte MM, Rizzone M, Bergamasco B, Faccani G, Melcarne A, Lopiano L. Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry. 2002;72(1):53–8. Epub 2002/01/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maks CB, Butson CR, Walter BL, Vitek JL, McIntyre CC. Deep brain stimulation activation volumes and their association with neurophysiological map** and therapeutic outcomes. J Neurol Neurosurg Psychiatry. 2009;80(6):659–66. Epub 2008/04/12.

    Article  CAS  PubMed  Google Scholar 

  8. Andrade-Souza YM, Schwalb JM, Hamani C, et al. Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery. 2005;56(2 Suppl):360–8; discussion −8. Epub 2005/03/30.

    PubMed  Google Scholar 

  9. Wodarg F, Herzog J, Reese R, et al. Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord. 2012;27(7):874–9. Epub 2012/04/21.

    Article  PubMed  Google Scholar 

  10. O’Gorman RL, Shmueli K, Ashkan K, et al. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol. 2011;21(1):130–6. Epub 2010/07/24.

    Article  PubMed  Google Scholar 

  11. Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). NeuroImage. 2009;47(Suppl 2):T44–52. Epub 2009/04/14.

    Article  PubMed  Google Scholar 

  12. Spiegelmann R, Nissim O, Daniels D, Ocherashvilli A, Mardor Y. Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI. Stereotact Funct Neurosurg. 2006;84(1):19–23. Epub 2006/04/26.

    Article  PubMed  Google Scholar 

  13. Cukiert A, Lehtimaki K. Deep brain stimulation targeting in refractory epilepsy. Epilepsia. 2017;58 Suppl 1:80–4. Epub 2017/04/08.

    Article  PubMed  Google Scholar 

  14. Montgomery EB Jr. Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery. Mov Disord. 2012;27(11):1387–91. Epub 2012/04/18.

    Article  PubMed  Google Scholar 

  15. Matias CM, Frizon LA, Asfahan F, Uribe JD, Machado AG. Brain shift and pneumocephalus assessment during frame-based deep brain stimulation implantation with intraoperative magnetic resonance imaging. Oper Neurosurg (Hagerstown). 2018;14(6):668–74. Epub 2017/10/04.

    Article  Google Scholar 

  16. Alterman RL, Weisz D. Microelectrode recording during deep brain stimulation and ablative procedures. Mov Disord. 2012;27(11):1347–9. Epub 2012/08/29.

    Article  PubMed  Google Scholar 

  17. Petersen EA, Holl EM, Martinez-Torres I, et al. Minimizing brain shift in stereotactic functional neurosurgery. Neurosurgery. 2010;67(3 Suppl Operative):ons213–21; discussion ons 21. Epub 2010/08/04.

    PubMed  Google Scholar 

  18. Khan MF, Mewes K, Gross RE, Skrinjar O. Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg. 2008;86(1):44–53. Epub 2007/09/21.

    Article  PubMed  Google Scholar 

  19. Ivan ME, Yarlagadda J, Saxena AP, et al. Brain shift during bur hole-based procedures using interventional MRI. J Neurosurg. 2014;121(1):149–60. Epub 2014/05/03.

    Article  PubMed  Google Scholar 

  20. Shin M, Penholate MF, Lefaucheur JP, Gurruchaga JM, Brugieres P, Nguyen JP. Assessing accuracy of the magnetic resonance imaging-computed tomography fusion images to evaluate the electrode positions in subthalamic nucleus after deep-brain stimulation. Neurosurgery. 2010;66(6):1193–202; discussion 202. Epub 2010/05/25.

    Article  PubMed  Google Scholar 

  21. Mirzadeh Z, Chapple K, Lambert M, Dhall R, Ponce FA. Validation of CT-MRI fusion for intraoperative assessment of stereotactic accuracy in DBS surgery. Mov Disord. 2014;29(14):1788–95. Epub 2014/11/08.

    Article  PubMed  Google Scholar 

  22. Hyam JA, Akram H, Foltynie T, Limousin P, Hariz M, Zrinzo L. What you see is what you get: Lead location within deep brain structures is accurately depicted by stereotactic magnetic resonance imaging. Neurosurgery. 2015;11 Suppl 3:412–9; discussion 9. Epub 2015/06/19.

    PubMed  Google Scholar 

  23. Grand View Research. Intraoperative imaging market size worth $4.2 billion by 2025; 2017. Available from: https://www.grandviewresearch.com/press-release/global-intraoperative-imaging-market.

  24. Kremer NI, DLM O, van Laar PJ, et al. Accuracy of intraoperative computed tomography in deep brain stimulation-A prospective noninferiority study. Neuromodulation. 2019;22(4):472–7. Epub 2019/01/11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Katati MJ, Jover VA, Ianez VB, et al. An initial experience with intraoperative O-Arm for deep brain stimulation surgery: can it replace post-operative MRI? Acta Neurol Belg. 2018. Epub 2018/11/09.

    Google Scholar 

  26. Frizon LA, Shao J, Maldonado-Naranjo AL, et al. The safety and efficacy of using the O-arm intraoperative imaging system for deep brain stimulation lead implantation. Neuromodulation. 2018;21(6):588–92. Epub 2017/12/22.

    Article  PubMed  Google Scholar 

  27. Carlson JD, McLeod KE, McLeod PS, Mark JB. Stereotactic accuracy and surgical utility of the O-arm in deep brain stimulation surgery. Oper Neurosurg (Hagerstown). 2017;13(1):96–107. Epub 2017/09/22.

    Article  Google Scholar 

  28. Shahlaie K, Larson PS, Starr PA. Intraoperative computed tomography for deep brain stimulation surgery: technique and accuracy assessment. Neurosurgery. 2011;68(1 Suppl Operative):114–24; discussion 24. Epub 2011/01/06.

    PubMed  Google Scholar 

  29. Servello D, Zekaj E, Saleh C, Pacchetti C, Porta M. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: a retrospective study. Surg Neurol Int. 2016;7(Suppl 19):S551–6. Epub 2016/09/02.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. 2013;119(2):301–6. Epub 2013/06/04.

    Article  PubMed  Google Scholar 

  31. Matias CM, Frizon LA, Nagel SJ, Lobel DA, Machado AG. Deep brain stimulation outcomes in patients implanted under general anesthesia with frame-based stereotaxy and intraoperative MRI. J Neurosurg. 2018;129(6):1572–8. Epub 2018/01/27.

    Article  PubMed  Google Scholar 

  32. Ostrem JL, Ziman N, Galifianakis NB, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg. 2016;124(4):908–16. Epub 2015/10/27.

    Article  PubMed  Google Scholar 

  33. Okun MS, Tagliati M, Pourfar M, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62(8):1250–5. Epub 2005/06/16.

    Article  PubMed  Google Scholar 

  34. Hariz MI, Fodstad H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg. 1999;72(2–4):157–69. Epub 2000/06/15.

    Article  CAS  PubMed  Google Scholar 

  35. Rampersaud YR. Computed tomography and pedicle screws. J Neurosurg Spine. 2014;21(3):317–8. Epub 2014/06/14.

    Article  PubMed  Google Scholar 

  36. Bour LJ, Contarino MF, Foncke EM, et al. Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochir (Wien). 2010;152(12):2069–77. Epub 2010/10/16.

    Article  Google Scholar 

  37. Harries AM, Kausar J, Roberts SA, et al. Deep brain stimulation of the subthalamic nucleus for advanced Parkinson disease using general anesthesia: long-term results. J Neurosurg. 2012;116(1):107–13. Epub 2011/10/18.

    Article  PubMed  Google Scholar 

  38. Hertel F, Zuchner M, Weimar I, et al. Implantation of electrodes for deep brain stimulation of the subthalamic nucleus in advanced Parkinson’s disease with the aid of intraoperative microrecording under general anesthesia. Neurosurgery. 2006;59(5):E1138; discussion E. Epub 2006/12/05.

    Article  PubMed  Google Scholar 

  39. Chen SY, Tsai ST, Lin SH, et al. Subthalamic deep brain stimulation in Parkinson’s disease under different anesthetic modalities: a comparative cohort study. Stereotact Funct Neurosurg. 2011;89(6):372–80. Epub 2011/11/23.

    Article  PubMed  Google Scholar 

  40. Chen T, Mirzadeh Z, Chapple KM, et al. Clinical outcomes following awake and asleep deep brain stimulation for Parkinson disease. J Neurosurg. 2018;130(1):109–20. Epub 2018/03/17.

    Article  PubMed  Google Scholar 

  41. Brodsky MA. Author response: clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease. Neurology. 2018;91(5):241–2. Epub 2018/08/01.

    Article  PubMed  Google Scholar 

  42. Fluchere F, Witjas T, Eusebio A, et al. Controlled general anaesthesia for subthalamic nucleus stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2014;85(10):1167–73. Epub 2013/11/20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of Neuroscience Publications at Barrow Neurological Institute for assistance with manuscript preparation.

Disclosures

FAP is a consultant for Medtronic and Boston Scientific.

Financial Support

Barrow Center for Neuromodulation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Ponce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ponce, F.A. (2020). Intraoperative Magnetic Resonance Imaging and Computed Tomography. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation