Stereotactic Robots

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery
  • 1047 Accesses

Abstract

The history of neurosurgery has repeatedly demonstrated that technological innovation begets further innovation. Robotic systems have been integrated into neurosurgical practice and can help carry out a wide range of procedures, including stereotactic biopsies and implantation of deep brain stimulation, responsive neurostimulation, or stereoelectroencephalography (sEEG) leads, with excellent clinical outcomes demonstrated. The use of robots in neurosurgical procedures offers many benefits, and inherent limitations, for both the patient and the surgeon. In this chapter, we outline the stereotactic and functional procedures that are currently being performed with the assistance of robots, the various robotic systems available and their capabilities, and the different considerations that need to be taken into account when using robots in the operating room. The goal is to empower surgeons to incorporate robotic systems into their practice when appropriate, broadening the techniques and options available for the field of stereotactic and functional neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bourdillon P, Apra C, Leveque M. First clinical use of stereotaxy in humans: the key role of x-ray localization discovered by Gaston Contremoulins. J Neurosurg. 2018;128(3):932–7.

    Article  Google Scholar 

  2. Gildenberg PL. Spiegel and Wycis - the early years. Stereotact Funct Neurosurg. 2001;77(1–4):11–6.

    Article  CAS  Google Scholar 

  3. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH. In touch with robotics: neurosurgery for the future. Neurosurgery. 2005;56(3):421–33; discussion −33.

    Article  Google Scholar 

  4. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  CAS  Google Scholar 

  5. Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A. Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg. 1995;1(5):266–72.

    Article  CAS  Google Scholar 

  6. Sharma M, Rhiew R, Deogaonkar M, Rezai A, Boulis N. Accuracy and precision of targeting using frameless stereotactic system in deep brain stimulator implantation surgery. Neurol India. 2014;62(5):503–9.

    Article  Google Scholar 

  7. D’Haese PF, Pallavaram S, Konrad PE, Neimat J, Fitzpatrick JM, Dawant BM. Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift. Stereotact Funct Neurosurg. 2010;88(2):81–7.

    Article  Google Scholar 

  8. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64(6):461–7.

    Article  Google Scholar 

  9. Serletis D, Bulacio J, Bingaman W, Najm I, Gonzalez-Martinez J. The stereotactic approach for map** epileptic networks: a prospective study of 200 patients. J Neurosurg. 2014;121(5):1239–46.

    Article  Google Scholar 

  10. Lollis SS, Roberts DW. Robotic catheter ventriculostomy: feasibility, efficacy, and implications. J Neurosurg. 2008;108(2):269–74.

    Article  Google Scholar 

  11. Gonzalez-Martinez J, Vadera S, Mullin J, Enatsu R, Alexopoulos AV, Patwardhan R, et al. Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery. 2014;10 Suppl 2:167–72; discussion 72–3.

    PubMed  Google Scholar 

  12. Haegelen C, Touzet G, Reyns N, Maurage CA, Ayachi M, Blond S. Stereotactic robot-guided biopsies of brain stem lesions: experience with 15 cases. Neurochirurgie. 2010;56(5):363–7.

    Article  CAS  Google Scholar 

  13. Lefranc M, Touzet G, Caron S, Maurage CA, Assaker R, Blond S. Are stereotactic sample biopsies still of value in the modern management of pineal region tumours? Lessons from a single-department, retrospective series. Acta Neurochir. 2011;153(5):1111–21; discussion 21–2.

    Article  Google Scholar 

  14. Marcus HJ, Vakharia VN, Ourselin S, Duncan J, Tisdall M, Aquilina K. Robot-assisted stereotactic brain biopsy: systematic review and bibliometric analysis. Childs Nerv Syst. 2018;34:1299.

    Article  Google Scholar 

  15. Holl EM, Petersen EA, Foltynie T, Martinez-Torres I, Limousin P, Hariz MI, et al. Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery. 2010;67(2 Suppl Operative):437–47.

    Google Scholar 

  16. Maciunas RJ, Galloway RL Jr, Latimer JW. The application accuracy of stereotactic frames. Neurosurgery. 1994;35(4):682–94; discussion 94–5.

    Article  CAS  Google Scholar 

  17. Bjartmarz H, Rehncrona S. Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg. 2007;85(5):235–42.

    Article  Google Scholar 

  18. von Langsdorff D, Paquis P, Fontaine D. In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg. 2015;122(1):191–4.

    Article  Google Scholar 

  19. Varma TR, Eldridge P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot. 2006;2(2):107–13.

    Article  CAS  Google Scholar 

  20. Cardinale F, Casaceli G, Raneri F, Miller J, Lo Russo G. Implantation of stereoelectroencephalography electrodes: a systematic review. J Clin Neurophysiol. 2016;33(6):490–502.

    Article  Google Scholar 

  21. Cossu M, Cardinale F, Colombo N, Mai R, Nobili L, Sartori I, et al. Stereoelectroencephalography in the presurgical evaluation of children with drug-resistant focal epilepsy. J Neurosurg. 2005;103(4 Suppl):333–43.

    PubMed  Google Scholar 

  22. Cardinale F, Cossu M, Castana L, Casaceli G, Schiariti MP, Miserocchi A, et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353–66; discussion 66.

    Article  Google Scholar 

  23. Abhinav K, Prakash S, Sandeman DR. Use of robot-guided stereotactic placement of intracerebral electrodes for investigation of focal epilepsy: initial experience in the UK. Br J Neurosurg. 2013;27(5):704–5.

    Article  Google Scholar 

  24. Gonzalez-Martinez J, Bulacio J, Thompson S, Gale J, Smithason S, Najm I, et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery. 2016;78(2):169–80.

    Article  Google Scholar 

  25. Shukla ND, Ho AL, Pendharkar AV, Sussman ES, Halpern CH. Laser interstitial thermal therapy for the treatment of epilepsy: evidence to date. Neuropsychiatr Dis Treat. 2017;13:2469–75.

    Article  Google Scholar 

  26. Calisto A, Dorfmuller G, Fohlen M, Bulteau C, Conti A, Delalande O. Endoscopic disconnection of hypothalamic hamartomas: safety and feasibility of robot-assisted, thulium laser-based procedures. J Neurosurg Pediatr. 2014;14(6):563–72.

    Article  Google Scholar 

  27. Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F. The application accuracy of the NeuroMate robot–a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg. 2002;7(2):90–8.

    Article  Google Scholar 

  28. D V. Accuracy of Robotic Guided Subthalamic Nucleus Deep Brain Stimulation for Parkinson’s Disease [White Paper]. 2014 [Available from: http://cdn2.hubspot.net/hub/276703/file-2632119232-pdf/docs/RoboticDBSWhitePaper.pdf?__hssc=245777499.12.1432246476596&__hstc=245777499.6da3b5cc931fc9e8e0fbe4303cef9c82.1398801594641.1432062359210.1432246476596.128&hsCtaTracking=7515dbde-0116-4cca-8d14-1c48129738e0%7C5900ad8d-fe55-4f82-aecd-22c598c7d06b&t=1506606759766.

  29. Hoshide R, Calayag M, Meltzer H, Levy ML, Gonda D. Robot-assisted endoscopic third ventriculostomy: institutional experience in 9 patients. J Neurosurg Pediatr. 2017;20(2):125–33.

    Article  Google Scholar 

  30. Brandmeir NJ, Savaliya S, Rohatgi P, Sather M. The comparative accuracy of the ROSA stereotactic robot across a wide range of clinical applications and registration techniques. J Robot Surg. 2018;12(1):157–63.

    Article  Google Scholar 

  31. Ho AL, Muftuoglu Y, Pendharkar AV, Sussman ES, Porter BE, Halpern CH, et al. Robot-guided pediatric stereoelectroencephalography: single-institution experience. J Neurosurg Pediatr. 2018:1–8.

    Google Scholar 

  32. Neudorfer C, Hunsche S, Hellmich M, El Majdoub F, Maarouf M. Comparative study of robot-assisted versus conventional frame-based deep brain stimulation stereotactic neurosurgery. Stereotact Funct Neurosurg. 2018;96(5):327.

    Article  Google Scholar 

  33. Dixon PR, Grant RC, Urbach DR. The impact of marketing language on patient preference for robot-assisted surgery. Surg Innov. 2015;22(1):15–9.

    Article  Google Scholar 

  34. Fiani B, Quadri SA, Farooqui M, Cathel A, Berman B, Noel J, et al. Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: a systemic review. Neurosurg Rev. 2018;

    Google Scholar 

  35. Di Lorenzo N, Coscarella G, Faraci L, Konopacki D, Pietrantuono M, Gaspari AL. Robotic systems and surgical education. JSLS. 2005;9(1):3–12.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omaditya Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanna, O., Matias, C., Stricsek, G.P., Wu, C. (2020). Stereotactic Robots. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation