Ablation: Radiofrequency, Laser, and HIFU

  • Chapter
  • First Online:
Stereotactic and Functional Neurosurgery
  • 1081 Accesses

Abstract

Neurosurgeons can use several high precision technologies to create lesions in the central nervous system for the treatment of functional disorders. These include radiofrequency ablation (RFA), laser interstitial thermal therapy (LITT), and high-intensity focused ultrasound (HIFU). While all of these methods use thermal energy to create permanent tissue damage, each has a unique profile of indications, risks, and advantages related to how the energy is deployed and how it interacts with biological structures. In this chapter, we discuss the historical development, mechanism of action, and current indications for each modality, including future directions for clinical and research development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kirschner M. Elektrocoagulation des ganglion gasseri. Zentralbl Chir. 1932;(47):2841–3.

    Google Scholar 

  2. Guridi J, Lozano AM. A brief history of pallidotomy. Neurosurgery. 1997;41(5):1169–80; discussion 80–3.

    Article  CAS  PubMed  Google Scholar 

  3. Spiegel EA, Wycis HT. Ansotomy in paralysis agitans. AMA Arch Neurol Psychiatry. 1954;71(5):598–614.

    Article  CAS  PubMed  Google Scholar 

  4. Narabayashi H, Nagao T, Saito Y, Yoshida M, Nagahata M. Stereotaxic amygdalotomy for behavior disorders. Arch Neurol. 1963;9:1–16.

    Article  CAS  PubMed  Google Scholar 

  5. Marossero F, Ravagnati L, Sironi VA, Miserocchi G, Franzini A, Ettorre G, et al. Late results of stereotactic radiofrequency lesions in epilepsy. Acta Neurochir Suppl. 1980;30:145–9.

    Article  CAS  PubMed  Google Scholar 

  6. Patil AA, Andrews R, Torkelson R. Stereotactic volumetric radiofrequency lesioning of intracranial structures for control of intractable seizures. Stereotact Funct Neurosurg. 1995;64(3):123–33.

    Article  CAS  PubMed  Google Scholar 

  7. Parrent AG, Blume WT. Stereotactic amygdalohippocampotomy for the treatment of medial temporal lobe epilepsy. Epilepsia. 1999;40(10):1408–16.

    Article  CAS  PubMed  Google Scholar 

  8. Lozano CS, Tam J, Lozano AM. The changing landscape of surgery for Parkinson’s disease. Mov Disord. 2018;33(1):36–47.

    Article  PubMed  Google Scholar 

  9. Laitinen LV, Bergenheim AT, Hariz MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg. 1992;76(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  10. Webb H, Lubner MG, Hinshaw JL. Thermal ablation. Semin Roentgenol. 2011;46:133–41.

    Article  PubMed  Google Scholar 

  11. Liscak R, Malikova H, Kalina M, Vojtech Z, Prochazka T, Marusic P, et al. Stereotactic radiofrequency amygdalohippocampectomy in the treatment of mesial temporal lobe epilepsy. Acta Neurochir. 2010;152(8):1291–8.

    Article  PubMed  Google Scholar 

  12. Voges J, Buntjen L, Schmitt FC. Radiofrequency-thermoablation: general principle, historical overview and modern applications for epilepsy. Epilepsy Res. 2018;142:113–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hirabayashi H, Hariz MI, Wardell K, Blomstedt P. Impact of parameters of radiofrequency coagulation on volume of stereotactic lesion in pallidotomy and thalamotomy. Stereotact Funct Neurosurg. 2012;90(5):307–15.

    Article  PubMed  Google Scholar 

  14. Catenoix H, Bourdillon P, Guenot M, Isnard J. The combination of stereo-EEG and radiofrequency ablation. Epilepsy Res. 2018;142:117–20.

    Article  PubMed  Google Scholar 

  15. Kramska L, Vojtech Z, Lukavsky J, Stara M, Malikova H. Five-year neuropsychological outcome after stereotactic radiofrequency amygdalohippocampectomy for mesial temporal lobe epilepsy: longitudinal study. Stereotact Funct Neurosurg. 2017;95(3):149–57.

    Article  PubMed  Google Scholar 

  16. Homma J, Kameyama S, Masuda H, Ueno T, Fujimoto A, Oishi M, et al. Stereotactic radiofrequency thermocoagulation for hypothalamic hamartoma with intractable gelastic seizures. Epilepsy Res. 2007;76(1):15–21.

    Article  PubMed  Google Scholar 

  17. Kameyama S, Shirozu H, Masuda H, Ito Y, Sonoda M, Akazawa K. MRI-guided stereotactic radiofrequency thermocoagulation for 100 hypothalamic hamartomas. J Neurosurg. 2016;124(5):1503–12.

    Article  PubMed  Google Scholar 

  18. Tandon V, Chandra PS, Doddamani RS, Subianto H, Bajaj J, Garg A, et al. Stereotactic radiofrequency thermocoagulation of hypothalamic hamartoma using robotic guidance (ROSA) coregistered with O-arm guidance-preliminary technical note. World Neurosurg. 2018;112:267–74.

    Article  PubMed  Google Scholar 

  19. Wei PH, An Y, Fan XT, Wang YH, Yang YF, Ren LK, et al. Stereoelectroencephalography-guided radiofrequency thermocoagulation for hypothalamic hamartomas: preliminary evidence. World Neurosurg. 2018;114:e1073–e8.

    Article  PubMed  Google Scholar 

  20. Perez-Suarez J, Torres Diaz CV, Lopez Manzanares L, Navas Garcia M, Pastor J, Barrio Fernandez P, et al. Radiofrequency lesions through deep brain stimulation electrodes in movement disorders: case report and review of the literature. Stereotact Funct Neurosurg. 2017;95(3):137–41.

    Article  PubMed  Google Scholar 

  21. Bown SG. Phototherapy in tumors. World J Surg. 1983;7(6):700–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ascher PW, Justich E, Schrottner O. A new surgical but less invasive treatment of central brain tumours preliminary report. Acta Neurochir Suppl. 1991;52:78–80.

    Article  CAS  PubMed  Google Scholar 

  23. Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38(1):79–100.

    Article  PubMed  Google Scholar 

  24. De Poorter J. Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med. 1995;34(3):359–67.

    Article  PubMed  Google Scholar 

  25. Kang JY, Sperling MR. Magnetic resonance imaging-guided laser interstitial thermal therapy for treatment of drug-resistant epilepsy. Neurotherapeutics. 2017;14(1):176–81.

    Article  PubMed  Google Scholar 

  26. Du VX, Gandhi SV, Rekate HL, Mehta AD. Laser interstitial thermal therapy: a first line treatment for seizures due to hypothalamic hamartoma? Epilepsia. 2017;58(Suppl 2):77–84.

    Article  PubMed  Google Scholar 

  27. Missios S, Bekelis K, Barnett GH. Renaissance of laser interstitial thermal ablation. Neurosurg Focus. 2015;38(3):E13.

    Article  PubMed  Google Scholar 

  28. Norred SE, Johnson JA. Magnetic resonance-guided laser induced thermal therapy for glioblastoma multiforme: a review. Biomed Res Int. 2014;2014:761312.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carpentier A, McNichols RJ, Stafford RJ, Itzcovitz J, Guichard JP, Reizine D, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery. 2008;63(1 Suppl 1):ONS21–8; discussion ONS8–9.

    PubMed  Google Scholar 

  30. Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol. 2006;59(2):208–15.

    Article  PubMed  Google Scholar 

  31. Rahmathulla G, Recinos PF, Kamian K, Mohammadi AM, Ahluwalia MS, Barnett GH. MRI-guided laser interstitial thermal therapy in neuro-oncology: a review of its current clinical applications. Oncology. 2014;87(2):67–82.

    Article  PubMed  Google Scholar 

  32. Bezchlibnyk YB, Willie JT, Gross RE. A neurosurgeon’s view: laser interstitial thermal therapy of mesial temporal lobe structures. Epilepsy Res. 2018;142:135–9.

    Article  PubMed  Google Scholar 

  33. Southwell DG, Birk HS, Larson PS, Starr PA, Sugrue LP, Auguste KI. Laser ablative therapy of sessile hypothalamic hamartomas in children using interventional MRI: report of 5 cases. J Neurosurg Pediatr. 2018;21(5):460–5.

    Article  PubMed  Google Scholar 

  34. Wilfong AA, Curry DJ. Hypothalamic hamartomas: optimal approach to clinical evaluation and diagnosis. Epilepsia. 2013;54(Suppl 9):109–14.

    Article  PubMed  Google Scholar 

  35. Ho AL, Miller KJ, Cartmell S, Inoyama K, Fisher RS, Halpern CH. Stereotactic laser ablation of the splenium for intractable epilepsy. Epilepsy Behav Case Rep. 2016;5:23–6.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Drane DL, Loring DW, Voets NL, Price M, Ojemann JG, Willie JT, et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia. 2015;56(1):101–13.

    Article  PubMed  Google Scholar 

  37. Ellis JA, Mejia Munne JC, Wang SH, McBrian DK, Akman CI, Feldstein NA, et al. Staged laser interstitial thermal therapy and topectomy for complete obliteration of complex focal cortical dysplasias. J Clin Neurosci. 2016;31:224–8.

    Article  PubMed  Google Scholar 

  38. Curie PJ, Curie J. Crystal physics: development by pressure of polar electricity in hemihedral crystals with inclined faces. C R Hebd Seances Acad Sci. 1880;91(291).

    Google Scholar 

  39. Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron. 1960;Me-7:166–81.

    Article  CAS  PubMed  Google Scholar 

  40. Harary M, Segar DJ, Huang KT, Tafel IJ, Valdes PA, Cosgrove GR. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg Focus. 2018;44(2):E2.

    Article  PubMed  Google Scholar 

  41. Hynynen K, Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol. 1998;24(2):275–83.

    Article  CAS  PubMed  Google Scholar 

  42. Damianou C, Hynynen K. The effect of various physical parameters on the size and shape of necrosed tissue volume during ultrasound surgery. J Acoust Soc Am. 1994;95(3):1641–9.

    Article  CAS  PubMed  Google Scholar 

  43. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 2010;66(2):323–32; discussion 32.

    Article  PubMed  Google Scholar 

  44. Tempany CM, McDannold NJ, Hynynen K, Jolesz FA. Focused ultrasound surgery in oncology: overview and principles. Radiology. 2011;259(1):39–56.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol. 1942;26(2):179–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mohammed N, Patra D, Nanda A. A meta-analysis of outcomes and complications of magnetic resonance-guided focused ultrasound in the treatment of essential tremor. Neurosurg Focus. 2018;44(2):E4.

    Article  PubMed  Google Scholar 

  47. Chang WS, Jung HH, Zadicario E, Rachmilevitch I, Tlusty T, Vitek S, et al. Factors associated with successful magnetic resonance-guided focused ultrasound treatment: efficiency of acoustic energy delivery through the skull. J Neurosurg. 2016;124(2):411–6.

    Article  PubMed  Google Scholar 

  48. Wang TR, Bond AE, Dallapiazza RF, Blanke A, Tilden D, Huerta TE, et al. Transcranial magnetic resonance imaging-guided focused ultrasound thalamotomy for tremor: technical note. Neurosurg Focus. 2018;44(2):E3.

    Article  PubMed  Google Scholar 

  49. Zaaroor M, Sinai A, Goldsher D, Eran A, Nassar M, Schlesinger I. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson’s disease and essential tremor cases. J Neurosurg. 2018;128(1):202–10.

    Article  PubMed  Google Scholar 

  50. Iacopino DG, Gagliardo C, Giugno A, Giammalva GR, Napoli A, Maugeri R, et al. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson’s disease. Neurosurg Focus. 2018;44(2):E7.

    Article  PubMed  Google Scholar 

  51. Ram Z, Cohen ZR, Harnof S, Tal S, Faibel M, Nass D, et al. Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery. 2006;59(5):949–55; discussion 55–6.

    PubMed  Google Scholar 

  52. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640–6.

    Article  CAS  PubMed  Google Scholar 

  53. Tsivgoulis G, Eggers J, Ribo M, Perren F, Saqqur M, Rubiera M, et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke. 2010;41(2):280–7.

    Article  PubMed  Google Scholar 

  54. Monteith SJ, Kassell NF, Goren O, Harnof S. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage. Neurosurg Focus. 2013;34(5):E14.

    Article  PubMed  Google Scholar 

  55. Foley JL, Eames M, Snell J, Hananel A, Kassell N, Aubry JF. Image-guided focused ultrasound: state of the technology and the challenges that lie ahead. Imaging Med. 2013;5(4):357–70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryder P. Gwinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhansali, A.P., Gwinn, R.P. (2020). Ablation: Radiofrequency, Laser, and HIFU. In: Pouratian, N., Sheth, S. (eds) Stereotactic and Functional Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-34906-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34906-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34905-9

  • Online ISBN: 978-3-030-34906-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation