Advances in Bioresorbable Electronics and Uses in Biomedical Sensing

  • Chapter
  • First Online:
Interfacing Bioelectronics and Biomedical Sensing

Abstract

Modern electronics are fundamental not only to medical diagnostics, data acquisition and storage, and communication in healthcare at large, but are increasingly imperative to next-generation implantable biomedical devices and treatments. The new and expanding class of bioresorbable electronics capable of complete transience, or degradation, in physiological environments promises to enable surgical implantation without subsequent removal of the device. In situ degradation of such devices attenuates or circumvents downfalls of non-resorbable acute implants not limited to costs and complications of surgical device removal in addition to foreign body responses and potential sequelae from tissue obstruction. Transient biomedical electronics thus represent a critical leap toward translatable diagnostic, monitoring, and acute treatment devices. This chapter provides an overview of the developments of the composition and processing methods used to design bioresorbable electronic medical devices since the first fully transient electronic device in 2012. Applications of bioresorbable electronics from biosensing and tissue engineering to controlled drug release, wireless communication, and energy and memory storage are highlighted along with current research in methods enabling on-demand transience for preset device lifetimes and multifunctionality. The authors expect that this chapter will provide an insightful discussion on the progression of bioresorbable electronics for medical applications outlining materials and pertinent novel devices to guide future innovations of transient electronic devices for improving clinical care and patient-specific medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acar, H., et al. (2014). Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Advanced Functional Materials, 24(26), 4135–4143. https://doi.org/10.1002/adfm.201304186.

    Article  Google Scholar 

  2. Adnan, S. M., et al. (2016). Water-soluble glass substrate as a platform for biodegradable solid-state devices. IEEE Journal of the Electron Devices Society, 4(6), 490–494. https://doi.org/10.1109/JEDS.2016.2606340.

    Article  Google Scholar 

  3. Bai, W., et al. (2018). Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon. Advanced Materials, 30(32), 1–12. https://doi.org/10.1002/adma.201801584.

    Article  Google Scholar 

  4. Balde, C. P., et al. (2017). The global e-waste monitor 2017. United Nations University, IAS – SCYCLE, Bonn, Germany., 35, 3397. https://doi.org/10.1016/j.proci.2014.05.148.

    Article  Google Scholar 

  5. Bettinger, C. J., & Bao, Z. (2010). Organic thin-film transistors fabricated on resorbable biomaterial substrates. Advanced Materials, 22(5), 651–655. https://doi.org/10.1002/adma.200902322.

    Article  Google Scholar 

  6. Boutry, C. M., et al. (2015). A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Advanced Materials, 27(43), 6954–6961. https://doi.org/10.1002/adma.201502535.

    Article  Google Scholar 

  7. Boutry, C. M., et al. (2018). A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics. Springer US, 1(5), 314–321. https://doi.org/10.1038/s41928-018-0071-7.

    Article  Google Scholar 

  8. Bowen, P. K., Drelich, J., & Goldman, J. (2013). Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials, 25(18), 2577–2582. https://doi.org/10.1002/adma.201300226.

    Article  Google Scholar 

  9. Brenckle, M. A., et al. (2015). Modulated degradation of transient electronic devices through multilayer silk fibroin pockets. ACS Applied Materials and Interfaces, 7(36), 19870–19875. https://doi.org/10.1021/acsami.5b06059.

    Article  Google Scholar 

  10. Callister Jr, W. D. (University of U.) and Rethwisch, D. G. (University of I). (2014). Materials Science and Engineering: An Introduction. 9th edn. Edited by D. Sayre, J. Metzger, and M. Price. Hoboken: Wiley.

    Google Scholar 

  11. Campana, A., et al. (2014). Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Advanced Materials, 26(23), 3874–3878. https://doi.org/10.1002/adma.201400263.

    Article  Google Scholar 

  12. Chen, Y., et al. (2015). A touch-communication framework for drug delivery based on a transient microbot system. IEEE Transactions on Nanobioscience, 14(4), 397–408. https://doi.org/10.1109/TNB.2015.2395539.

    Article  Google Scholar 

  13. Chen, Y., et al. (2016). Physical–chemical hybrid transiency: A fully transient li-ion battery based on insoluble active materials. Journal of Polymer Science, Part B: Polymer Physics, 54(20), 2021–2027. https://doi.org/10.1002/polb.24113.

    Article  Google Scholar 

  14. Chen, Y., et al. (2018). Advances in materials for recent low-profile implantable bioelectronics. Materials, 11(4), 1–24. https://doi.org/10.3390/ma11040522.

    Article  Google Scholar 

  15. Cheng, H. (2016). Inorganic dissolvable electronics: Materials and devices for biomedicine and environment. Journal of Materials Research, 31(17), 2549–2570. https://doi.org/10.1557/jmr.2016.289.

    Article  Google Scholar 

  16. Cheng, H., & Vepachedu, V. (2016). Recent development of transient electronics. Theoretical and Applied Mechanics Letters. Elsevier Ltd, 6(1), 21–31. https://doi.org/10.1016/j.taml.2015.11.012.

    Article  Google Scholar 

  17. Curry, E. J., et al. (2018). Biodegradable piezoelectric force sensor. Proceedings of the National Academy of Sciences, 115(5), 909–914. https://doi.org/10.1073/pnas.1710874115.

    Article  Google Scholar 

  18. Dagdeviren, C., et al. (2013). Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 9(20), 3398–3404. https://doi.org/10.1002/smll.201300146.

    Article  Google Scholar 

  19. Dey, J., et al. (2008). Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials. Elsevier Ltd, 29(35), 4637–4649. https://doi.org/10.1016/j.biomaterials.2008.08.020.

    Article  Google Scholar 

  20. Erdogan, S., Kaya, M., & Akata, I. (2017). Chitin extraction and chitosan production from cell wall of two mushroom species (Lactarius vellereus and Phyllophora ribis), AIP Conference Proceedings, 1809. https://doi.org/10.1063/1.4975427.

  21. Fedoročková, A., & Raschman, P. (2008). Effects of pH and acid anions on the dissolution kinetics of MgO. Chemical Engineering Journal, 143(1–3), 265–272. https://doi.org/10.1016/j.cej.2008.04.029.

    Article  Google Scholar 

  22. Feig, V. R., Tran, H., & Bao, Z. (2018). Biodegradable polymeric materials in degradable electronic devices. ACS Central Science, 4(3), 337–348. https://doi.org/10.1021/acscentsci.7b00595.

    Article  Google Scholar 

  23. Forrest, S. R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428(6986), 911–918. https://doi.org/10.1038/nature02498.

    Article  Google Scholar 

  24. Fraietta, J. A., & Kietrys, D. M. (2015). Factors affecting the immune system. In K. Helgeson & B. Shelly (Eds.), Pathology: implications for the physical therapist (4th ed., pp. 276–279). Saunders/Elsevier: St. Louis. Available at: https://books.google.com/books?id=1he0BQAAQBAJ&pg=PA277&lpg=PA277&dq=ZINC+has+been+identified+as+a+cofactor+for+over+70 +different+enzymes&source=bl&ots=fYFUyYEp6Q&sig=5MF32GPY50jyv4B8x5IYcgzn9fE&hl=en&sa=X&ved=2ahUKEwj0wcTqpuHdAhWLuFMKHTKuA78Q6AEwBHoECAUQ.

    Google Scholar 

  25. Fu, K., et al. (2015). Transient rechargeable batteries triggered by Cascade reactions. Nano Letters, 15(7), 4664–4671. https://doi.org/10.1021/acs.nanolett.5b01451.

    Article  Google Scholar 

  26. Fu, K., et al. (2016). All-component transient lithium-ion batteries. Advanced Energy Materials, 6(10), 1–9. https://doi.org/10.1002/aenm.201502496.

    Article  Google Scholar 

  27. Fu, K. K., et al. (2016). Transient electronics: Materials and devices. Chemistry of Materials, 28(11), 3527–3539. https://doi.org/10.1021/acs.chemmater.5b04931.

    Article  Google Scholar 

  28. Gao, Y., Zhang, Y., et al. (2017). Moisture-triggered physically transient electronics. Science Advances, 3(9), 1–9. https://doi.org/10.1126/sciadv.1701222.

    Article  Google Scholar 

  29. Gao, Y., Sim, K., et al. (2017). Thermally triggered mechanically destructive electronics based on electrospun poly(ϵ-caprolactone) nanofibrous polymer films. Scientific Reports. Springer US, 7(1), 1–8. https://doi.org/10.1038/s41598-017-01026-6.

    Article  Google Scholar 

  30. Gentile, P., et al. (2014). An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 15, 3640–3659. https://doi.org/10.3390/ijms15033640.

    Article  Google Scholar 

  31. Göpferich, A., & Tessmar, J. (2002). Polyanhydride degradation and erosion. Advanced Drug Delivery Reviews, 54(7), 911–931. https://doi.org/10.1016/S0169-409X(02)00051-0.

    Article  Google Scholar 

  32. Gordon, T. (2016). Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans. Neurotherapeutics, 13(2), 295–310. https://doi.org/10.1007/s13311-015-0415-1.

    Article  Google Scholar 

  33. He, X., et al. (2016). Transient resistive switching devices made from egg albumen dielectrics and dissolvable electrodes. ACS Applied Materials and Interfaces, 8(17), 10954–10960. https://doi.org/10.1021/acsami.5b10414.

    Article  Google Scholar 

  34. Huang, X., et al. (2018). A fully biodegradable battery for self-powered transient implants. Small, 14(28), 1–8. https://doi.org/10.1002/smll.201800994.

    Article  Google Scholar 

  35. Huang, X. (2018). Materials and applications of bioresorbable electronics. Journal of Semiconductors, 39(1), 011003. https://doi.org/10.1088/1674-4926/39/1/011003.

    Article  Google Scholar 

  36. Hwang, S.-W., et al. (2012). A physically transient form of silicon electronics. Science, 337(6102), 1640–1644. https://doi.org/10.1126/science.1142996.

    Article  Google Scholar 

  37. Hwang, S. W., Kim, D. H., et al. (2013). Materials and fabrication processes for transient and bioresorbable high-performance electronics. Advanced Functional Materials, 23(33), 4087–4093. https://doi.org/10.1002/adfm.201300127.

    Article  Google Scholar 

  38. Hwang, S. W., Huang, X., et al. (2013). Materials for bioresorbable radio frequency electronics. Advanced Materials, 25(26), 3526–3531. https://doi.org/10.1002/adma.201300920.

    Article  Google Scholar 

  39. Hwang, S. W., Park, G., Cheng, H., et al. (2014). 25th anniversary article: Materials for high-performance biodegradable semiconductor devices. Advanced Materials, 26(13), 1992–2000. https://doi.org/10.1002/adma.201304821.

    Article  Google Scholar 

  40. Hwang, S. W., Park, G., Edwards, C., et al. (2014). Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano, 8(6), 5843–5851. https://doi.org/10.1021/nn500847g.

    Article  Google Scholar 

  41. Hwang, S. W., Song, J. K., et al. (2014). High-performance biodegradable/transient electronics on biodegradable polymers. Advanced Materials, 26(23), 3905–3911. https://doi.org/10.1002/adma.201306050.

    Article  Google Scholar 

  42. Hwang, S. W., et al. (2015). Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Letters, 15(5), 2801–2808. https://doi.org/10.1021/nl503997m.

    Article  Google Scholar 

  43. Institute of Medicine (US) Panel on Micronutrients. (2001). Iron. Washington D.C.: National Academies Press (US).

    Google Scholar 

  44. Institute of Medicine (US) Panel on Micronutrients. (2001). Molybdenum. In Dietary reference intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (p. 420). Washington, D.C.: National Academies Press (US).

    Google Scholar 

  45. Institute of Medicine (US) Panel on Micronutrients. (2001). Zinc. In Dietary reference intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (pp. 442–444). Washington, D.C.: National Academies Press (US).

    Google Scholar 

  46. Irimia-Vladu, M., et al. (2010). Biocompatible and biodegradable materials for organic field-effect transistors. Advanced Functional Materials, 20(23), 4069–4076. https://doi.org/10.1002/adfm.201001031.

    Article  Google Scholar 

  47. Irimia-Vladu, M., Głowacki, E. D., et al. (2012). Green and biodegradable electronics. Materials Today. Elsevier Ltd, 15(7–8), 340–346. https://doi.org/10.1016/S1369-7021(12)70139-6.

    Article  Google Scholar 

  48. Irimia-Vladu, M., Głowacki, E. D., et al. (2012). Indigo – a natural pigment for high performance ambipolar organic field effect transistors and circuits. Advanced Materials, 24(3), 375–380. https://doi.org/10.1002/adma.201102619.

    Article  Google Scholar 

  49. Irwin, J. D., & Kerns Jr., D. V. (1995). In A. Apt (Ed.), Introduction to electrical engineering. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  50. Janotti, A., & Walle, C. G. Van De (2009). Fundamentals of zinc oxide as a semiconductor. 72(12). https://doi.org/10.1088/0034-4885/72/12/126501.

    Article  Google Scholar 

  51. Jia, X., et al. (2016). Toward biodegradable Mg-air bioelectric batteries composed of silk fibroin-polypyrrole film. Advanced Functional Materials, 26(9), 1454–1462. https://doi.org/10.1002/adfm.201503498.

    Article  Google Scholar 

  52. Jia, X., et al. (2017). A biodegradable thin-film magnesium primary battery using silk fibroin−ionic liquid polymer electrolyte. ACS Energy Letters, 2(4), 831–836. https://doi.org/10.1021/acsenergylett.7b00012.

    Article  Google Scholar 

  53. Jiang, H. L., & Zhu, K. J. (1999). Preparation, characterization and degradation characteristics of polyanhydrides containing poly(ethylene glycol). Polymer International, 48(1), 47–52. https://doi.org/10.1002/(SICI)1097-0126(199901)48:1<47::AID-PI107>3.0.CO;2-X.

  54. **, S. H., et al. (2014). Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Applied Physics Letters, 105(1), 013506. https://doi.org/10.1063/1.4885761.

    Article  Google Scholar 

  55. Kang, S. K., et al. (2014). Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Advanced Functional Materials, 24(28), 4427–4434. https://doi.org/10.1002/adfm.201304293.

    Article  Google Scholar 

  56. Kang, S. K., Hwang, S. W., et al. (2015). Biodegradable thin metal foils and spin-on glass materials for transient electronics. Advanced Functional Materials, 25(12), 1789–1797. https://doi.org/10.1002/adfm.201403469.

    Article  Google Scholar 

  57. Kang, S. K., Park, G., et al. (2015). Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Applied Materials and Interfaces, 7(17), 9297–9305. https://doi.org/10.1021/acsami.5b02526.

    Article  MathSciNet  Google Scholar 

  58. Kang, S. K., et al. (2016). Bioresorbable silicon electronic sensors for the brain. Nature. Nature Publishing Group, 530(7588), 71–76. https://doi.org/10.1038/nature16492.

    Article  Google Scholar 

  59. Kang, S. K., et al. (2018). Advanced materials and devices for bioresorbable electronics. Accounts of Chemical Research. American Chemical Society, 51(5), 988–998. https://doi.org/10.1021/acs.accounts.7b00548.

    Article  Google Scholar 

  60. Karandikar, S., et al. (2017). Nanovaccines for oral delivery-formulation strategies and challenges. Nanostructures for Oral Medicine. Elsevier Inc. https://doi.org/10.1016/B978-0-323-47720-8.00011-0.

    Chapter  Google Scholar 

  61. Kim, D., et al. (2008). Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences, 105(48), 1–6.

    Article  Google Scholar 

  62. Kim, D. H., et al. (2009). Silicon electronics on silk as a path to bioresorbable, implantable devices. Applied Physics Letters, 95(13), 93–96. https://doi.org/10.1063/1.3238552.

    Article  Google Scholar 

  63. Kim, D. H., et al. (2010). Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Materials, 9(6), 1–7. https://doi.org/10.1038/nmat2745.

    Article  Google Scholar 

  64. Kim, Y. J., et al. (2013). Self-deployable current sources fabricated from edible materials. Journal of Materials Chemistry B, 1(31), 3781–3788. https://doi.org/10.1039/c3tb20183j.

    Article  Google Scholar 

  65. Ko, J., et al. (2017). Human hair keratin for biocompatible flexible and transient electronic devices. ACS Applied Materials and Interfaces, 9(49), 43004–43012. https://doi.org/10.1021/acsami.7b16330.

    Article  Google Scholar 

  66. Koo, J., et al. (2018). Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nature Medicine. Springer US, 24, 1830–1836. https://doi.org/10.1038/s41591-018-0196-2.

    Article  Google Scholar 

  67. Kumar, A., Holuszko, M., & Espinosa, D. C. R. (2017). E-waste: An overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling. Elsevier B.V., 122, 32–42. https://doi.org/10.1016/j.resconrec.2017.01.018.

    Article  Google Scholar 

  68. Kumar, P., et al. (2016). Melanin-based flexible supercapacitors. Journal of Materials Chemistry C. Royal Society of Chemistry, 4(40), 9516–9525. https://doi.org/10.1039/c6tc03739a.

    Article  Google Scholar 

  69. Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: A review. Chemical Society Reviews, 38(12), 3484–3504. https://doi.org/10.1039/b820162p.

    Article  Google Scholar 

  70. Landi, G., et al. (2017). Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications. Nanotechnology. IOP Publishing, 28(5), 054005. https://doi.org/10.1088/1361-6528/28/5/054005.

    Article  Google Scholar 

  71. Lee, C. H., Kim, H., et al. (2015). Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Materials. Nature Publishing Group, 7(11), e227–e229. https://doi.org/10.1038/am.2015.114.

    Article  Google Scholar 

  72. Lee, C. H., Jeong, J. W., et al. (2015). Materials and wireless microfluidic systems for electronics capable of chemical dissolution on demand. Advanced Functional Materials, 25(9), 1338–1343. https://doi.org/10.1002/adfm.201403573.

    Article  Google Scholar 

  73. Lee, G., et al. (2017). Fully biodegradable microsupercapacitor for power storage in transient electronics. Advanced Energy Materials, 7(18), 1–12. https://doi.org/10.1002/aenm.201700157.

    Article  Google Scholar 

  74. Lee, Y. K., Yu, K. J., Song, E., Farimani, A. B., et al. (2017). Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. https://doi.org/10.1021/acsnano.7b06697.

    Article  Google Scholar 

  75. Lee, Y. K., Yu, K. J., Song, E., Barati Farimani, A., et al. (2017). Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano, 11(12), 12562–12572. https://doi.org/10.1021/acsnano.7b06697.

    Article  Google Scholar 

  76. Lei, T., et al. (2017). Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proceedings of the National Academy of Sciences, 114(20), 5107–5112. https://doi.org/10.1073/pnas.1701478114.

    Article  Google Scholar 

  77. Li, R., et al. (2013). An analytical model of reactive diffusion for transient electronics. Advanced Functional Materials, 23(24), 3106–3114. https://doi.org/10.1002/adfm.201203088.

    Article  Google Scholar 

  78. Li, R., et al. (2017). Recent progress on biodegradable materials and transient electronics. Bioactive Materials. Elsevier Ltd, 3(3), 322–333. https://doi.org/10.1016/j.bioactmat.2017.12.001.

    Article  MathSciNet  Google Scholar 

  79. Li, R., Wang, L., & Yin, L. (2018). Materials and devices for biodegradable and soft biomedical electronics. Materials, 11(2108), 1–23. https://doi.org/10.3390/ma11112108.

    Article  Google Scholar 

  80. Liang, Q., et al. (2017). Recyclable and green triboelectric nanogenerator. Advanced Materials, 29(5). https://doi.org/10.1002/adma.201604961.

    Article  Google Scholar 

  81. Lu, L., et al. (2018). Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Advanced Energy Materials, 8(16), 1–8. https://doi.org/10.1002/aenm.201703035.

    Article  Google Scholar 

  82. Luo, M., et al. (2014). A microfabricated wireless RF pressure sensor made completely of biodegradable materials. Journal of Microelectromechanical Systems, 23(1), 4–13. https://doi.org/10.1109/JMEMS.2013.2290111.

    Article  Google Scholar 

  83. Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(763), 1377–1397. https://doi.org/10.3390/polym3031377.

    Article  Google Scholar 

  84. Mannoor, M. S., et al. (2012). Graphene-based wireless bacteria detection on tooth enamel. Nature Communications. Nature Publishing Group, 3, 763–768. https://doi.org/10.1038/ncomms1767.

    Article  Google Scholar 

  85. Markoulaki, S., et al. (2009). Development of aliphatic biodegradable photoluminescent polymers. Proceedings of the National Academy of Sciences, 106(28), 11818–11819. https://doi.org/10.1073/pnas.0906359106.

    Article  Google Scholar 

  86. Meitl, M. A., et al. (2006). Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 5(1), 33–38. https://doi.org/10.1038/nmat1532.

    Article  Google Scholar 

  87. Mobini, S., et al. (2017). Recent advances in strategies for peripheral nerve tissue engineering. Current Opinion in Biomedical Engineering, 4, 134–142. https://doi.org/10.1016/j.cobme.2017.10.010.

    Article  Google Scholar 

  88. Najafabadi, A. H., et al. (2014). Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. Advanced Materials, 26(33), 5823–5830. https://doi.org/10.1002/adma.201401537.

    Article  Google Scholar 

  89. Pal, R. K., et al. (2016). Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors. Biosensors and Bioelectronics. Elsevier, 81, 294–302. https://doi.org/10.1016/j.bios.2016.03.010.

    Article  Google Scholar 

  90. Park, S., et al. (2013). Inorganic/organic multilayer passivation incorporating alternating stacks of organic/inorganic multilayers for long-term air-stable organic light-emitting diodes. Organic Electronics: physics, materials, applications. Elsevier B.V., 14(12), 3385–3391. https://doi.org/10.1016/j.orgel.2013.09.045.

    Article  Google Scholar 

  91. Patrick, E., et al. (2011). Corrosion of tungsten microelectrodes used in neural recording applications. Journal of Neuroscience Methods. Elsevier B.V., 198(2), 158–171. https://doi.org/10.1016/j.jneumeth.2011.03.012.

    Article  Google Scholar 

  92. Pfister, B. J., et al. (2011). Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Critical Reviews in Biomedical Engineering, 39(2), 81–124. doi: 2809b9b432c80c2c,0fb500fc3eef5342 [pii].

    Article  MathSciNet  Google Scholar 

  93. Pomerantseva, I., et al. (2009). Degradation behavior of poly(glycerol sebacate). Journal of Biomedical Materials Research Part A, 91(4), 1038–1047. https://doi.org/10.1002/jbm.a.32327.

  94. Rahman, H. U., et al. (2013). Fabrication and characterization of PECVD silicon nitride for RF MEMS applications. Microsystem Technologies, 19(1), 131–136. https://doi.org/10.1007/s00542-012-1522-0.

    Article  Google Scholar 

  95. Sabir, M. I., Xu, X., & Li, L. (2009). A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 44(21), 5713–5724. https://doi.org/10.1007/s10853-009-3770-7.

    Article  Google Scholar 

  96. Shan, D., et al. (2018). Development of citrate-based dual-imaging enabled biodegradable electroactive polymers. Advanced Functional Materials, 28(34), 1801787. https://doi.org/10.1002/adfm.201801787.

    Article  Google Scholar 

  97. Son, D., et al. (2015). Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano, 9(6), 5937–5946. https://doi.org/10.1021/acsnano.5b00651.

    Article  Google Scholar 

  98. Song, G., & Song, S. (2007). A possible biodegradable magnesium implant material. Advanced Engineering Materials, 9(4), 298–302. https://doi.org/10.1002/adem.200600252.

    Article  Google Scholar 

  99. Stolica, N. (1985). Molybdenum. In A. J. Bard, R. Parsons, & J. Jordan (Eds.), Standard potentials in aqueous solution (pp. 462–483). New York: Marcel Dekker, Inc. Available at: https://books.google.com/books?id=XoZHDwAAQBAJ.

    Google Scholar 

  100. Su, L., et al. (2014). Study on the antimicrobial properties of citrate-based biodegradable study on the antimicrobial properties of citrate-based biodegradable polymers. Frontiers in Bioengineering and Biotechnology, 2(23). https://doi.org/10.3389/fbioe.2014.00023.

  101. Sun, S., et al. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology. Elsevier Ltd, 199, 49–58. https://doi.org/10.1016/j.biortech.2015.08.061.

    Article  Google Scholar 

  102. Sun, Y., & Rogers, J. A. (2007). Inorganic semiconductors for flexible electronics. Advanced Materials, 19(15), 1897–1916. https://doi.org/10.1002/adma.200602223.

    Article  Google Scholar 

  103. Tanskanen, P. (2013). Management and recycling of electronic waste. Acta Materialia. Acta Materialia Inc., 61(3), 1001–1011. https://doi.org/10.1016/j.actamat.2012.11.005.

    Article  Google Scholar 

  104. Tao, H., et al. (2014). Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings of the National Academy of Sciences, 111(49), 17385–17389. https://doi.org/10.1073/pnas.1407743111.

    Article  Google Scholar 

  105. Tao, H., Kaplan, D. L., & Omenetto, F. G. (2012). Silk materials - a road to sustainable high technology. Advanced Materials, 24(21), 2824–2837. https://doi.org/10.1002/adma.201104477.

    Article  Google Scholar 

  106. Thimbleby, H. (2013). Technology and the future of healthcare. Journal of Public Health Research, 2(28), 160–167. https://doi.org/10.4081/arc.2013.e14.

    Article  Google Scholar 

  107. Trolier-McKinstry, S. (Pennsylvania S. U.) and Newnham, R. (Pennsylvania S. U.) (2018) Materials engineering: Bonding, structure, and structure-property relationships. 1st edn. New York: Cambridge University Press.

    Google Scholar 

  108. Tsang, M., et al. (2015). Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A microfabricated power source for transient implantable devices. Microsystems & Nanoengineering. Taylor & Francis, 15024. https://doi.org/10.1038/micronano.2015.24.

  109. Turner, R. E. (2006). Nutrition during pregnancy. In M. E. Shils et al. (Eds.), Modern nutrition in health and disease (10th ed., p. 778). Philadelphia: Lippincott Williams & Wilkins. Available at: https://books.google.com/books?id=S5oCjZZZ1ggC&printsec=frontcover&vq=molybdenum&source=gbs_ge_summary_r&cad=0#v=onepage&q=molybdenum&f=false.

    Google Scholar 

  110. Uwitonze, A. M., & Razzaque, M. S. (2018). Role of magnesium in vitamin D activation and function. The Journal of the American Osteopathic Association, 118(3), 181. https://doi.org/10.7556/jaoa.2018.037.

    Article  Google Scholar 

  111. Vanýsek, P. (2012). Electrochemical series. Handbook of Chemistry and Physics, 93, 5–80.

    Google Scholar 

  112. Wang, X., et al. (2016). Food-materials-based edible supercapacitors. Advanced Materials Technologies, 1(3), 1600059. https://doi.org/10.1002/admt.201600059.

    Article  Google Scholar 

  113. Wang, Y., et al. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602–606. https://doi.org/10.1038/nbt0602-602.

    Article  Google Scholar 

  114. Witte, F., & Eliezer, A. (2012). Biodegradable metals. In N. Eliaz (Eds.), Degradation of Implant Materials (pp. 93-109). New York: Springer. Available at: https://www.google.com/books/edition/Degradation_of_Implant_Materials/NGydrqQb_CcC?hl=en&gbpv=0

  115. Yang, J., Webb, A. R., & Ameer, G. A. (2004). Novel citric acid-based biodegradable elastomers for tissue engineering. Advanced Materials, 16(6), 511–516. https://doi.org/10.1002/adma.200306264.

    Article  Google Scholar 

  116. Yin, L., Cheng, H., et al. (2014). Dissolvable metals for transient electronics. Advanced Functional Materials, 24(5), 645–658. https://doi.org/10.1002/adfm.201301847.

    Article  Google Scholar 

  117. Yin, L., Huang, X., et al. (2014). Materials, designs, and operational characteristics for fully biodegradable primary batteries. Advanced Materials, 26(23), 3879–3884. https://doi.org/10.1002/adma.201306304.

    Article  Google Scholar 

  118. Yu, K. J., et al. (2016). Bioresorbable silicon electronics for transient spatiotemporal map** of electrical activity from the cerebral cortex. Nature Materials, 15(7), 782–791. https://doi.org/10.1038/nmat4624.

    Article  Google Scholar 

  119. Yu, X., et al. (2018). Materials, processes, and facile manufacturing for Bioresorbable electronics: A review. Advanced Materials, 30(28), 1–27. https://doi.org/10.1002/adma.201707624.

    Article  Google Scholar 

  120. Zhang, Y., et al. (2018). Self-powered multifunctional transient bioelectronics. Small, 14(35), 1802050. https://doi.org/10.1002/smll.201802050.

    Article  Google Scholar 

  121. Zhang, Z., Tsang, M., & Chen, I. W. (2016). Biodegradable resistive switching memory based on magnesium difluoride. Nanoscale. Royal Society of Chemistry, 8(32), 15048–15055. https://doi.org/10.1039/c6nr03913h.

    Article  Google Scholar 

  122. Zheng, Q., et al. (2016). Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science Advances, 2(3), 1–9. https://doi.org/10.1126/sciadv.1501478.

    Article  MathSciNet  Google Scholar 

  123. Duncanson, A., & Stevenson, R. W. H. (1958). Some properties of magnesium fluoride crystallized from the melt. Proceedings of the Physical Society, 72(6), 1001–1006.

    Google Scholar 

  124. Horan, R. L., et al. (2005). In vitro degradation of silk fibroin. Biomaterials, 26(17), 3385–3393. https://doi.org/10.1016/j.biomaterials.2004.09.020.

    Article  Google Scholar 

  125. Ma, C., et al. (2018). In vitro cytocompatibility evaluation of poly(octamethylene citrate) monomers toward their use in orthopedic regenerative engineering. Bioactive Materials, 3(1), 19–27. https://doi.org/10.1016/j.bioactmat.2018.01.002.

    Article  Google Scholar 

  126. Torun Köse, G., Ber, S., Korkusuz, F. et al., (2003). Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices. Journal of Materials Science: Materials in Medicine, 14(2), 121–126. https://doi.org/10.1023/A:1022063628099.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuzma, M., Gerhard, E., Shan, D., Yang, J. (2020). Advances in Bioresorbable Electronics and Uses in Biomedical Sensing. In: Cao, H., Coleman, T., Hsiai, T., Khademhosseini, A. (eds) Interfacing Bioelectronics and Biomedical Sensing. Springer, Cham. https://doi.org/10.1007/978-3-030-34467-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34467-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34466-5

  • Online ISBN: 978-3-030-34467-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation