Microseismic Data Interpretation

  • Chapter
  • First Online:
Understanding Downhole Microseismic Data Analysis
  • 463 Accesses

Abstract

We review the value of information retrieved from microseismic data sets in the unconventional resource development. We explain the key information that can be extracted by using microseismic, seismic, well logs, geological and engineering data individually. Finally, we discuss an integrated interpretation workflow and see how the efficacy and reliability of our interpretation can be improved by combining multiple data types?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 53.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Magnitude of completeness is the smallest magnitude above which all earthquakes are reliably recorded in the catalogue (reference).

References

  • Agarwal, K., M.J. Mayerhofer, and N.R. Warpinski. 2012. Impact of geomechanics on microseismicity. In European unconventional resources conference and exhibition, Vienna, Austria, SPE-152835, 16.

    Google Scholar 

  • Aki, K. 1965. Maximum likelihood estimate of b in the formula log (N) = a − bM and its confidence limits. Bulletin Earthquake Research Institute Tokyo University 43: 237–239.

    Google Scholar 

  • Altamar, R.P., and K.J. Marfurt. 2015. Identification of brittle/ductile areas in unconventional reservoirs using seismic and microseismic data. In Application to the Barnett shale: Interpretation, T233–T243.

    Google Scholar 

  • Ardakani, E.P., A.M. Baig, T. Urbancic, and K. Bosman. 2018. Microseismicity-derived fracture network characterization of unconventional reservoirs by topology. Interpretation 6 (2): SE49–SE61.

    Article  Google Scholar 

  • Aso, N., K. Ohta, and S. Ide. 2016. Mathematical review on source-type diagrams. Earth, Planets and Space, 21.

    Google Scholar 

  • Asquith, G.B., and C.R. Gibson. 1982. Basic well log analysis for geologists, 216. AAPG.

    Google Scholar 

  • Baig, A., and T. Urbancic, 2010. Microseismic moment tensors: A path to understanding frac growth, 320–324. The Leading Edge.

    Google Scholar 

  • Baig, A., Viegas, G., Gallagher, J., Urbancic, T., and E. von Lunen, 2015. Constraining geomechanical models by using microseismic-derived fractures from source mechanisms, 912–916. The Leading Edge.

    Google Scholar 

  • Barton, C., Moos, D., and K. Tezuka, 2009. Geomechanical wellbore imaging: Implications for reservoir fracture permeability. AAPG Bulletin 93 (11): 1551–1569.

    Article  Google Scholar 

  • Barton, D.J., G.R. Foulger, J.R. Henderson, and B.R. Julian. 1999. Frequency–magnitude statistics and spatial correlation dimensions of earthquakes at Long Valley caldera, California. Geophysical Journal International 138: 563–570.

    Article  ADS  Google Scholar 

  • Bender, B. 1983. Maximum likelihood estimation of b values for magnitude grouped data. Bulletin of the Seismological Society of America 73 (3): 831–851.

    Google Scholar 

  • Boroumand, N. 2014. Hydraulic fracture b-value from microseismic events in different regions, 3. Calgary: Geoconvention.

    Google Scholar 

  • Boyer, S., and J. Mari. 1997. Seismic surveying and well logging: Oil and gas exploration techniques, 191. Technip.

    Google Scholar 

  • Brune, J.N. 1970. Tectonic stress and the spectra of shear waves from earthquakes. Journal of Geophysical Research 75: 4997–5009.

    Article  ADS  Google Scholar 

  • Brune, J.N. 1971. Seismic sources, fault plane studies and tectonics. Eos Transactions AGU 52 (5): IUGG 178–IUGG 187.

    Article  ADS  Google Scholar 

  • Busetti, S., W. Jiao, and Z. Reches. 2014. Geomechanics of hydraulic fracturing microseismicity: Part 1. Shear, hybrid, and tensile events. AAPG Bulletin 98 (11): 2439–2457.

    Article  Google Scholar 

  • Cabarcas, C., and O. Davogustto, 2013. The magnitude vs. distance plot – A tool for fault reactivation identification: AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania, Search and Discovery Article #41185, pp. 13.

    Google Scholar 

  • Chen, C., W. Wang, Y. Chang, and Y. Wu. 2006. A correlation between the b-value and the fractal dimension from the aftershock sequence of the 1999 Chi-Chi, Taiwan, earthquake. Geophysical Journal International 167: 1215–1219.

    Article  ADS  Google Scholar 

  • Cho, D., and M. Perez. 2014. Rock quality assessment for hydraulic fracturing: A rock physics perspective. In SEG annual meeting, Denver, CO, 2814–2818.

    Google Scholar 

  • Chopra, S., and K. Marfurt. 2007a. Seismic curvature attributes for map** faults/fractures, and other stratigraphic features, 37–41. CSEG Recorder.

    Google Scholar 

  • Chopra, S., and K. Marfurt. 2007b. Volumetric curvature attributes for fault/fracture characterization. First Break 25: 35–46.

    Article  Google Scholar 

  • Cipolla, C.L., N. R.Warpinski,  M.J. Mayerhofer, E.P. Lolon, and M.C. Vincent. 2008. The Relationship Between Fracture Complexity, Reservoir Properties and Fracture Treatment Design. SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, SPE115769, pp. 25.

    Google Scholar 

  • Cipolla, C.L., M. J. Williams, X. Weng, M. Mack, and S.C. Maxwell. 2010. Hydraulic Fracture Monitoring to Reservoir Simulation: Maximizing Value.  SPE Annual Technical Conference and Exhibition, Florence, Italy, SPE133877, pp. 26.

    Google Scholar 

  • Cipolla, C., S.C. Maxwell, and M. Mack. 2012. Engineering guide to the application of microseismic interpretations. In SPE hydraulic fracturing technology conference, The Woodlands, TX, SPE-152165, 24.

    Google Scholar 

  • Clarkson, C.R. 2011. Integration of rate-transient and microseismic analysis for unconventional gas reservoirs: where reservoir engineering meets geophysics. CSEG Recorder 36 (10): 44–61.

    Google Scholar 

  • Cotton, F., R. Archuleta, and M. Causse. 2013. What is sigma of the stress drop? Seismological Research Letters 84 (1): 42–48.

    Article  Google Scholar 

  • Daniel, G., F. Hubans, and A. Rosca. 2012. Stability of b-value estimates using vertical arrays of receivers. In International geophysical conference and oil & gas exhibition, Istanbul, Turkey, 4.

    Google Scholar 

  • Detring, J.P., and S. Williams-Stroud. 2013. Using microseismicity to understand subsurface fracture systems and increase the effectiveness of completions: Eagle Ford shale, Texas. In AAPG annual convention and exhibition, Pittsburgh, Pennsylvania, Search and Discovery Article #41186, 13.

    Google Scholar 

  • Doerksen, M. 2013. Using microseismic event radiation patterns and source parameters to better estimate stimulated reservoir volumes. In AAPG, SEG and SEPM joint technical conference, Monterery, CA, Search and Discovery Article # 41137.

    Google Scholar 

  • Du, J., and N.R. Warpinski. 2011. Uncertainty in FPSs from moment-tensor inversion. Geophysics 76 (6): WC65–WC75.

    Article  Google Scholar 

  • Dufumier, H., and L. Rivera. 1997. On the resolution of the isotropic component in moment tensor inversion. Geophysical Journal International 131: 595–606.

    Article  ADS  Google Scholar 

  • Duhault, J.L., D.W. Eaton, and P.K. Pedersen. 2018. Microseismic monitoring of a tight light oil reservoir: A case history in the Cardium Halo Play, SE39–SE48. Alberta: Interpretation.

    Google Scholar 

  • Dziewonski, A.M., T.A. Chou, J.H. Woodhouse. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research 86 (B4): 2825–2852.

    Article  Google Scholar 

  • Eaton, D., and F. Forouhideh. 2011. Solid angles and the impact of receiver-array geometry on microseismic moment-tensor inversion. Geophysics 76 (6): WC75–WC83.

    Article  Google Scholar 

  • Eaton, D.W.,  M. van der Baan, B. Birkelo, and J. Tary. 2014a. Scaling relations and spectral characteristics of tensile microseisms: evidence for opening/closing cracks during hydraulic fracturing. Geophysical Journal International 196 (3): 1844–1857.

    Article  ADS  Google Scholar 

  • Eaton, D., E. Caffagni, A. Rafiq, M. van der Baan, V. Roche, and L. Matthews. 2014b. Passive Seismic Monitoring and Integrated Geomechanical Analysis of a Tight-Sand Reservoir During Hydraulic-Fracture Treatment, Flowback and Production. Unconventional Resources Technology Conference, Denver, Colorado, USA, 1537–1545.

    Google Scholar 

  • Eisner, L., S. Williams-Stroud, A. Hill, P. Duncan, and M. Thornton. 2010. Beyond the dots in the box: Microseismicity-constrained fracture models for reservoir simulation, 326–333. The Leading Edge.

    Article  Google Scholar 

  • El-Isa, Z.H., and D.W. Eaton. 2014. Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: Classification and causes. Tectonophysics 615–616: 1–11.

    Article  ADS  Google Scholar 

  • Eshelby, J.D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Societ London A 241 (1226): 376–396.

    Google Scholar 

  • Gajek, W., J. Trojanowski, M. Malinowski, M. Jarosiński, and M. Riedel. 2018. Results of the downhole microseismic monitoring at a pilot hydraulic fracturing site in Poland—Part 1: Event location and stimulation performance. Interpretation SH39–SH48.

    Google Scholar 

  • Gangopadhyay, A., A. Malayalam, J. Lucas, T. Gillham, S. Liu, I. Faz, and F. Wirnkar. 2013. Understanding unconventionals by multidisciplinary integration—A microseismic based tale of the Haynesville Shale. In Unconventional resource conference, The Woodlands, TX, SPE-164531, 14.

    Google Scholar 

  • Goodway, B., M. Perez, J. Varsek, and C. Abaco. 2010. Seismic petrophysics and isotropic-anisotropic AVO methods for unconventional gas exploration, vol. 29, 1500–1508. The Leading Edge.

    Article  Google Scholar 

  • Goodway, B., D. Monk, M. Perez, G. Purdue, P. Anderson, A. Iverson, V. Vera, and D. Cho. 2012. Combined microseismic and 4D to calibrate and confirm surface 3D azimuthal AVO/LMR predictions of completions performance and well production in the Horn River gas shales of NEBC, 1502–1511. The Leading Edge.

    Article  Google Scholar 

  • Grassberger, P., and I. Procaccia. 1983. Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9 (1–2):189–208.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grob, M., and M. van der Baan. 2011. Inferring in-situ stress changes by statistical analysis of microseismic event characteristics, 1296–1301. The Leading Edge.

    Article  Google Scholar 

  • Gutenberg, B., and C. Richter. 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34: 185–188.

    Google Scholar 

  • Gutenberg, B., and C.F. Richter. 1954. Seismicity of the Earth and Associated Phenomena. 2nd. ed., Princeton Univ. Press: Princeton N. J.

    Google Scholar 

  • Haege, M., S. Maxwell, L. Sonneland, and M. Norton. 2013. Rock fabric and microseismic: An integrated approach, 7. Calgary: Geoconvention.

    Google Scholar 

  • Hardebeck, J.L., and P.M. Shearer. 2003. Using S/P Amplitude Ratios to Constrain the Focal Mechanisms of Small Earthquakes. Bulletin of the Seismological Society of America 93 (6): 2434–2444.

    Article  Google Scholar 

  • Hudson, J.A., R.G. Pearce, and R.M. Rogers. 1989. Source type plot for inversion of the moment tensor. Journal of Geophysical Research 94 (B1): 765–774.

    Article  ADS  Google Scholar 

  • Julian, B.R., A.D. Miller, and G.R. Foulger. 1998. Non-double-couple earthquakes. Reviews of Geophysics 36 (4): 525–549.

    Article  ADS  Google Scholar 

  • Kamer, Y., and S. Hiemer. 2015. Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. Journal of Geophysical Research Solid Earth 120: 5191–5214.

    Article  ADS  Google Scholar 

  • Kamer, Y. 2014. Minimum sample size for detection of Gutenberg-Richter’s b-value. ar**v:1410.1815v1, pp. 11.

    Google Scholar 

  • Kaneko, Y., and P.M. Shearer. 2014. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International 197: 1002–1015.

    Article  ADS  Google Scholar 

  • Kawakatsu H., and M. Yamamoto. 2007. Volcano seismology. In: Kanamori H, Schubert G (eds.) Earthquake seismology. Treatise on geophysics, vol 4. Elsevier, New York, pp 389–420.

    Chapter  Google Scholar 

  • Kilpatrick, J.E., L. Eisner, S. Williams-Stroud, B. Cornette, and M.H. Williams. 2010. Natural fracture characterization from microseismic source mechanisms: A comparison with FMI data. In SEG annual meeting, Denver, CO, 2110–2114.

    Google Scholar 

  • Madariaga, R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America 65: 163–182.

    Google Scholar 

  • Marzocchi, W., and L. Sandri. 2003. A review and new insights on the estimation of the b-value and its uncertainty. Annals of Geophysics 46 (6): 1271–1282.

    Google Scholar 

  • Maxwell, S.C., M. Jones, R. Parker, S. Miong, S. Leaney, D. Dorval, D. D’Amico, J. Logel, E. Anderson, and K. Hammermaster. 2009. Fault activation during hydraulic fracturing. In SEG annual meeting, Houston, TX, 1552–1556.

    Google Scholar 

  • Maxwell, S.C. 2011. What does microseismicity tell us about hydraulic fractures. In SEG annual meeting, San Antonio, TX, 1565–1569.

    Google Scholar 

  • Maxwell, S.C. 2014. Microseismic imaging of hydraulic fracturing: Improved engineering of unconventional shale reservoirs. SEG distinguished instructor series 17: 198.

    Google Scholar 

  • Miskimins, J. 2009. The importance of geophysical and petrophysical data integration for the hydraulic fracturing of unconventional reservoirs, 844–849. The Leading Edge.

    Article  Google Scholar 

  • Mogi, K. (1962), Magnitude–frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bulletin of the Earthquake Research Institute Tokyo University 40: 831–853.

    Google Scholar 

  • Norton, M., W. Hovdebo, D. Cho, S. Maxwell, and M. Jones. 2011. Integration of surface seismic and microseismic for the characterization of a Shale gas reservoir, 30–33. CSEG Recorder.

    Google Scholar 

  • Nuannin, P. 2006. The Potential of b-value variations as earthquake precursors for small and large events. Uppsala University PhD Dissertation: pp. 49.

    Google Scholar 

  • Öztürk, S. 2012. Statistical correlation between b-value and fractal dimension regarding Turkish epicentre distribution. Earth Sciences Research Journal 16 (2): 103–108.

    Google Scholar 

  • Primiero, P., G.G. Leiceaga, and J. Le Calvez. 2013. Integration of active and passive surface seismic for understanding the variations observed during a stimulation campaign. In Unconventional resources technology conference, Denver, CO, URTeC-1577327, 12.

    Google Scholar 

  • Rafiq, A., D.W. Eaton, A. McDougall, and P.K. Pedersen. 2016. Reservoir characterization using microseismic facies analysis integrated with surface seismic attributes. Interpretation T167–T181.

    Google Scholar 

  • Reches, Z. 1987. Determination of the tectonic stress tensor from slip analysis along faults that obey the coulomb yield condition. Tectonics 6 (6): 849–861.

    Article  ADS  Google Scholar 

  • Refunjol, X.E., K.M. Keranen, J. Le Calvez, and K.J. Marfurt. 2012. Integration of hydraulically induced microseismic event locations with active seismic attributes: A North Texas Barnett Shale case study. Geophysics 77 (3): KS1–KS12.

    Article  ADS  Google Scholar 

  • Reyes, J., A. Morales-Esteban, and  F. Martínez-Álvarez. 2013. Neural networks to predict earthquakes in Chile. Applied Soft Computing 13 (2): 1314–1328.

    Article  Google Scholar 

  • Rickman, R., M. Mullen, E. Petre, B. Grieser, and D. Kundert. 2008. A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale. In Annual technical conference and exhibition, SPE-115258-MS.

    Google Scholar 

  • Roberts, A. 2001. Curvature attributes and their application to 3D interpreted horizons. First Break 19: 85–99.

    Article  MathSciNet  Google Scholar 

  • Roff, A., W.S. Phillips, and D.W. Brown. 1996. Joint structures determined by clustering microearthquakes using waveform amplitude ratios. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 38.

    Google Scholar 

  • Roy, B., B. Hart, A. Mironova, C. Zhou, and U. Zimmer. 2014. Integrated characterization of hydraulic fracture treatments in the Barnett Shale: The Stocker geophysical experiment. Interpretation T111–T127.

    Google Scholar 

  • Rutledge, J., and W.S. Philips. 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics 68 (2): 441–452.

    Article  ADS  Google Scholar 

  • Rutledge, J.T., W.S. Phillips, and M.J. Mayerhofer. 2004. Faulting induced by forced fluid injection and fluid flow forced by faulting: an interpretation of hydraulic-fracture microseismicity, Carthage Cotton Valley Gas Field, Texas. Bulletin of the Seismological Society of America 94 (5):1817–1830.

    Article  Google Scholar 

  • Rutledge, J., X. Yu, and S. Leaney. 2015. Microseismic shearing driven by hydraulic-fracture opening: An interpretation of source-mechanism trends, 926–934. The Leading Edge.

    Article  Google Scholar 

  • Saltiel, S., K. Boyle, and E. Majer. 2011. Challenges in Determining b Value in the Northwest Geysers. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), LBNL-4594E, pp. 9.

    Google Scholar 

  • Sato, T., and T. Hirasawa. 1973. Body wave spectra from propagating shear cracks. Journal of Physics of the Earth 21 (4): 415-431.

    Article  Google Scholar 

  • Scholz, C. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America 58: 399–415.

    Google Scholar 

  • Scholz, C.H. 2015. On the stress dependence of the earthquake b value. Geophysical Research Letters 42: 1399–1402.

    Article  ADS  Google Scholar 

  • Schorlemmer, D., S. Wiemer, and M. Wyss. 2005. Variations in earthquake-size distribution across different stress regimes. Nature 437 (7058): 539–542.

    Article  ADS  Google Scholar 

  • Shi, Y., and B.A. Bolt. 1982. The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America 72 (5): 1677–1687.

    Google Scholar 

  • Sil, S., B. Bankhead, C. Zhou, and A. Sena. 2012. Analysis of b-value from Barnett shale microseismic data. In 74th EAGE conference & exhibition, Copenhagen, Denmark, 4.

    Google Scholar 

  • Silver, P.G., and T.H. Jordan. 1982. Optimal estimation of scalar seismic moment. Geophysical Journal International 70 (3): 755–787.

    Article  ADS  MATH  Google Scholar 

  • Stein, S., and M. Wysession. 2002. An introduction to seismology, earthquakes, and earth structure, 498. Blackwell Publishing.

    Google Scholar 

  • Sun, X., W. Tang, Y. Yu, and H. Guo. 2016. The Application of Coherence Cube Technique Based on Curvelet Transform for Fracture Detection. SEG Annual Meeting, Dallas, Texas, USA, pp. 4.

    Google Scholar 

  • Tape, W., and C. Tape. 2012. A geometric comparison of source-type plots for moment tensors. Geophysical Journal International 190: 499–510.

    Article  ADS  Google Scholar 

  • Tiwari, R.R. 2013. Recognizing horizontal stress orientation for optimizing well placement and well completion jobs. In 10th Biennial international conference and exposition, Kochi, 5.

    Google Scholar 

  • Urbancic, T., A. Baig, and S. Bowman. 2010. Utilizing b-values and fractal dimension for characterizing hydraulic fracture complexity, 3 Calgary: GeoCanada.

    Google Scholar 

  • Urbancic, T., and A. Baig. 2013. Validating engineering objectives of hydraulic fracture stimulations using microseismicity. First Break 31: 73–79.

    Google Scholar 

  • Urbancic, T., E.P. Ardakani, K. Bosman, A.M. Baig. 2017. Characterizing moment tensor derived discrete fracture networks utilizing topological approaches: 79th EAGE Conference and Exhibition, Extended Abstract, pp. 9.

    Google Scholar 

  • Utsu, T. 1966. A statistical significance test of the difference in b value between two earthquake groups. Journal of Physics Earth 14: 37–40.

    Article  Google Scholar 

  • Vavryčuk, V. 2015. Moment tensor decompositions revisited. Journal of Seismology 19: 231–252.

    Article  ADS  Google Scholar 

  • Verkhovtseva, N., H. Ali, and T. Mukhtarov. 2015. Why b-values for hydraulic fracture stimulations are so high. In SEG annual meeting, New Orleans, 2698–2702.

    Google Scholar 

  • Warpinski, N.R. 2009. Integrating microseismic monitoring with well completions, reservoir behavior and rock mechanics. In Tight gas completions conference, San Antonio, TX, SPE-125239, 13.

    Google Scholar 

  • Warpinski, N. 2014. Microseismic monitoring—The key is integration, 1098–1106. The Leading Edge.

    Google Scholar 

  • Wessels, S.A., A. De La Peña, M. Kratz, S. Williams-Stroud, and T. Jbeili. 2011. Identifying faults and fractures in unconventional reservoirs through microseismic monitoring. First Break 29: 99–104.

    Google Scholar 

  • Williams-Stroud, S., J. E. Kilpatrick, L. Eisner, B. M. Cornette, C. Neale. 2010. Natural Fracture Characterization From Microseismic Source Mechanisms: A Comparison With FMI Data. Canadian Unconventional Resources & International Petroleum Conference, Calgary, Alberta, Canada, pp. 5.

    Google Scholar 

  • Wilson, T. H., P. Kavousi, T. Carr, B. J. Carney, N. Uschner, O. Magbagbeola, and L. Xu. 2017. Relationships of λρ, μρ, brittleness index, Young’s modulus, Poisson’s ratio and high TOC for the Marcellus Shale, Morgantown, West Virginia. SEG Annual Meeting, Houston, Texas, USA. 3438–3442.

    Google Scholar 

  • Wilson, T.H., T. Carr, B.J. Carney, M. Yates, K. MacPhail, A. Morales, I. Costello, J. Hewitt, E. Jordon, N. Uschner, M. Thomas, S. Akin, O. Magbagbeola, A. Johansen, L. Hogarth, O. Anifowoshe, and K. Naseem. 2018. Marcellus Shale model stimulation tests and microseismic response yield insights into mechanical properties and the reservoir discrete fracture network. Interpretation T231–T243.

    Google Scholar 

  • Woessner, J., and S. Wiemer. 2005. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America 95 (2): 684–698.

    Article  Google Scholar 

  • Zakhour, N., M. Shoemaker, and D. Lee. 2015. Integrated workflow using 3D seismic and geomechanical properties with microseismic and stimulation data to optimize completion methodologies: Wolfcamp Shale-Oil Play Case Study in the Midland Basin. In SPE eastern regional meeting, West Virginia, USA, SPE-177298-MS, 1–24.

    Google Scholar 

  • Zhao, Y., T. Yang, P. Zhang, H. Xu, J. Zhou, and Q. Yu. 2019. Method for generating a discrete fracture network from microseismic data and its application in analyzing the permeability of rock masses: A case study. Rock Mechanics and Rock Engineering 1–23.

    Google Scholar 

  • Zorn, E., R. Hammack, W. Harbert, and A. Kumar. 2017. Geomechanical lithology-based analysis of microseismicity in organic shale sequences: A Pennsylvania Marcellus Shale example, 845–851. The Leading Edge.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jubran Akram .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, J. (2020). Microseismic Data Interpretation. In: Understanding Downhole Microseismic Data Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-34017-9_5

Download citation

Publish with us

Policies and ethics

Navigation