Epigenetic Regulation of Chromatin in Prostate Cancer

  • Chapter
  • First Online:
Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1210))

Abstract

Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S.A. Grigoryev, C.L. Woodcock, Chromatin organization - the 30 nm fiber. Exp. Cell Res. 318(12), 1448–1455 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. D.V. Fyodorov et al., Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19(3), 192–206 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. J. Ellinger et al., Global levels of histone modifications predict prostate cancer recurrence. Prostate 70(1), 61–69 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. S. Venkatesh, J.L. Workman, Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16(3), 178–189 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. J.M. Belton et al., Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58(3), 268–276 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. J. Dekker et al., The 4D nucleome project. Nature 549(7671), 219–226 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Andrey, S. Mundlos, The three-dimensional genome: regulating gene expression during pluripotency and development. Development 144(20), 3646–3658 (2017)

    Article  CAS  PubMed  Google Scholar 

  8. F. Spitz, E.E. Furlong, Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13(9), 613–626 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. J.O. Carlsten, X. Zhu, C.M. Gustafsson, The multitalented Mediator complex. Trends Biochem. Sci. 38(11), 531–537 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. B. Bonev, G. Cavalli, Organization and function of the 3D genome. Nat. Rev. Genet. 17(11), 661–678 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. A. Barski et al., High-resolution profiling of histone methylations in the human genome. Cell 129(4), 823–837 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. S.-H. Song, T.-Y. Kim, CTCF, cohesin, and chromatin in human cancer. Genomics Inform. 15(4), 114–122 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  13. M. Nowacka-Zawisza, E. Wiśnik, DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review). Oncol. Rep. 38(5), 2587–2596 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. C.E. Massie, I.G. Mills, A.G. Lynch, The importance of DNA methylation in prostate cancer development. J. Steroid Biochem. Mol. Biol. 166, 1–15 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wu, M. Sarkissyan, J.V. Vadgama, Epigenetics in breast and prostate cancer. Methods Mol. Biol. 1238, 425–466 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  16. R. Zelic et al., Global DNA hypomethylation in prostate cancer development and progression: a systematic review. Prostate Cancer Prostatic Dis. 18(1), 1–12 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. M. Ngollo et al., Epigenetic modifications in prostate cancer. Epigenomics 6(4), 415–426 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. S.B. Baylin, P.A. Jones, A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer 11(10), 726–734 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. X. Wu, Y. Zhang, TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18(9), 517–534 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. K. Ruggero et al., Epigenetic regulation in prostate cancer progression. Curr. Mol. Biol. Rep. 4(2), 101–115 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  21. T. Kouzarides, Chromatin modifications and their function. Cell 128(4), 693–705 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. P. Chi, C.D. Allis, G.G. Wang, Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10(7), 457–469 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S.R. Bhaumik, E. Smith, A. Shilatifard, Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14(11), 1008–1016 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. H. Huang et al., SnapShot: histone modifications. Cell 159(2), 458–458.e1 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. B.D. Strahl, C.D. Allis, The language of covalent histone modifications. Nature 403(6765), 41–45 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. B.A. Benayoun et al., H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158(3), 673–688 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D.B. Seligson et al., Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046), 1262–1266 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. F. Valdés-Mora et al., Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat. Commun. 8(1), 1346 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. E.L. Greer, Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13(5), 343–357 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R.F. Luco et al., Regulation of alternative splicing by histone modifications. Science 327(5968), 996–1000 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Hyun et al., Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 49(4), e324 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. V.K. Rao, A. Pal, R. Taneja, A drive in SUVs: from development to disease. Epigenetics 12(3), 177–186 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  33. I. Hoffmann et al., The role of histone demethylases in cancer therapy. Mol. Oncol. 6(6), 683–703 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. X. Zhang, H. Wen, X. Shi, Lysine methylation: beyond histones. Acta Biochim. Biophys. Sin. Shanghai 44(1), 14–27 (2012)

    Article  PubMed  CAS  Google Scholar 

  35. A. D’Oto et al., Histone demethylases and their roles in cancer epigenetics. J. Med. Oncol. Therap. 1(2), 34–40 (2016)

    Google Scholar 

  36. A. Janardhan et al., Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget 9(76), 34429–34448 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  37. R.M. Labbé, A. Holowatyj, Z.-Q. Yang, Histone lysine demethylase (kdm) subfamily 4: structures, functions and therapeutic potential. Am. J. Transl. Res. 6(1), 1–15 (2014)

    Google Scholar 

  38. N.D. Heintzman et al., Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39(3), 311–318 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. N.D. Heintzman et al., Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459(7243), 108–112 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. L.M. Soares, Determinants of histone H3K4 methylation patterns Rpb4-Set1 fusion. Mol. Cell 68, 773–785 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. G. Liang et al., Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl. Acad. Sci. U. S. A. 101(19), 7357–7362 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. B. **, Y. Li, K.D. Robertson, DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2(6), 607–617 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. D. Faucher, R.J. Wellinger, Methylated H3K4, a transcription-associated histone modification, is involved in the DNA damage response pathway. PLoS Genet. 6(8), e1001082 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. D.B. Seligson et al., Global levels of histone modifications predict prognosis in different cancers. Am. J. Pathol. 174(5), 1619–1628 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. T. Bianco-Miotto et al., Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol. Biomark. Prev. 19(10), 2611–2622 (2010)

    Article  CAS  Google Scholar 

  46. Q. Wang et al., Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138(2), 245–256 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. X.S. Ke et al., Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One 4(3), e4687 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. H.H. He et al., Nucleosome dynamics define transcriptional enhancers. Nat. Genet. 42(4), 343–347 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M.S. Geybels et al., PTEN loss is associated with prostate cancer recurrence and alterations in tumor DNA methylation profiles. Oncotarget 8(48), 84338–84348 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  50. J.M. Spangle et al., PI3K/AKT signaling regulates H3K4 methylation in breast cancer. Cell Rep. 15(12), 2692–2704 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. C.S. Grasso et al., The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406), 239–243 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. R. Malik et al., Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 21(4), 344–352 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. T. Kouzarides, SnapShot: histone-modifying enzymes. Cell 131(4), 822 (2007)

    Article  CAS  PubMed  Google Scholar 

  54. A. Shilatifard, The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 81(1), 65–95 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. T. Miller et al., COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc. Natl. Acad. Sci. U. S. A. 98(23), 12902–12907 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. J.J. Meeks, S. Ali, Multiple roles for the MLL/COMPASS family in the epigenetic regulation of gene expression and in cancer. Annu. Rev. Cancer Biol. 1(1), 425–446 (2017)

    Article  Google Scholar 

  57. C. Kandoth et al., Mutational landscape and significance across 12 major cancer types. Nature 502(7471), 333–339 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. R.C. Rao, Y. Dou, Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat. Rev. Cancer 15(6), 334–346 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M.G. Guenther et al., Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl. Acad. Sci. U. S. A. 102(24), 8603–8608 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. M. Wu et al., Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Mol. Cell. Biol. 28(24), 7337–7344 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. L. Wu et al., ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol. Cell 49(6), 1108–1120 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. S.S. Dhar et al., Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev. 26(24), 2749–2762 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. R. Mo, S.M. Rao, Y.-J. Zhu, Identification of the MLL2 complex as a coactivator for estrogen receptor alpha. J. Biol. Chem. 281(23), 15714–15720 (2006)

    Article  CAS  PubMed  Google Scholar 

  64. S. Lv et al., Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4. Oncogene 37(10), 1354–1368 (2018)

    Article  CAS  PubMed  Google Scholar 

  65. C. Deng et al., USF1 and hSET1A mediated epigenetic modifications regulate lineage differentiation and HoxB4 transcription. PLoS Genet. 9(6), e1003524 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. R.A. Varier, H.T. Timmers, Histone lysine methylation and demethylation pathways in cancer. Biochim. Biophys. Acta 1815(1), 75–89 (2011)

    CAS  PubMed  Google Scholar 

  67. P.A. Boriack-Sjodin, K.K. Swinger, Protein methyltransferases: a distinct, diverse, and dynamic family of enzymes. Biochemistry 55(11), 1557–1569 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. K. Leinhart, M. Brown, SET/MYND lysine methyltransferases regulate gene transcription and protein activity. Genes (Basel) 2(1), 210–218 (2011)

    Article  CAS  Google Scholar 

  69. G.S. Van Aller et al., Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7(4), 340–343 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. F.Q. Vieira et al., SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3. Oncotarget 6(15), 13644–13657 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  71. S.J. Du, X. Tan, J. Zhang, SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat. Rec. (Hoboken) 297(9), 1650–1662 (2014)

    Article  CAS  Google Scholar 

  72. R. Hamamoto et al., SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol. 6(8), 731–740 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. C. Liu et al., SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription. J. Natl. Cancer Inst. 105(22), 1719–1728 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. A.M. Cock-Rada et al., SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res. 72(3), 810–820 (2012)

    Article  CAS  PubMed  Google Scholar 

  75. T. Hara et al., Androgen receptor and invasion in prostate cancer. Cancer Res. 68(4), 1128–1135 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. G. Rajajeyabalachandran et al., Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents. Expert Opin. Ther. Targets 21(2), 145–157 (2017)

    Article  CAS  PubMed  Google Scholar 

  77. A. Peserico et al., A SMYD3 small-molecule inhibitor impairing cancer cell growth. J. Cell. Physiol. 230(10), 2447–2460 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. L.H. Mitchell et al., Novel oxindole sulfonamides and sulfamides: EPZ031686, the first orally bioavailable small molecule SMYD3 inhibitor. ACS Med. Chem. Lett. 7(2), 134–138 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. G.S. Van Aller et al., Structure-based design of a novel SMYD3 inhibitor that bridges the SAM-and MEKK2-binding pockets. Structure 24(5), 774–781 (2016)

    Article  PubMed  CAS  Google Scholar 

  80. J. McGrath, P. Trojer, Targeting histone lysine methylation in cancer. Pharmacol. Ther. 150, 1–22 (2015)

    Article  CAS  PubMed  Google Scholar 

  81. S. Hino, K. Kohrogi, M. Nakao, Histone demethylase LSD1 controls the phenotypic plasticity of cancer cells. Cancer Sci. 107(9), 1187–1192 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. L. Ellis, M. Loda, LSD1: a single target to combat lineage plasticity in lethal prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 115(18), 4530–4531 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. A. Sehrawat et al., LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc. Natl. Acad. Sci. U. S. A. 115(18), E4179–E4188 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. S. Regufe da Mota et al., LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models. Cancer Cell Int. 18, 71 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. A. Ketscher et al., LSD1 controls metastasis of androgen-independent prostate cancer cells through PXN and LPAR6. Oncogene 3, e120 (2014)

    Article  CAS  Google Scholar 

  86. P.A. Cloos et al., Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev. 22(9), 1115–1140 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. J. Plch, J. Hrabeta, T. Eckschlager, KDM5 demethylases and their role in cancer cell chemoresistance. Int. J. Cancer 144(2), 221–231 (2019)

    Article  CAS  PubMed  Google Scholar 

  88. F. Crea et al., The emerging role of histone lysine demethylases in prostate cancer. Mol. Cancer 11, 52 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Y. **ang et al., JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 104(49), 19226–19231 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. J.R. Horton et al., Characterization of a linked Jumonji domain of the KDM5/JARID1 family of histone H3 lysine 4 demethylases. J. Biol. Chem. 291(6), 2631–2646 (2016)

    Article  CAS  PubMed  Google Scholar 

  91. R. Liefke et al., Histone demethylase KDM5A is an integral part of the core Notch-RBP-J repressor complex. Genes Dev. 24(6), 590–601 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. F.L. Carvalho et al., Notch signaling in prostate cancer: a moving target. Prostate 74(9), 933–945 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Q. Su, L. **n, Notch signaling in prostate cancer: refining a therapeutic opportunity. Histol. Histopathol. 31(2), 149–157 (2016)

    CAS  PubMed  Google Scholar 

  94. L. Marignol et al., Hypoxia, notch signalling, and prostate cancer. Nat. Rev. Urol. 10(7), 405–413 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. K.T. Kuo et al., Histone demethylase JARID1B/KDM5B promotes aggressiveness of non-small cell lung cancer and serves as a good prognostic predictor. Clin. Epigenetics 10(1), 107 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. M.I. Khan et al., AKT inhibition modulates H3K4 demethylase levels in PTEN-null prostate cancer. Mol. Cancer Ther. 18(2), 356–363 (2019)

    Article  CAS  PubMed  Google Scholar 

  97. J. Taylor-Papadimitriou, J. Burchell, JARID1/KDM5 demethylases as cancer targets? Expert Opin. Ther. Targets 21(1), 5–7 (2017)

    Article  PubMed  Google Scholar 

  98. J. Stein et al., KDM5C is overexpressed in prostate cancer and is a prognostic marker for prostate-specific antigen-relapse following radical prostatectomy. Am. J. Pathol. 184(9), 2430–2437 (2014)

    Article  CAS  PubMed  Google Scholar 

  99. Z. Hong et al., KDM5C is transcriptionally regulated by BRD4 and promotes castration-resistance prostate cancer cell proliferation by repressing PTEN. Biomed. Pharmacother. 114, 108793 (2019)

    Article  CAS  PubMed  Google Scholar 

  100. B. Rondinelli et al., Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J. Clin. Invest. 125(12), 4625–4637 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  101. N. Li et al., JARID1D is a suppressor and prognostic marker of prostate cancer invasion and metastasis. Cancer Res. 76(4), 831–843 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. G. Perinchery et al., Deletion of Y-chromosome specific genes in human prostate cancer. J. Urol. 163(4), 1339–1342 (2000)

    Article  CAS  PubMed  Google Scholar 

  103. K.M. Sinha et al., Oncogenic and osteolytic functions of histone demethylase NO66 in castration-resistant prostate cancer. Oncogene 38(25), 5038–5049 (2019)

    Article  CAS  PubMed  Google Scholar 

  104. M. Vedadi et al., Targeting human SET1/MLL family of proteins. Protein Sci. 26(4), 662–676 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. F. Cao et al., Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia. Mol. Cell 53(2), 247–261 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. H. Karatas et al., High-affinity, small-molecule peptidomimetic inhibitors of MLL1/WDR5 protein–protein interaction. J. Am. Chem. Soc. 135(2), 669–682 (2013)

    Article  CAS  PubMed  Google Scholar 

  107. G. Senisterra et al., Small-molecule inhibition of MLL activity by disruption of its interaction with WDR5. Biochem. J. 449(1), 151–159 (2013)

    Article  CAS  PubMed  Google Scholar 

  108. J. Grembecka et al., Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8(3), 277–284 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. A. Jambhekar, J.N. Anastas, Y. Shi, Histone lysine demethylase inhibitors. Cold Spring Harb. Perspect. Med. 7(1), a026484 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. C. Mozzetta et al., Sound of silence: the properties and functions of repressive Lys methyltransferases. Nat. Rev. Mol. Cell Biol. 16(8), 499–513 (2015)

    Article  CAS  PubMed  Google Scholar 

  111. H. Wu et al., Structural biology of human H3K9 methyltransferases. PLoS One 5(1), e8570 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. D. Wang et al., Methylation of SUV39H1 by SET7/9 results in heterochromatin relaxation and genome instability. Proc. Natl. Acad. Sci. U. S. A. 110(14), 5516–5521 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. J.C. Rice et al., Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12(6), 1591–1598 (2003)

    Article  CAS  PubMed  Google Scholar 

  114. A.H. Peters et al., Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12(6), 1577–1589 (2003)

    Article  CAS  PubMed  Google Scholar 

  115. M. Tachibana et al., Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19(7), 815–826 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. R.A. Rao et al., KMT1 family methyltransferases regulate heterochromatin-nuclear periphery tethering via histone and non-histone protein methylation. EMBO Rep. 20(5), e43260 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. S. Nakanishi et al., A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat. Struct. Mol. Biol. 15(8), 881–888 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. C.M. Milner, R.D. Campbell, The G9a gene in the human major histocompatibility complex encodes a novel protein containing ankyrin-like repeats. Biochem. J. 290(Pt 3), 811–818 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. C. Chaturvedi et al., Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A. Proc. Natl. Acad. Sci. U. S. A. 109(46), 18845–18850 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. A. Dutta, Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science 352(6293), 1576–1580 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. D.J. Purcell et al., Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. J. Cell. Biochem. 113(7), 2406–2414 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Y. Kondo et al., Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. PLoS One 3(4), e2037 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. E. Metzger et al., LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057), 436–439 (2005)

    Article  CAS  PubMed  Google Scholar 

  124. N.R. Rose et al., Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases. J. Med. Chem. 55(14), 6639–6643 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. J. Yang et al., The histone demethylase JMJD2B is regulated by estrogen receptor alpha and hypoxia, and is a key mediator of estrogen induced growth. Cancer Res. 70(16), 6456–6466 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. K. Coffey et al., The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res. 41(8), 4433–4446 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. M. Wissmann et al., Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat. Cell Biol. 9(3), 347–353 (2007)

    Article  CAS  PubMed  Google Scholar 

  128. T. Chiba et al., Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int. J. Cancer 136(2), 289–298 (2015)

    Article  CAS  PubMed  Google Scholar 

  129. Z. Lu et al., Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells. Anti-Cancer Drugs 24(5), 484–493 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. M. Vedadi et al., A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat. Chem. Biol. 7(8), 566–574 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Y. Yuan et al., A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem. Biol. 7(7), 1152–1157 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. E.T. Wiles, E.U. Selker, H3K27 methylation: a promiscuous repressive chromatin mark. Curr. Opin. Genet. Dev. 43, 31–37 (2017)

    Article  CAS  PubMed  Google Scholar 

  133. S. Aranda, G. Mas, L. Di Croce, Regulation of gene transcription by Polycomb proteins. Sci. Adv. 1(11), e1500737 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  134. E. Conway, E. Healy, A.P. Bracken, PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr. Opin. Cell Biol. 37, 42–48 (2015)

    Article  CAS  PubMed  Google Scholar 

  135. R. Margueron, D. Reinberg, The Polycomb complex PRC2 and its mark in life. Nature 469(7330), 343–349 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. S. Varambally et al., The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907), 624–629 (2002)

    Article  CAS  PubMed  Google Scholar 

  137. S. Varambally et al., Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908), 1695–1699 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. K. Xu et al., EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science (New York, N.Y.) 338(6113), 1465–1469 (2012)

    Article  CAS  Google Scholar 

  139. D. Wang et al., LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget 6(38), 41045–41055 (2015)

    PubMed  PubMed Central  Google Scholar 

  140. M.C. Donaldson-Collier et al., EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains. Nat. Genet. 51(3), 517–528 (2019)

    Article  CAS  PubMed  Google Scholar 

  141. H. Kaniskan, M.L. Martini, J. **, Inhibitors of protein methyltransferases and demethylases. Chem. Rev. 118(3), 989–1068 (2018)

    Article  CAS  PubMed  Google Scholar 

  142. W.A. Schulz et al., The histone demethylase UTX/KDM6A in cancer: progress and puzzles. Int. J. Cancer 145(3), 614–620 (2019)

    Article  CAS  PubMed  Google Scholar 

  143. S.H. Jung et al., Genetic progression of high grade prostatic intraepithelial neoplasia to prostate cancer. Eur. Urol. 69(5), 823–830 (2016)

    Article  CAS  PubMed  Google Scholar 

  144. V.M. Morozov et al., Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer. Oncotarget 8(37), 62131–62142 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  145. W. Yu et al., Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat. Commun. 3, 1288 (2012)

    Article  PubMed  CAS  Google Scholar 

  146. J. Tan et al., Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21(9), 1050–1063 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. M.T. McCabe et al., EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427), 108–112 (2012)

    Article  CAS  PubMed  Google Scholar 

  148. S. Schmähling et al., Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development 145(7), dev163808 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. D.K. Pokholok et al., Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122(4), 517–527 (2005)

    Article  CAS  PubMed  Google Scholar 

  150. T. Vacík, D. Lađinović, I. Raška, KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus 9(1), 431–441 (2018)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  151. I.A. Asangani et al., Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Mol. Cell 49(1), 80–93 (2013)

    Article  CAS  PubMed  Google Scholar 

  152. N. Li et al., AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J. Clin. Invest. 127(4), 1284–1302 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  153. T. Ezponda et al., The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial–mesenchymal transition and invasive properties of prostate cancer. Oncogene 32(23), 2882–2890 (2013)

    Article  CAS  PubMed  Google Scholar 

  154. M. Yan et al., The critical role of histone lysine demethylase KDM2B in cancer. Am. J. Transl. Res. 10(8), 2222–2233 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  155. N. Zacharopoulou et al., The epigenetic factor KDM2B regulates cell adhesion, small rho GTPases, actin cytoskeleton and migration in prostate cancer cells. Biochim. Biophys. Acta, Mol. Cell Res. 1865(4), 587–597 (2018)

    Article  CAS  Google Scholar 

  156. A.T. Nguyen, Y. Zhang, The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 25(13), 1345–1358 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. M.I. Valencia-Sanchez et al., Structural basis of Dot1L stimulation by histone H2B lysine 120 ubiquitination. Mol. Cell 74(5), 1010–1019.e6 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. E.J. Worden et al., Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L. Cell 176(6), 1490–1501.e12 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. M.S. Singer et al., Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150(2), 613–632 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  160. M. Annala et al., DOT1L-HES6 fusion drives androgen independent growth in prostate cancer. EMBO Mol. Med. 6(9), 1121–1123 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. W. Kim et al., Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J. Biol. Chem. 287(8), 5588–5599 (2012)

    Article  CAS  PubMed  Google Scholar 

  162. L. Yang et al., LncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500(7464), 598–602 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. S.R. Daigle et al., Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20(1), 53–65 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. C.R. Klaus et al., DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells. J. Pharmacol. Exp. Ther. 350(3), 646–656 (2014)

    Article  PubMed  CAS  Google Scholar 

  165. Y. Zhao et al., Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells. Mol. Pharm. 9(6), 1705–1716 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. S.R. Daigle et al., Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122(6), 1017–1025 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. J.L. Anglin et al., Synthesis and structure-activity relationship investigation of adenosine-containing inhibitors of histone methyltransferase DOT1L. J. Med. Chem. 55(18), 8066–8074 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. C.A. Musselman et al., Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19(12), 1218–1227 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. T.G. Kutateladze, SnapShot: histone readers. Cell 146(5), 842–842.e1 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Z. Chen et al., Histone modifications and chromatin organization in prostate cancer. Epigenomics 2(4), 551–560 (2010)

    Article  CAS  PubMed  Google Scholar 

  171. M. Pérez-Salvia, M. Esteller, Bromodomain inhibitors and cancer therapy: from structures to applications. Epigenetics 12(5), 323–339 (2017)

    Article  PubMed  Google Scholar 

  172. Z. Wang et al., Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40(7), 897–903 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. M. Han et al., Epigenetic enzyme mutations: role in tumorigenesis and molecular inhibitors. Front. Oncol. 9, 194 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  174. H.M. Chan, N.B. La Thangue, p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114(Pt 13), 2363–2373 (2001)

    CAS  PubMed  Google Scholar 

  175. B.M. Dancy, P.A. Cole, Protein lysine acetylation by p300/CBP. Chem. Rev. 115(6), 2419–2452 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. M. Fu et al., Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol. Cell. Biol. 23(23), 8563–8575 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. M. Fu et al., p300 and p300/cAMP-response element-binding protein-associated factor acetylate the androgen receptor at sites governing hormone-dependent transactivation. J. Biol. Chem. 275(27), 20853–20860 (2000)

    Article  CAS  PubMed  Google Scholar 

  178. R.M. Attar, C.H. Takimoto, M.M. Gottardis, Castration-resistant prostate cancer: locking up the molecular escape routes. Clin. Cancer Res. 15(10), 3251–3255 (2009)

    Article  CAS  PubMed  Google Scholar 

  179. B. Comuzzi et al., The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. J. Pathol. 204(2), 159–166 (2004)

    Article  CAS  PubMed  Google Scholar 

  180. J. Zhong et al., P300 acetyltransferase regulates androgen receptor degradation and pten-deficient prostate tumorigenesis. Cancer Res. 74(6), 1870–1880 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. E. Seto, M. Yoshida, Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6(4), a018713 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Y. Li, E. Seto, HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6(10), a026831 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. W. Weichert et al., Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer 98(3), 604–610 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. H. Huang et al., Carboxypeptidase A3 (CPA3): a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cells. Cancer Res. 59(12), 2981–2988 (1999)

    CAS  PubMed  Google Scholar 

  185. L.K. Gediya et al., Improved synthesis of histone deacetylase inhibitors (HDIs) (MS-275 and CI-994) and inhibitory effects of HDIs alone or in combination with RAMBAs or retinoids on growth of human LNCaP prostate cancer cells and tumor xenografts. Bioorg. Med. Chem. 16(6), 3352–3360 (2008)

    Article  CAS  PubMed  Google Scholar 

  186. P.N. Munster et al., Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br. J. Cancer 101(7), 1044–1050 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. D. Rathkopf et al., A phase I study of oral panobinostat alone and in combination with docetaxel in patients with castration-resistant prostate cancer. Cancer Chemother. Pharmacol. 66(1), 181–189 (2010)

    Article  CAS  PubMed  Google Scholar 

  188. L.R. Molife et al., Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Ann. Oncol. 21(1), 109–113 (2009)

    Article  PubMed  Google Scholar 

  189. B. Jung-Hynes, N. Ahmad, Role of p53 in the anti-proliferative effects of Sirt1 inhibition in prostate cancer cells. Cell Cycle 8(10), 1478–1483 (2009)

    Article  CAS  PubMed  Google Scholar 

  190. D.M. Huffman et al., SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 67(14), 6612–6618 (2007)

    Article  CAS  PubMed  Google Scholar 

  191. V. Byles et al., SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 31(43), 4619–4629 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. J.D. Lovaas et al., SIRT1 enhances matrix metalloproteinase-2 expression and tumor cell invasion in prostate cancer cells. Prostate 73(5), 522–530 (2013)

    Article  CAS  PubMed  Google Scholar 

  193. L. Sun et al., MPP8 and SIRT1 crosstalk in E-cadherin gene silencing and epithelial-mesenchymal transition. EMBO Rep. 16(6), 689–699 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Z. You, Y. Liu, X. Liu, Nicotinamide N-methyltransferase enhances the progression of prostate cancer by stabilizing sirtuin 1. Oncol. Lett. 15(6), 9195–9201 (2018)

    PubMed  PubMed Central  Google Scholar 

  195. Y. Yu et al., Mesenchymal stem cells overexpressing Sirt1 inhibit prostate cancer growth by recruiting natural killer cells and macrophages. Oncotarget 7(44), 71112–71122 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  196. M.J. Powell et al., Disruption of a Sirt1-dependent autophagy checkpoint in the prostate results in prostatic intraepithelial neoplasia lesion formation. Cancer Res. 71(3), 964–975 (2011)

    Article  CAS  PubMed  Google Scholar 

  197. A. Stathis, F. Bertoni, BET proteins as targets for anticancer treatment. Cancer Discov. 8(1), 24–36 (2018)

    Article  CAS  PubMed  Google Scholar 

  198. S. Malik, R.G. Roeder, The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11(11), 761–772 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. K.J. Moon et al., The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19(4), 523–534 (2005)

    Article  CAS  Google Scholar 

  200. Z. Yang et al., Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19(4), 535–545 (2005)

    Article  CAS  PubMed  Google Scholar 

  201. I.A. Asangani et al., Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510(7504), 278–282 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. A. Urbanucci et al., Androgen receptor deregulation drives bromodomain-mediated chromatin alterations in prostate cancer. Cell Rep. 19(10), 2045–2059 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. L. Gao et al., Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation. PLoS One 8(5), e63563 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  204. I.A. Asangani et al., BET bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol. Cancer Res. 14(4), 324–331 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. A. Pawar et al., Resistance to BET inhibitor leads to alternative therapeutic vulnerabilities in castration-resistant prostate cancer. Cell Rep. 22(9), 2236–2245 (2018)

    Article  CAS  PubMed  Google Scholar 

  206. D.P. Bondeson, C.M. Crews, Targeted protein degradation by small molecules. Annu. Rev. Pharmacol. Toxicol. 57, 107–123 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. P.M. Cromm, C.M. Crews, Targeted protein degradation: from chemical biology to drug discovery. Cell Chem. Biol. 24(9), 1181–1190 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. G.E. Winter et al., Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348(6241), 1376–1381 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. M. Zengerle, K.H. Chan, A. Ciulli, Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10(8), 1770–1777 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. J. Lu et al., Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22(6), 755–763 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. K. Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. U. S. A. 113(26), 7124–7129 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. L. **, J. Garcia, E. Chan, Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res. 77(20), 5564–5575 (2017)

    Article  CAS  PubMed  Google Scholar 

  213. L.M. Lasko et al., Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550(7674), 128–132 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. G. Längst, L. Manelyte, Chromatin remodelers: from function to dysfunction. Genes (Basel) 6(2), 299–324 (2015)

    Article  CAS  Google Scholar 

  215. S.V. Saladi, I.L. de la Serna, ATP dependent chromatin remodeling enzymes in embryonic stem cells. Stem Cell Rev. 6(1), 62–73 (2010)

    Article  CAS  PubMed Central  Google Scholar 

  216. D.P. Labbe, M. Brown, Transcriptional regulation in prostate cancer. Cold Spring Harb. Perspect. Med. 8(11), a030437 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Reyaz Ur Rasool and Qu Deng for stimulating discussions. Research in the Asangani Laboratory is supported by the Department of Defense Idea Development Award (W81XWH17-1-0404 to I.A.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan A. Asangani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natesan, R., Aras, S., Effron, S.S., Asangani, I.A. (2019). Epigenetic Regulation of Chromatin in Prostate Cancer. In: Dehm, S., Tindall, D. (eds) Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1210. Springer, Cham. https://doi.org/10.1007/978-3-030-32656-2_17

Download citation

Publish with us

Policies and ethics

Navigation