Self-supported Materials for Flexible/Stretchable Sensors

  • Chapter
  • First Online:
Self-standing Substrates

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 713 Accesses

Abstract

There is an increasing demand on the fabrication of robust, flexible, cost-effective, and eco-friendly self-supporting materials, such as yarns, fibers, papers-like, films, and monoliths, etc., due to their promising applications in flexible sensing fields. With the unique structure and outstanding properties, various functional materials with zero-dimensional, one-dimensional, and two-dimensional structures have been employed as promising building blocks for the assembly of self-supporting materials. In this chapter, the type, key parameter, and working principles of sensors are presented. Meanwhile, we summarize the sensing properties of different self-supporting materials through detailed cases. In addition, the challenges and opportunities of current sensors based on self-supporting materials are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. William, S., Wong, A.: Flexible Electronics: Materials and Applications, pp. 1–461. Springers Science+Business Media, New York (2009)

    Google Scholar 

  2. Zhang, W., et al.: Highly sensitive and flexible strain sensors based on vertical zinc oxide nanowire arrays. Sens. Actuators A Phys. 205, 164–169 (2014)

    Article  CAS  Google Scholar 

  3. Son, D., et al.: Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014)

    Article  CAS  Google Scholar 

  4. Schwartz, G., et al.: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013)

    Article  CAS  Google Scholar 

  5. Stoyanov, H., et al.: Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 25(4), 578–583 (2013)

    Article  CAS  Google Scholar 

  6. Lu, N., Kim, D.-H.: Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 1(1), 53–62 (2014)

    Article  Google Scholar 

  7. Jeong, J.W., et al.: Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25(47), 6839–6846 (2013)

    Article  CAS  Google Scholar 

  8. Ryu, S., et al.: Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9(6), 5929–5936 (2015)

    Article  CAS  Google Scholar 

  9. Lange, B., et al.: Markerless full body tracking- depth-sensing technology within virtual environments. Interserv. Ind. Train. Simul. Educ. Conf. 11363, 1–8 (2011)

    Google Scholar 

  10. Alamusi, et al.: Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors (Basel) 11(11), 10691–10723 (2011)

    Article  CAS  Google Scholar 

  11. Liu, H., et al.: Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C 6(45), 12121–12141 (2018)

    Article  CAS  Google Scholar 

  12. Rim, Y.S., et al.: Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28(22), 4415–4440 (2016)

    Article  CAS  Google Scholar 

  13. Baptista, F.R., et al.: Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev. 44(13), 4433–4453 (2015)

    Article  CAS  Google Scholar 

  14. Rodgers, M.M., Pai, V.M., Conroy, R.S.: Recent advances in wearable sensors for health monitoring. IEEE Sens. J. 15(6), 3119–3126 (2015)

    Article  Google Scholar 

  15. Amjadi, M., et al.: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)

    Article  CAS  Google Scholar 

  16. Yang, Y., et al.: Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 10(5), 1560–1583 (2017)

    Article  Google Scholar 

  17. Wan, Y., Wang, Y., Guo, C.F.: Recent progresses on flexible tactile sensors. Mater. Today Phys. 1, 61–73 (2017)

    Article  Google Scholar 

  18. Liu, H., et al.: Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. J. Mater. Chem. C 5(1), 73–83 (2017)

    Article  CAS  Google Scholar 

  19. Kang, D., et al.: Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516(7530), 222–226 (2014)

    Article  CAS  Google Scholar 

  20. Wang, M., et al.: Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale 9(31), 11017–11026 (2017)

    Article  CAS  Google Scholar 

  21. Park, S.-J., et al.: Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement. Adv. Mater. Technol. 1(5), 1600053 (2016)

    Article  CAS  Google Scholar 

  22. Liu, S., et al.: A high performance self-healing strain sensor with synergetic networks of poly(ɛ-caprolactone) microspheres, graphene and silver nanowires. Compos. Sci. Technol. 146, 110–118 (2017)

    Article  CAS  Google Scholar 

  23. Cai, L., et al.: Highly transparent and conductive stretchable conductors based on hierarchical reticulate single-walled carbon nanotube architecture. Adv. Funct. Mater. 22(24), 5238–5244 (2012)

    Article  CAS  Google Scholar 

  24. Li, L., et al.: A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 29(43) (2017)

    Google Scholar 

  25. Pan, L., et al.: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014)

    Article  CAS  Google Scholar 

  26. Pang, L., et al.: Enhanced pressure and proximity sensitivities of a flexible transparent capacitive sensor with PZT nanowires. IOP Conf. Ser. Mater. Sci. Eng. 479, 012035 (2019)

    Article  CAS  Google Scholar 

  27. Muhammad, H.B., et al.: A capacitive tactile sensor array for surface texture discrimination. Microelectron. Eng. 88(8), 1811–1813 (2011)

    Article  CAS  Google Scholar 

  28. Cheng, M.Y., et al.: A polymer-based capacitive sensing array for normal and shear force measurement. Sensors (Basel) 10(11), 10211–10225 (2010)

    Article  CAS  Google Scholar 

  29. Huang, Y., et al.: A flexible three-axial capacitive tactile sensor with multilayered dielectric for artificial skin applications. Microsyst. Technol. 23(6), 1847–1852 (2016)

    Article  CAS  Google Scholar 

  30. Mitrakos, V., et al.: Design, manufacture and testing of capacitive pressure sensors for low-pressure measurement ranges. Micromachines 8(2), 41 (2017)

    Article  Google Scholar 

  31. Lipomi, D.J., et al.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011)

    Article  CAS  Google Scholar 

  32. Dobrzynska, J.A., Gijs, M.A.M.: Flexible polyimide-based force sensor. Sens. Actuators A Phys. 173(1), 127–135 (2012)

    Article  CAS  Google Scholar 

  33. Park, K.I., et al.: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26(16), 2514–2520 (2014)

    Article  CAS  Google Scholar 

  34. Wegener, M., Wirges, W., Gerhard-Multhaupt, R.: Piezoelectric polyethylene terephthalate (PETP) foams–specifically designed and prepared ferroelectret films. Adv. Eng. Mater. 7(12), 1128–1131 (2005)

    Article  CAS  Google Scholar 

  35. Hammock, M.L., et al.: 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6038 (2013)

    Article  CAS  Google Scholar 

  36. Cotton, D.P.J., et al.: A novel thick-film piezoelectric slip sensor for a prosthetic hand. IEEE Sens. J. 7(5), 752–761 (2007)

    Article  CAS  Google Scholar 

  37. Dargahi, J., Najarian, S.: Human tactile perception as a standard for artificial tactile sensing—a review. Int. J. Med. Robot. Comput. Assist. Surg. 1(1), 23–35 (2004)

    Article  CAS  Google Scholar 

  38. Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013)

    Article  CAS  Google Scholar 

  39. Fan, F.R., et al.: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109–3114 (2012)

    Article  CAS  Google Scholar 

  40. Lau, P.H., et al.: Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 13(8), 3864–3869 (2013)

    Article  CAS  Google Scholar 

  41. Nomura, K., et al.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)

    Article  CAS  Google Scholar 

  42. Yokota, R., et al.: Molecular design of heat resistant polyimides having excellent processability and high glass transition temperature. High Perform. Polym. 13(2), S61–S72 (2016)

    Article  Google Scholar 

  43. Lanzara, G., et al.: A spider-web-like highly expandable sensor network for multifunctional materials. Adv. Mater. 22(41), 4643–4648 (2010)

    Article  CAS  Google Scholar 

  44. Kaltenbrunner, M., et al.: An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458–463 (2013)

    Article  CAS  Google Scholar 

  45. Sekitani, T., et al.: A rubberlike stretchable active matrix using elastic conductors. Science 321(5895), 1468–1472 (2008)

    Article  CAS  Google Scholar 

  46. Chun, S., et al.: A graphene force sensor with pressure-amplifying structure. Carbon 78, 601–608 (2014)

    Article  CAS  Google Scholar 

  47. Amjadi, M., Yoon, Y.J., Park, I.: Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-ecoflex nanocomposites. Nanotechnology 26(37), 375501 (2015)

    Article  CAS  Google Scholar 

  48. Zhu, B., et al.: Silk fibroin for flexible electronic devices. Adv. Mater. 28(22), 4250–4265 (2016)

    Article  CAS  Google Scholar 

  49. Li, R.Z., et al.: Direct writing on paper of foldable capacitive touch pads with silver nanowire inks. ACS Appl. Mater. Interfaces 6(23), 21721–21729 (2014)

    Article  CAS  Google Scholar 

  50. Shafiee, H., et al.: Paper and flexible substrates as materials for biosensing platforms to detect multiple biotargets. Sci. Rep. 5, 8719 (2015)

    Article  CAS  Google Scholar 

  51. Zou, Q., et al.: Dielectric properties of lead zirconate titanate thin films deposited on metal foils. Appl. Phys. Lett. 77(7), 1038 (2000)

    Article  CAS  Google Scholar 

  52. Cao, Y., et al.: A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29(10) (2017)

    Article  CAS  Google Scholar 

  53. Su, X., et al.: Highly stretchable and conductive superhydrophobic coating for flexible electronics. ACS Appl. Mater. Interfaces 10(12), 10587–10597 (2018)

    Article  CAS  Google Scholar 

  54. Amjadi, M., et al.: Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)

    Article  CAS  Google Scholar 

  55. Gong, S., et al.: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)

    Article  CAS  Google Scholar 

  56. Li, Q., et al.: Wide-range strain sensors based on highly transparent and supremely stretchable graphene/ag-nanowires hybrid structures. Small 12(36), 5058–5065 (2016)

    Article  CAS  Google Scholar 

  57. Liao, X., et al.: Flexible, cuttable, and self-waterproof bending strain sensors using microcracked gold nanofilms@paper substrate. ACS Appl. Mater. Interfaces 9(4), 4151–4158 (2017)

    Article  CAS  Google Scholar 

  58. Tang, Y., et al.: Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 8(6), 5707–5714 (2014)

    Article  CAS  Google Scholar 

  59. Xu, X., et al.: Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl. Mater. Interfaces 9(16), 14273–14280 (2017)

    Article  CAS  Google Scholar 

  60. Ge, G., et al.: A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 10(21), 10033–10040 (2018)

    Article  CAS  Google Scholar 

  61. Shao, Q., et al.: High-performance and tailorable pressure sensor based on ultrathin conductive polymer film. Small 10(8), 1466–1472 (2014)

    Article  CAS  Google Scholar 

  62. Xue, J., et al.: Wearable and visual pressure sensors based on Zn2GeO4@polypyrrole nanowire aerogels. J. Mater. Chem. C 5(42), 11018–11024 (2017)

    Article  CAS  Google Scholar 

  63. Lipomi, D.J., et al.: Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem. Mater. 24(2), 373–382 (2012)

    Article  CAS  Google Scholar 

  64. Hong, S.Y., et al.: Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-like stretchable array of multi-functional sensors. NPG Asia Mater. 9(11), e448–e448 (2017)

    Article  CAS  Google Scholar 

  65. Li, M., et al.: Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl. Mater. Interfaces 6(2), 1313–1319 (2014)

    Article  CAS  Google Scholar 

  66. Chen, S., et al.: Acid-interface engineering of carbon nanotube/elastomers with enhanced sensitivity for stretchable strain sensors. ACS Appl. Mater. Interfaces 10(43), 37760–37766 (2018)

    Article  CAS  Google Scholar 

  67. Sun, H., Xu, Z., Gao, C.: Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013)

    Article  CAS  Google Scholar 

  68. Jeong, Y.R., et al.: Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv. Funct. Mater. 25(27), 4228–4236 (2015)

    Article  CAS  Google Scholar 

  69. Wang, Y., et al.: Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014)

    Article  CAS  Google Scholar 

  70. Gallo, G.J., Thostenson, E.T.: Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks. Mater. Today Commun. 3, 17–26 (2015)

    Article  CAS  Google Scholar 

  71. Yang, S., Lu, N.: Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors (Basel) 13(7), 8577–8594 (2013)

    Article  CAS  Google Scholar 

  72. Yi, L., et al.: Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection. Nano Res. 8(9), 2978–2987 (2015)

    Article  CAS  Google Scholar 

  73. Park, B., et al.: Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth. Adv. Mater. 28(37), 8130–8137 (2016)

    Article  CAS  Google Scholar 

  74. Joo, Y., et al.: Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 7(14), 6208–6215 (2015)

    Article  CAS  Google Scholar 

  75. Zhou, J., et al.: Flexible piezotronic strain sensor. Nano Lett. 8(9), 3035–3040 (2008)

    Article  CAS  Google Scholar 

  76. Zhang, X., et al.: Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode. Adv. Mater. 22(46), 5292–5296 (2010)

    Article  CAS  Google Scholar 

  77. Nour, E.S., et al.: A flexible anisotropic self-powered piezoelectric direction sensor based on double sided ZnO nanowires configuration. Nanotechnology 26(9), 095502 (2015)

    Article  CAS  Google Scholar 

  78. **ao, X., et al.: High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23(45), 5440–5444 (2011)

    Article  CAS  Google Scholar 

  79. Liao, X., et al.: A highly stretchable zno@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 26(18), 3074–3081 (2016)

    Article  CAS  Google Scholar 

  80. Wang, Z.L.: From nanogenerators to piezotronics—a decade-long study of ZnO nanostructures. MRS Bull. 37(9), 814–827 (2012)

    Article  CAS  Google Scholar 

  81. Pan, C., et al.: Piezotronic effect on the sensitivity and signal level of Schottky contacted proactive micro/nanowire nanosensors. ACS Nano 7(2), 1803–1810 (2013)

    Article  CAS  Google Scholar 

  82. Park, S., Vosguerichian, M., Bao, Z.: A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5), 1727–1752 (2013)

    Article  CAS  Google Scholar 

  83. Kanoun, O., et al.: Flexible carbon nanotube films for high performance strain sensors. Sensors (Basel) 14(6), 10042–10071 (2014)

    Article  CAS  Google Scholar 

  84. Liu, Z.F., et al.: Hierarchically buckled sheath-core fibers for superelastic electronics sensors and muscles. Science 349(6246), 400–404 (2015)

    Article  CAS  Google Scholar 

  85. Choi, C., et al.: Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16(12), 7677–7684 (2016)

    Article  CAS  Google Scholar 

  86. Kim, S.Y., et al.: Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27(28), 4178–4185 (2015)

    Article  CAS  Google Scholar 

  87. Hu, N., et al.: Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56(13), 2929–2936 (2008)

    Article  CAS  Google Scholar 

  88. Hu, L., et al.: Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94(16), 161108 (2009)

    Article  CAS  Google Scholar 

  89. Shi, J., et al.: Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv. Funct. Mater. 26(13), 2078–2084 (2016)

    Article  CAS  Google Scholar 

  90. Yamada, T., et al.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011)

    Article  CAS  Google Scholar 

  91. Park, S., et al.: Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 26(43), 7324–7332 (2014)

    Article  CAS  Google Scholar 

  92. Zhao, W., et al.: Highly stable carbon nanotube/polyaniline porous network for multifunctional applications. ACS Appl. Mater. Interfaces 8(49), 34027–34033 (2016)

    Article  CAS  Google Scholar 

  93. Bryning, M.B., et al.: Carbon nanotube aerogels. Adv. Mater. 19(5), 661–664 (2007)

    Article  CAS  Google Scholar 

  94. Wang, M., et al.: Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv. Mater. 25(17), 2428–2432 (2013)

    Article  CAS  Google Scholar 

  95. Chen, H., et al.: Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 27(3), 1604434 (2017)

    Article  CAS  Google Scholar 

  96. Cai, G., et al.: Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. (Weinh) 4(2), 1600190 (2017)

    Article  CAS  Google Scholar 

  97. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    Article  CAS  Google Scholar 

  98. Zang, J., et al.: Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12(4), 321–325 (2013)

    Article  CAS  Google Scholar 

  99. Wang, X., et al.: Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem. Mater. 27(20), 6969–6975 (2015)

    Article  CAS  Google Scholar 

  100. Yan, C., et al.: Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26(13), 2022–2027 (2014)

    Article  CAS  Google Scholar 

  101. Liu, Q., et al.: High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8), 7901–7906 (2016)

    Article  CAS  Google Scholar 

  102. Tian, H., et al.: A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 5, 8603 (2015)

    Article  CAS  Google Scholar 

  103. Bae, G.Y., et al.: Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 28, 5300–5306 (2016)

    Article  CAS  Google Scholar 

  104. Sheng, L., et al.: Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25(41), 6545–6551 (2015)

    Article  CAS  Google Scholar 

  105. Chen, S., et al.: A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. J. Mater. Chem. C 4(19), 4304–4311 (2016)

    Article  CAS  Google Scholar 

  106. Qiu, L., et al.: Ultrafast dynamic piezoresistive response of graphene-based cellular elastomers. Adv. Mater. 28(1), 194–200 (2016)

    Article  CAS  Google Scholar 

  107. Qin, Y., et al.: Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9(9), 8933–8941 (2015)

    Article  CAS  Google Scholar 

  108. Zhang, P., et al.: Superelastic, macroporous polystyrene-mediated graphene aerogels for active pressure sensing. Chem. Asian J. 11(7), 1071–1075 (2016)

    Article  CAS  Google Scholar 

  109. Yao, H.B., et al.: A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46), 6692–6698 (2013)

    Article  CAS  Google Scholar 

  110. Lin, Y., et al.: Graphene-elastomer composites with segregated nanostructured network for liquid and strain sensing application. ACS Appl. Mater. Interfaces 8(36), 24143–24151 (2016)

    Article  CAS  Google Scholar 

  111. Lin, Y., et al.: A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network. J. Mater. Chem. C 4(26), 6345–6352 (2016)

    Article  CAS  Google Scholar 

  112. Huang, J., et al.: Extremely elastic and conductive N-doped graphene sponge for monitoring human motions. Nanoscale 11(3), 1159–1168 (2019)

    Article  CAS  Google Scholar 

  113. Xu, J., et al.: Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017)

    Article  CAS  Google Scholar 

  114. Zhao, J., et al.: A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos. A Appl. Sci. Manuf. 48, 129–136 (2013)

    Article  CAS  Google Scholar 

  115. Yazdani, H., et al.: Strain-sensitive conductivity of carbon black-filled PVC composites subjected to cyclic loading. Carbon 79, 393–405 (2014)

    Article  CAS  Google Scholar 

  116. Ma, R., et al.: Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers. ACS Nano 9(11), 10876–10886 (2015)

    Article  CAS  Google Scholar 

  117. Liu, H., et al.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4(1), 157–166 (2016)

    Article  CAS  Google Scholar 

  118. Jung, S., et al.: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014)

    Article  CAS  Google Scholar 

  119. Lin, L., et al.: Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013)

    Article  CAS  Google Scholar 

  120. Kim, Y., et al.: Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500(7460), 59–63 (2013)

    Article  CAS  Google Scholar 

  121. Jurewicz, I., et al.: Locking carbon nanotubes in confined lattice geometries–a route to low percolation in conducting composites. J. Phys. Chem. B 115(20), 6395–6400 (2011)

    Article  CAS  Google Scholar 

  122. Keplinger, C., et al.: Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)

    Article  CAS  Google Scholar 

  123. Bai, Y., et al.: Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Appl. Phys. Lett. 104(6), 062902 (2014)

    Article  CAS  Google Scholar 

  124. Sun, J.Y., et al.: Ionic skin. Adv. Mater. 26(45), 7608–7614 (2014)

    Article  CAS  Google Scholar 

  125. Zhu, S., et al.: Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23(18), 2308–2314 (2013)

    Article  CAS  Google Scholar 

  126. Choong, C.L., et al.: Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26(21), 3451–3458 (2014)

    Article  CAS  Google Scholar 

  127. Graz, I.M., Cotton, D.P.J., Lacour, S.P.: Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94(7), 071902 (2009)

    Article  CAS  Google Scholar 

  128. Lambricht, N., Pardoen, T., Yunus, S.: Giant stretchability of thin gold films on rough elastomeric substrates. Acta Mater. 61(2), 540–547 (2013)

    Article  CAS  Google Scholar 

  129. Gray, D.S., Tien, J., Chen, C.S.: High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)

    Article  CAS  Google Scholar 

  130. Lacour, S.P., et al.: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82(15), 2404–2406 (2003)

    Article  CAS  Google Scholar 

  131. Guo, C.F., et al.: Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, 3121 (2014)

    Article  CAS  Google Scholar 

  132. Vandeparre, H., et al.: Localization of folds and cracks in thin metal films coated on flexible elastomer foams. Adv. Mater. 25(22), 3117–3121 (2013)

    Article  CAS  Google Scholar 

  133. Lee, P., et al.: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24(25), 3326–3332 (2012)

    Article  CAS  Google Scholar 

  134. Roh, E., et al.: Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6), 6252–6261 (2015)

    Article  CAS  Google Scholar 

  135. Jian, M., et al.: Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27(9), 1606066 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51502306, 51675514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangpeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Z., Huang, J., Wang, J. (2020). Self-supported Materials for Flexible/Stretchable Sensors. In: Inamuddin, Boddula, R., Asiri, A. (eds) Self-standing Substrates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29522-6_9

Download citation

Publish with us

Policies and ethics

Navigation