Surface-Enhanced Raman Scattering Substrates: Fabrication, Properties, and Applications

  • Chapter
  • First Online:
Self-standing Substrates

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Recent advancements in nanotechnology largely enabled fabrication of plasmonic nanostructures of desired structural features and substantially improved the sensitivity and selectivity of the conventional optical sensing techniques. The plasmonic nanostructure mitigates the limitation of weak scattering cross-section in Raman spectroscopy via electromagnetic as well as chemical enhancement mechanism. The plasmonic nanostructure combined with the Raman spectroscopy technique, popularly known surface-enhanced Raman scattering spectroscopy, has been now established as an effective tool for molecular finger printing of analyte molecule and find applications diverse areas, ranging from biosensors to art. This chapter explains the mechanism behind the surface-enhanced Raman scattering spectroscopy with an emphasis on the factors contributing towards the enhancement in the Raman signal. Further, an account of the difference between conventional and surface enhanced Raman spectroscopy is presented. The role of hot spots and the rationale behind the choice of metal nanoparticles for surface-enhanced Raman scattering substrates is described. In addition, various approaches adopted for the fabrication of substrates in 1D, 2D, and 3D is explained in detail. A detailed account of a few emerging areas wherein this technique finds applications is also given in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liang, F., Guo, Y., Hou, S., Quan, Q.: Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics. Sci. Adv. 3(5), e1602991 (2017)

    Article  Google Scholar 

  2. Mejía-Salazar, J., Oliveira Jr, O.N.: Plasmonic biosensing: focus review. Chem. Rev. 118(20), 10617–10625 (2018)

    Article  CAS  Google Scholar 

  3. Taylor, A.B., Zijlstra, P.: Single-molecule plasmon sensing: current status and future prospects. ACS Sens. 2(8), 1103–1122 (2017)

    Article  CAS  Google Scholar 

  4. Willner, M.R., Vikesland, P.J.: Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnol. 16(1), 95 (2018)

    Google Scholar 

  5. Ye, D., Zuo, X., Fan, C.: DNA nanotechnology-enabled interfacial engineering for biosensor development. Ann. Rev. Anal. Chem. 11, 171–195 (2018)

    Article  CAS  Google Scholar 

  6. Yunus, I.S., Harwin, Kurniawan, A., Adityawarman, D., Indarto, A.: Nanotechnologies in water and air pollution treatment. Environ. Technol. Rev. 1(1), 136–148 (2012)

    Article  CAS  Google Scholar 

  7. Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N.J., Gardner, B., Martin-Hirsch, P.L.: Using Raman spectroscopy to characterize biological materials. Nat. Protocols 11(4), 664 (2016)

    Article  CAS  Google Scholar 

  8. Czamara, K., Majzner, K., Pacia, M. Z., Kochan, K., Kaczor, A., Baranska, M.: Raman spectroscopy of lipids: a review. J. Raman Spectrosc. 46(1), 4–20 (2015)

    Article  CAS  Google Scholar 

  9. Demirel, G., Usta, H., Yilmaz, M., Celik, M., Alidagi, H.A., Buyukserin, F.: Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms. J. Mater. Chem. C 6(20), 5314–5335 (2018)

    Article  CAS  Google Scholar 

  10. Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)

    Article  CAS  Google Scholar 

  11. Jeanmaire, D.L., Van Duyne, R.P.: Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84(1), 1–20 (1977)

    Article  CAS  Google Scholar 

  12. Otto, A.: The ‘chemical’(electronic) contribution to surface‐enhanced Raman scattering. J. Raman Spectrosc. Int. J. Orig. Work Aspects Raman Spectrosc. Includ. Higher Order Process. Brill. Rayleigh Scatt. 36(6–7), 497–509 (2005)

    Google Scholar 

  13. Yamamoto, Y.S., Ishikawa, M., Ozaki, Y., Itoh, T.: Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing. Front. Phys. 9(1), 31–46 (2014)

    Article  Google Scholar 

  14. Stiles, P.L., Dieringer, J.A., Shah, N.C., Van Duyne, R.P.: Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008)

    Article  CAS  Google Scholar 

  15. Fan, M., Andrade, G.F., Brolo, A.G.: A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chimica Acta 693(1–2), 7–25 (2011)

    Article  CAS  Google Scholar 

  16. Ngo, H.T., Wang, H.-N., Fales, A.M., Vo-Dinh, T.: Plasmonic SERS biosensing nanochips for DNA detection. Anal. Bioanal. Chem. 408(7), 1773–1781 (2016)

    Article  CAS  Google Scholar 

  17. Tsoutsi, D., Sanles-Sobrido, M., Cabot, A., Gil, P.-R.: Common aspects influencing the translocation of SERS to biomedicine. Current Med. Chem. 25(35), 4638–4652 (2018)

    Article  CAS  Google Scholar 

  18. Torres-Nunez, A., Faulds, K., Graham, D., Alvarez-Puebla, R., Guerrini, L.: Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA. Analyst 141(17), 5170–5180 (2016)

    Article  CAS  Google Scholar 

  19. Garcia-Rico, E., Alvarez-Puebla, R.A., Guerrini, L.: Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications. Chem. Soc. Rev. 47(13), 4909–4923 (2018)

    Article  CAS  Google Scholar 

  20. Campion, A., Kambhampati, P.: Surface-enhanced Raman scattering. Chem. Soc. Rev. 27(4), 241–250 (1998)

    Article  CAS  Google Scholar 

  21. Ding, S.-Y., You, E.-M., Tian, Z.-Q., Moskovits, M.: Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46(13), 4042–4076 (2017)

    Article  CAS  Google Scholar 

  22. Le Ru, E., Etchegoin, P.: Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier (2008)

    Google Scholar 

  23. Chalmers, J.M., Edwards, H.G., Hargreaves, M.D.: Infrared and Raman Spectroscopy in Forensic Science. Wiley (2012)

    Google Scholar 

  24. Zong, C., Xu, M., Xu, L.-J., Wei, T., Ma, X., Zheng, X.-S., Hu, R., Ren, B.: Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118(10), 4946–4980 (2018)

    Article  CAS  Google Scholar 

  25. Persson, B.N.J., Zhao, K., Zhang, Z.: Chemical contribution to surface-enhanced Raman scattering. Phys. Rev. Lett. 96(20), 207401 (2006)

    Google Scholar 

  26. Valley, N., Greeneltch, N., Van Duyne, R.P., Schatz, G.C.: A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. J. Phys. Chem. Lett. 4(16), 2599–2604 (2013)

    Article  CAS  Google Scholar 

  27. Zayak, A., Hu, Y., Choo, H., Bokor, J., Cabrini, S., Schuck, P., Neaton, J.: Chemical Raman enhancement of organic adsorbates on metal surfaces. Physical Rev. Lett. 106(8), 083003 (2011)

    Google Scholar 

  28. Moskovits, M.: Surface‐enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. Int. J. Orig. Work Aspects Raman Spectrosc. Includ. Higher Order Process. Brill. Rayleigh Scatt. 36(6–7), 485–496 (2005)

    Google Scholar 

  29. Lee, H.K., Lee, Y.H., Koh, C.S.L., Phan-Quang, G.C., Han, X., Lay, C.L., Sim, H.Y.F., Kao, Y.-C., An, Q., Ling, X.Y.: Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 48(3), 731–756 (2019)

    Article  CAS  Google Scholar 

  30. Pilot, R., Signorini, R., Fabris, L.: Surface-enhanced raman spectroscopy: principles, substrates, and applications. In: Metal Nanoparticles and Clusters, pp. 89–164. Springer (2018)

    Google Scholar 

  31. Ye, J., Wen, F., Sobhani, H., Lassiter, J.B., Van Dorpe, P., Nordlander, P., Halas, N.J.: Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett. 12(3), 1660–1667 (2012)

    Article  CAS  Google Scholar 

  32. Postaci, S., Yildiz, B.C., Bek, A., Tasgin, M.E.: Silent enhancement of SERS signal without increasing hot spot intensities. Nanophotonics 7(10), 1687–1695 (2018)

    Article  Google Scholar 

  33. Kleinman, S.L., Frontiera, R.R., Henry, A.-I., Dieringer, J.A., Van Duyne, R.P.: Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15(1), 21–36 (2013)

    Article  CAS  Google Scholar 

  34. Petryayeva, E., Krull, U.J.: Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chimica Acta 706(1), 8–24 (2011)

    Article  CAS  Google Scholar 

  35. Liu, H., Yang, Z., Meng, L., Sun, Y., Wang, J., Yang, L., Liu, J., Tian, Z.: Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J. Am. Chem. Soc. 136(14), 5332–5341 (2014)

    Article  CAS  Google Scholar 

  36. Sun, Y., Han, Z., Liu, H., He, S., Yang, L., Liu, J.: Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid–liquid interface effects. Nanoscale 7(15), 6619–6626 (2015)

    Article  CAS  Google Scholar 

  37. Wang, H., Fang, J., Xu, J., Wang, F., Sun, B., He, S., Sun, G., Liu, H.: A hanging plasmonic droplet: three-dimensional SERS hotspots for a highly sensitive multiplex detection of amino acids. Analyst 140(9), 2973–2978 (2015)

    Article  CAS  Google Scholar 

  38. Le Ru, E.C., Etchegoin, P.G.: Single-molecule surface-enhanced Raman spectroscopy. Ann. Rev. Phys. Chem. 63, 65–87 (2012)

    Google Scholar 

  39. West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795-808 (2010)

    Article  CAS  Google Scholar 

  40. Cottancin, E., Celep, G., Lermé, J., Pellarin, M., Huntzinger, J., Vialle, J., Broyer, M.: Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory. Theor. Chem. Acc. 116(4–5), 514-523 (2006)

    Article  CAS  Google Scholar 

  41. Cialla, D., Pollok, S., Steinbrücker, C., Weber, K., Popp, J.: SERS-based detection of biomolecules. Nanophotonics 3(6), 383–411 (2014)

    Google Scholar 

  42. Karthick Kannan, P., Shankar, P., Blackman, C., Chung, C.H.: Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 1803432 (2019)

    Google Scholar 

  43. Jayram, N.D., Aishwarya, D., Sonia, S., Mangalaraj, D., Kumar, P.S., Rao, G.M.: Analysis on superhydrophobic silver decorated copper Oxide nanostructured thin films for SERS studies. J. Colloid Interface Sci. 477, 209–219 (2016)

    Article  CAS  Google Scholar 

  44. Cong, S., Yuan, Y., Chen, Z., Hou, J., Yang, M., Su, Y., Zhang, Y., Li, L., Li, Q., Geng, F.: Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 6, 7800 (2015)

    Google Scholar 

  45. Yu, Z., Yun, F.F., Wang, Y., Yao, L., Dou, S., Liu, K., Jiang, L., Wang, X.: Desert Beetle-inspired superwettable patterned surfaces for water harvesting. Small 13(36), 1701403 (2017)

    Article  CAS  Google Scholar 

  46. Kim, N.-J., Kim, J., Park, J.-B., Kim, H., Yi, G.-C., Yoon, S.: Direct observation of quantum tunnelling charge transfers between molecules and semiconductors for SERS. Nanoscale 11(1), 45–49 (2019)

    Article  Google Scholar 

  47. Wang, X., Shi, W., She, G., Mu, L.: Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures. Phys. Chem. Chem. Phys. 14(17), 5891–5901 (2012)

    Article  CAS  Google Scholar 

  48. Kini, S., Ganiga, V., Kulkarni, S.D., Chidangil, S., George, S.D.: Sensitive detection of mercury using the fluorescence resonance energy transfer between CdTe/CdS quantum dots and Rhodamine 6G. J. Nanoparticle Res. 20(9), 232 (2018)

    Google Scholar 

  49. Basheer, N.S., Kumar, B.R., Kurian, A., George, S.D.: Thermal lens probing of distant dependent fluorescence quenching of Rhodamine 6G by silver nanoparticles. J. Lumin. 137, 225–229 (2013)

    Google Scholar 

  50. Kumar, B.R., Basheer, N.S., Kurian, A., George, S.D.: Thermal-lens study on the distance-dependent energy transfer from Rhodamine 6G to gold nanoparticles. Int. J. Thermophys. 34(10), 1982–1992 (2013)

    Article  CAS  Google Scholar 

  51. John, J., Thomas, L., Kurian, A., Nampoori, V., George, S.D.: Role of decoration method of gold nanoparticles on the thermal and optical properties of mesoporous silica-Rhodamine 6G hybrids. Microporous Mesoporous Mater. 244, 171–179 (2017)

    Article  CAS  Google Scholar 

  52. John, J., Thomas, L., Kurian, A., George, S.D.: Modulating fluorescence quantum yield of highly concentrated fluorescein using differently shaped green synthesized gold nanoparticles. J. Lumin. 172, 39–46 (2016)

    Article  CAS  Google Scholar 

  53. John, J., Thomas, L., George, N.A., Kurian, A., George, S.D.: Tailoring of optical properties of fluorescein using green synthesized gold nanoparticles. Phys. Chem. Chem. Phys. 17(24), 15813–15821 (2015)

    Article  CAS  Google Scholar 

  54. Kumar, B.R., Basheer, N.S., Kurian, A., George, S.D.: Study of concentration-dependent quantum yield of Rhodamine 6G by gold nanoparticles using thermal-lens technique. Appl. Phys. B 115(3), 335–342 (2014)

    Article  CAS  Google Scholar 

  55. Basheer, N.S., Kumar, B.R., Kurian, A., George, S.D.: Silver nanoparticle size–dependent measurement of quantum efficiency of Rhodamine 6G. Appl. Phys. B 113(4), 581–587 (2013)

    Article  CAS  Google Scholar 

  56. Lane, L.A., Qian, X., Nie, S.: SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115(19), 10489–10529 (2015)

    Article  CAS  Google Scholar 

  57. Cardinal, M.F., Vander Ende, E., Hackler, R.A., McAnally, M.O., Stair, P.C., Schatz, G.C., Van Duyne, R.P.: Expanding applications of SERS through versatile nanomaterials engineering. Chem. Soc. Rev. 46(13), 3886–3903 (2017)

    Article  CAS  Google Scholar 

  58. Cao, Y., Zhang, J., Yang, Y., Huang, Z., Long, N.V., Fu, C.: Engineering of SERS substrates based on noble metal nanomaterials for chemical and biomedical applications. Appl. Spectrosc. Rev. 50(6), 499–525 (2015)

    Article  CAS  Google Scholar 

  59. Si, S., Liang, W., Sun, Y., Huang, J., Ma, W., Liang, Z., Bao, Q., Jiang, L.: Facile fabrication of high‐density sub‐1‐nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater. 26(44), 8137–8145 (2016)

    Article  CAS  Google Scholar 

  60. Reguera, J., Langer, J., de Aberasturi, D.J., Liz-Marzán, L.M.: Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 46(13), 3866–3885 (2017)

    Article  CAS  Google Scholar 

  61. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  62. Lee, P., Meisel, D.: Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982)

    Article  CAS  Google Scholar 

  63. Benz, F., Chikkaraddy, R., Salmon, A., Ohadi, H., De Nijs, B., Mertens, J., Carnegie, C., Bowman, R.W., Baumberg, J.J.: SERS of individual nanoparticles on a mirror: size does matter, but so does shape. J. Phys. Chem. Lett. 7(12), 2264–2269 (2016)

    Article  CAS  Google Scholar 

  64. Quester, K., Avalos-Borja, M., Vilchis-Nestor, A.R., Camacho-López, M.A., Castro-Longoria, E.: SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PloS one 8(10), e77486 (2013)

    Article  CAS  Google Scholar 

  65. Nguyen, B.H., Nguyen, V.H., Tran, H.N.: Rich variety of substrates for surface enhanced Raman spectroscopy. Adv. Natl. Sci. Nanosci. Nanotechnol. 7(3), 033001 (2016)

    Google Scholar 

  66. Solís, D.M., Taboada, J.M., Obelleiro, F., Liz-Marzán, L.M., García de Abajo, F.J.: Optimization of nanoparticle-based SERS substrates through large-scale realistic simulations. ACS Photon.4(2), 329–337 (2017)

    Article  CAS  Google Scholar 

  67. Betz, J.F., Wei, W.Y., Cheng, Y., White, I.M., Rubloff, G.W.: Simple SERS substrates: powerful, portable, and full of potential. Phys. Chem. Chem. Phys. 16(6), 2224–2239 (2014)

    Article  CAS  Google Scholar 

  68. Mavani, K., Shah, M.: Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. Int. J. Eng. Res. Technol. 2(3), 1–5 (2013)

    Google Scholar 

  69. Song, K.C., Lee, S.M., Park, T.S., Lee, B.S.: Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J. Chem. Eng. 26(1), 153–155 (2009)

    Article  CAS  Google Scholar 

  70. Mulfinger, L., Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C.: Synthesis and study of silver nanoparticles. J. Chem. Edu. 84(2), 322 (2007)

    Article  Google Scholar 

  71. Leopold, N., Lendl, B.: A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 107(24), 5723–5727 (2003)

    Article  CAS  Google Scholar 

  72. Sun, D., Zhang, G., Jiang, X., Huang, J., **g, X., Zheng, Y., He, J., Li, Q.: Biogenic flower-shaped Au–Pd nanoparticles: synthesis, SERS detection and catalysis towards benzyl alcohol oxidation. J. Mater. Chem. A 2(6), 1767–1773 (2014)

    Article  CAS  Google Scholar 

  73. Hunyadi, S.E., Murphy, C.J.: Bimetallic silver–gold nanowires: fabrication and use in surface-enhanced Raman scattering. J. Mater. Chem. 16(40), 3929–3935 (2006)

    Article  CAS  Google Scholar 

  74. Fan, M., Lai, F.-J., Chou, H.-L., Lu, W.-T., Hwang, B.-J., Brolo, A.G.: Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe. Chem. Sci. 4(1), 509–515 (2013)

    Article  CAS  Google Scholar 

  75. Muniz-Miranda, M., Gellini, C., Canton, P., Marsili, P., Giorgetti, E.: SERS and catalytically active Ag/Pd nanoparticles obtained by combining laser ablation and galvanic replacement. J. Alloy. Compd. 615, S352–S356 (2014)

    Article  CAS  Google Scholar 

  76. Yang, Y., Shi, J., Kawamura, G., Nogami, M.: Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scr. Mater. 58(10), 862–865 (2008)

    Article  CAS  Google Scholar 

  77. Li, J.F., Huang, Y.F., Ding, Y., Yang, Z.L., Li, S.B., Zhou, X.S., Fan, F.R., Zhang, W., Zhou, Z.Y., Ren, B.: Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287), 392 (2010)

    Article  CAS  Google Scholar 

  78. Guo, P., Sikdar, D., Huang, X., Si, K.J., **ong, W., Gong, S., Yap, L.W., Premaratne, M., Cheng, W.: Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size-and shape-dependent Raman enhancement. Nanoscale 7(7), 2862–2868 (2015)

    Article  CAS  Google Scholar 

  79. **e, W., Herrmann, C., Kömpe, K., Haase, M., Schlücker, S.: Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J. Am. Chem. Soc. 133(48), 19302–19305 (2011)

    Article  CAS  Google Scholar 

  80. Shanthil, M., Thomas, R., Swathi, R., George Thomas, K.: Ag@ SiO2 core–shell nanostructures: distance-dependent plasmon coupling and SERS investigation. J. Phys. Chem. Lett. 3(11), 1459–1464 (2012)

    Article  CAS  Google Scholar 

  81. Yang, Y., Liu, J., Fu, Z.-W., Qin, D.: Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 136(23), 8153–8156 (2014)

    Article  CAS  Google Scholar 

  82. Pande, S., Ghosh, S.K., Praharaj, S., Panigrahi, S., Basu, S., Jana, S., Pal, A., Tsukuda, T., Pal, T.: Synthesis of normal and inverted gold–silver core–shell architectures in β-cyclodextrin and their applications in SERS. J. Phys. Chem. C 111(29), 10806–10813 (2007)

    Article  CAS  Google Scholar 

  83. Wang, J., Zhu, T., Tang, M., Cai, S., Liu, Z.: Fabricating surface enhanced Raman scattering (SERS)-active substrates by assembling colloidal Au nanoparticles with self-assembled monolayers. Jpn. J. Appl. Phys. 35, L1381–L1384 (1996)

    Article  CAS  Google Scholar 

  84. Hu, X., Cheng, W., Wang, T., Wang, Y., Wang, E., Dong, S.: Fabrication, characterization, and application in SERS of self-assembled polyelectrolyte-gold nanorod multilayered films. J. Phys. Chem. B 109(41), 19385–19389 (2005)

    Article  CAS  Google Scholar 

  85. Chen, J., Guo, L., Qiu, B., Lin, Z., Wang, T.: Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Mater. Chem. Front. 2(5), 835–860 (2018)

    Article  CAS  Google Scholar 

  86. Pu, H., **ao, W., Sun, D.-W.: SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants. Trends Food Sci. Technol. 70, 114–126 (2017)

    Article  CAS  Google Scholar 

  87. Kant, K., Abalde-Cela, S.: Surface-enhanced Raman scattering spectroscopy and microfluidics: towards ultrasensitive label-free sensing. Biosensors 8(3), 62 (2018)

    Article  CAS  Google Scholar 

  88. Willner, M.R., McMillan, K.S., Graham, D., Vikesland, P.J., Zagnoni, M.: Surface-enhanced Raman scattering based microfluidics for single-cell analysis. Anal. Chem. 90(20), 12004–12010 (2018)

    Article  CAS  Google Scholar 

  89. Wu, Y., Jiang, Y., Zheng, X., Jia, S., Zhu, Z., Ren, B., Ma, H.: Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography. R. Soc. Open Sci. 5(4), 172034 (2018)

    Article  CAS  Google Scholar 

  90. Jahn, I., Žukovskaja, O., Zheng, X.-S., Weber, K., Bocklitz, T., Cialla-May, D., Popp, J: Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst 142(7), 1022–1047 (2017)

    Article  CAS  Google Scholar 

  91. Yang, S., Dai, X., Stogin, B.B., Wong, T.-S.: Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. 113(2), 268–273 (2016)

    Article  CAS  Google Scholar 

  92. Marquestaut, N., Martin, A., Talaga, D., Servant, L., Ravaine, S., Reculusa, S., Bassani, D.M., Gillies, E., Lagugné-Labarthet, F.: Raman enhancement of azobenzene monolayers on substrates prepared by Langmuir–Blodgett deposition and electron-beam lithography techniques. Langmuir 24(19), 11313–11321 (2008)

    Article  CAS  Google Scholar 

  93. Abu Hatab, N.A., Oran, J.M., Sepaniak, M.: Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2(2), 377–385 (2008)

    Article  CAS  Google Scholar 

  94. Kahl, M., Voges, E., Kostrewa, S., Viets, C., Hill, W.: Periodically structured metallic substrates for SERS. Sens. Actuators B: Chem. 51(1–3), 285–291 (1998)

    Article  CAS  Google Scholar 

  95. Petti, L., Capasso, R., Rippa, M., Pannico, M., La Manna, P., Peluso, G., Calarco, A., Bobeico, E., Musto, P.: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications. Vib. Spectrosc. 82, 22–30 (2016)

    Article  CAS  Google Scholar 

  96. Yue, W., Wang, Z., Yang, Y., Chen, L., Syed, A., Wong, K., Wang, X.: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. J. Micromech. Microeng. 22(12), 125007 (2012)

    Article  CAS  Google Scholar 

  97. Yu, Q., Guan, P., Qin, D., Golden, G., Wallace, P.M.: Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 8(7), 1923–1928 (2008)

    Article  CAS  Google Scholar 

  98. Brolo, A.G., Gordon, R., Leathem, B., Kavanagh, K.L.: Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12), 4813–4815 (2004)

    Article  CAS  Google Scholar 

  99. Sivashanmugan, K., Liao, J.-D., You, J.-W., Wu, C.-L.: Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection. Sens. Actuators B: Chem. 181, 361–367 (2013)

    Article  CAS  Google Scholar 

  100. Sree Satya Bharati, M., Byram, C., Soma, V.R.: Femtosecond laser fabricated Ag@ Au and Cu@ Au alloy nanoparticles for surface enhanced Raman spectroscopy based trace explosives detection. Front. Phys. 6, 28 (2018)

    Google Scholar 

  101. Quilis, N.G., Lequeux, M., Venugopalan, P., Khan, I., Knoll, W., Boujday, S., de La Chapelle, M.L., Dostalek, J.: Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS. Nanoscale 10(21), 10268–10276 (2018)

    Article  CAS  Google Scholar 

  102. Solak, H.H., David, C., Gobrecht, J., Golovkina, V., Cerrina, F., Kim, S.O., Nealey, P.: Sub-50 nm period patterns with EUV interference lithography. Microelectron. Eng. 67, 56–62 (2003)

    Article  CAS  Google Scholar 

  103. Zhang, P., Yang, S., Wang, L., Zhao, J., Zhu, Z., Liu, B., Zhong, J., Sun, X.: Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate. Nanotechnology 25(24), 245301 (2014)

    Article  CAS  Google Scholar 

  104. Hwang, J., Yang, M.: Sensitive and reproducible gold SERS sensor based on interference lithography and electrophoretic deposition. Sensors 18(11), 4076 (2018)

    Article  CAS  Google Scholar 

  105. Jha, S.K., Ekinci, Y., Agio, M., Löffler, J.F.: Towards deep-UV surface-enhanced resonance Raman spectroscopy of explosives: ultrasensitive, real-time and reproducible detection of TNT. Analyst 140(16), 5671–5677 (2015)

    Article  CAS  Google Scholar 

  106. Izquierdo-Lorenzo, I., Jradi, S., Adam, P.-M.: Direct laser writing of random au nanoparticle three-dimensional structures for highly reproducible micro-SERS measurements. RSC Adv. 4(8), 4128–4133 (2014)

    Article  CAS  Google Scholar 

  107. Byram, C., Moram, S.S.B., Shaik, A.K., Soma, V.R.: Versatile gold based SERS substrates fabricated by ultrafast laser ablation for sensing picric acid and ammonium nitrate. Chem. Phys. Lett. 685, 103–107 (2017)

    Article  CAS  Google Scholar 

  108. Dick, L.A., McFarland, A.D., Haynes, C.L., Van Duyne, R.P.: Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106(4), 853–860 (2002)

    Article  CAS  Google Scholar 

  109. Haynes, C.L., Van Duyne, R.P.: Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. ACS Publications (2001)

    Google Scholar 

  110. Quero, G., Zito, G., Managò, S., Galeotti, F., Pisco, M., De Luca, A., Cusano, A.: Nanosphere lithography on fiber: towards engineered lab-on-fiber SERS optrodes. Sensors 18(3), 680 (2018)

    Article  CAS  Google Scholar 

  111. Wallace, G.Q., Tabatabaei, M., Lagugné-Labarthet, F.: Towards attomolar detection using a surface-enhanced Raman spectroscopy platform fabricated by nanosphere lithography. Can. J. Chem. 92(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  112. Kahraman, M., Daggumati, P., Kurtulus, O., Seker, E., Wachsmann-Hogiu, S.: Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci. Rep. 3, 3396 (2013)

    Google Scholar 

  113. Lee, C., Robertson, C.S., Nguyen, A.H., Kahraman, M., Wachsmann-Hogiu, S.: Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity. Sci. Rep. 5, 11644 (2015)

    Google Scholar 

  114. George, J.E., Unnikrishnan, V., Mathur, D., Chidangil, S., George, S.D.: Flexible superhydrophobic SERS substrates fabricated by in situ reduction of Ag on femtosecond laser-written hierarchical surfaces. Sens. Actuators B: Chem. 272, 485–493 (2018)

    Article  CAS  Google Scholar 

  115. Ji, N., Ruan, W., Wang, C., Lu, Z., Zhao, B.: Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference. Langmuir 25(19), 11869–11873 (2009)

    Article  CAS  Google Scholar 

  116. Kassu, A., Farley, C., Sharma, A., Kim, W., Guo, J.: Effect of pore size and film thickness on gold-coated nanoporous anodic aluminum oxide substrates for surface-enhanced Raman scattering sensor. Sensors 15(12), 29924–29937 (2015)

    Article  CAS  Google Scholar 

  117. Tran, B., Nam, N., Son, S., Lee, N.: Nanoporous anodic aluminum oxide internalized with gold nanoparticles for on-chip PCR and direct detection by surface-enhanced Raman scattering. Analyst 143(4), 808–812 (2018)

    Article  CAS  Google Scholar 

  118. Terekhov, S., Mojzes, P., Kachan, S., Mukhurov, N., Zhvavyi, S., Panarin, A.Y., Khodasevich, I., Orlovich, V., Thorel, A., Grillon, F.: A comparative study of surface‐enhanced Raman scattering from silver‐coated anodic aluminum oxide and porous silicon. J. Raman Spectrosc. 42(1), 12–20 (2011)

    Article  CAS  Google Scholar 

  119. Toccafondi, C., La Rocca, R., Scarpellini, A., Salerno, M., Das, G., Dante, S.: Thin nanoporous alumina-based SERS platform for single cell sensing. Appl. Surf. Sci. 351, 738–745 (2015)

    Article  CAS  Google Scholar 

  120. Zhang, C., Yi, P., Peng, L., Lai, X., Chen, J., Huang, M., Ni, J.: Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci. Rep. 7, 39814 (2017)

    Google Scholar 

  121. Sun, L., Hu, H., Zhan, D., Yan, J., Liu, L., Teguh, J.S., Yeow, E.K., Lee, P.S., Shen, Z.: Plasma modified MoS2 nanoflakes for surface enhanced Raman scattering. Small 10(6), 1090–1095 (2014)

    Article  CAS  Google Scholar 

  122. Lu, X., Luo, X., Zhang, J., Quek, S.Y., **ong, Q.: Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 9(12), 3559–3597 (2016)

    Article  CAS  Google Scholar 

  123. Zhang, S., Zhang, N., Zhao, Y., Cheng, T., Li, X., Feng, R., Xu, H., Liu, Z., Zhang, J., Tong, L.: Spotting the differences in two-dimensional materials–the Raman scattering perspective. Chem. Soc. Rev. 47(9), 3217–3240 (2018)

    Article  CAS  Google Scholar 

  124. Ling, X., Zhang, J.: First-layer effect in graphene-enhanced Raman scattering. Small 6(18), 2020–2025 (2010)

    Article  CAS  Google Scholar 

  125. Ling, X., Moura, L., Pimenta, M.A., Zhang, J.: Charge-transfer mechanism in graphene-enhanced Raman scattering. J. Phys. Chem. C 116(47), 25112–25118 (2012)

    Article  CAS  Google Scholar 

  126. Ling, X., **e, L., Fang, Y., Xu, H., Zhang, H., Kong, J., Dresselhaus, M.S., Zhang, J., Liu, Z.: Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10(2), 553–561 (2009)

    Article  CAS  Google Scholar 

  127. Ling, X., Fang, W., Lee, Y.-H., Araujo, P.T., Zhang, X., Rodriguez-Nieva, J.F., Lin, Y., Zhang, J., Kong, J., Dresselhaus, M.S.: Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett. 14(6), 3033–3040 (2014)

    Article  CAS  Google Scholar 

  128. Kim, N.-Y., Leem, Y.-C., Hong, S.-H., Park, J.-H., Yim, S.-Y.: Ultrasensitive and stable plasmonic surface-enhanced Raman scattering substrates covered with atomically thin monolayers: effect of the insulating property. ACS Appl. Mater. Interfaces (2019)

    Google Scholar 

  129. **a, M.: 2D materials-coated plasmonic structures for SERS applications. Coatings 8(4), 137 (2018)

    Article  CAS  Google Scholar 

  130. Yi, N., Zhang, C., Song, Q., **ao, S.: A hybrid system with highly enhanced graphene SERS for rapid and tag-free tumor cells detection. Sci. Rep. 6, 25134 (2016)

    Google Scholar 

  131. Jahn, M., Patze, S., Hidi, I.J., Knipper, R., Radu, A.I., Mühlig, A., Yüksel, S., Peksa, V., Weber, K., Mayerhöfer, T.: Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 141(3), 756–793 (2016)

    Article  CAS  Google Scholar 

  132. Lee, S., Choi, I.: Fabrication Strategies of 3D Plasmonic Structures for SERS. BioChip J. 13(1), 30–42 (2019)

    Article  CAS  Google Scholar 

  133. Liu, H., Yang, L., Liu, J.: Three-dimensional SERS hot spots for chemical sensing: Towards develo** a practical analyzer. TrAC Trends Anal. Chem. 80, 364-372 (2016)

    Article  CAS  Google Scholar 

  134. Gómez‐Graña, S., Pérez‐Juste, J., Alvarez‐Puebla, R.A., Guerrero‐Martínez, A., Liz‐Marzán, L.M.: Self‐assembly of Au@ Ag nanorods mediated by Gemini surfactants for highly efficient SERS‐active supercrystals. Adv. Opt. Mater. 1(7), 477–481 (2013)

    Article  Google Scholar 

  135. Henzie, J., Andrews, S.C., Ling, X.Y., Li, Z., Yang, P.: Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl. Acad. Sci. 110(17), 6640–6645 (2013)

    Article  CAS  Google Scholar 

  136. Lim, D.-K., Jeon, K.-S., Hwang, J.-H., Kim, H., Kwon, S., Suh, Y.D., Nam, J.-M.: Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6(7), 452 (2011)

    Article  CAS  Google Scholar 

  137. Lim, D.-K., Jeon, K.-S., Kim, H.M., Nam, J.-M., Suh, Y.D.: Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 9(1), 60 (2010)

    Article  CAS  Google Scholar 

  138. Barrow, S.J., Wei, X., Baldauf, J.S., Funston, A.M., Mulvaney, P.: The surface plasmon modes of self-assembled gold nanocrystals. Nat. Commun. 3, 1275 (2012)

    Google Scholar 

  139. Chirumamilla, M., Toma, A., Gopalakrishnan, A., Das, G., Zaccaria, R.P., Krahne, R., Rondanina, E., Leoncini, M., Liberale, C., De Angelis, F.: 3D nanostar dimers with a sub‐10‐nm gap for single‐/few‐molecule surface‐enhanced Raman scattering. Adv. Mater. 26(15), 2353–2358 (2014)

    Article  CAS  Google Scholar 

  140. Cinel, N.A., Bütün, S., Ertaş, G., Özbay, E.: ‘Fairy Chimney’‐shaped tandem metamaterials as double resonance SERS substrates. Small 9(4), 531–537 (2013)

    Article  CAS  Google Scholar 

  141. Qian, C., Ni, C., Yu, W., Wu, W., Mao, H., Wang, Y., Xu, J.: Highly‐ordered, 3D petal‐like array for surface‐enhanced Raman scattering. Small 7(13), 1801–1806 (2011)

    Article  CAS  Google Scholar 

  142. Yan, B., Thubagere, A., Premasiri, W.R., Ziegler, L.D., Dal Negro, L., Reinhard, B.M.: Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. ACS Nano 3(5), 1190–1202 (2009)

    Article  CAS  Google Scholar 

  143. Alba, M., Pazos‐Perez, N., Vaz, B., Formentin, P., Tebbe, M., Correa‐Duarte, M.A., Granero, P., Ferré‐Borrull, J., Alvarez, R., Pallares, J.: Macroscale plasmonic substrates for highly sensitive surface‐enhanced Raman scattering. Angew. Chem. Int. Ed. 52(25), 6459–6463 (2013)

    Article  CAS  Google Scholar 

  144. Zhang, W., Jiang, L., Piper, J.A., Wang, Y.: SERS nanotags and their applications in biosensing and bioimaging. J. Anal. Test. 2(1), 26–44 (2018)

    Article  Google Scholar 

  145. Hashim, A.I., Zhang, X., Wojtkowiak, J.W., Martinez, G.V., Gillies, R.J.: Imaging pH and metastasis. NMR Biomed. 24(6), 582–591 (2011)

    Google Scholar 

  146. Tannock, I.F., Rotin, D.: Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49(16), 4373–4384 (1989)

    Google Scholar 

  147. Liu, Y., Yuan, H., Fales, A.M., Vo‐Dinh, T.: pH‐sensing nanostar probe using surface‐enhanced Raman scattering (SERS): Theoretical and experimental studies. J. Raman Spectrosc. 44(7), 980–986 (2013)

    Article  CAS  Google Scholar 

  148. Kneipp, J., Kneipp, H., Wittig, B., Kneipp, K.: Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J. Phys. Chem. C 114(16), 7421–7426 (2010)

    Article  CAS  Google Scholar 

  149. Gühlke, M., Heiner, Z., Kneipp, J.: Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures. Phys. Chem. Chem. Phys. 17(39), 26093–26100 (2015)

    Google Scholar 

  150. Wang, Y., Rauf, S., Grewal, Y.S., Spadafora, L.J., Shiddiky, M.J., Cangelosi, G.A., Schlücker, S., Trau, M.: Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments. Anal. Chem. 86(19), 9930–9938 (2014)

    Article  CAS  Google Scholar 

  151. Wang, X., Choi, N., Cheng, Z., Ko, J., Chen, L., Choo, J.: Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal. Chem. 89(2), 1163–1169 (2016)

    Article  CAS  Google Scholar 

  152. Wang, Y., Ravindranath, S., Irudayaraj, J.: Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal. Bioanal. Chem. 399(3), 1271–1278 (2011)

    Article  CAS  Google Scholar 

  153. Levin, C.S., Kundu, J., Janesko, B.G., Scuseria, G.E., Raphael, R.M., Halas, N.: Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies. J. Phys. Chem. B 112(45), 14168–14175 (2008)

    Article  CAS  Google Scholar 

  154. Šimáková, P., Kočišová, E., Procházka, M.: Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J. Raman Spectrosc. 44(11), 1479–1482 (2013)

    Article  CAS  Google Scholar 

  155. Kong, K.V., Lam, Z., Lau, W.K.O., Leong, W.K., Olivo, M.: A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose. J. Am. Chem. Soc. 135(48), 18028–18031 (2013)

    Article  CAS  Google Scholar 

  156. Shafer-Peltier, K.E., Haynes, C.L., Glucksberg, M.R., Van Duyne, R.P.: Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 125(2), 588–593 (2003)

    Article  CAS  Google Scholar 

  157. Dinish, U., Balasundaram, G., Chang, Y.-T., Olivo, M.: Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci. Rep. 4, 4075 (2014)

    Google Scholar 

  158. Yuan, H., Liu, Y., Fales, A.M., Li, Y.L., Liu, J., Vo-Dinh, T.: Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. Anal. Chem. 85(1), 208–212 (2012)

    Article  CAS  Google Scholar 

  159. Wang, Y., Seebald, J.L., Szeto, D.P., Irudayaraj, J.: Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 4(7), 4039–4053 (2010)

    Article  CAS  Google Scholar 

  160. Yaseen, T., Pu, H., Sun, D.-W.: Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends Food Sci. Technol. 72, 162–174 (2018)

    Article  CAS  Google Scholar 

  161. Hu, Y., Feng, S., Gao, F., Li-Chan, E.C., Grant, E., Lu, X.: Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chem. 176, 123–129 (2015)

    Article  CAS  Google Scholar 

  162. Pang, S., Labuza, T.P., He, L.: Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analyst 139(8), 1895–1901 (2014)

    Article  CAS  Google Scholar 

  163. He, L., Deen, B.D., Pagel, A.H., Diez-Gonzalez, F., Labuza, T.P: Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy. Analyst 138(6), 1657–1659 (2013)

    Article  CAS  Google Scholar 

  164. He, L., Deen, B., Rodda, T., Ronningen, I., Blasius, T., Haynes, C., Diez-Gonzalez, F., Labuza, T.P.: Rapid detection of ricin in milk using immunomagnetic separation combined with surface-enhanced Raman spectroscopy. J. Food Sci. 76(5), N49-N53 (2011)

    Google Scholar 

  165. Kamra, T., Chaudhary, S., Xu, C., Montelius, L., Schnadt, J., Ye, L.: Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing. J. Colloid Interface Sci. 461, 1–8 (2016)

    Google Scholar 

  166. Kamra, T., Zhou, T., Montelius, L., Schnadt, J., Ye, L.: Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection. Anal. Chem. 87(10), 5056–5061 (2015)

    Article  CAS  Google Scholar 

  167. Chang, L., Ding, Y., Li, X.: Surface molecular imprinting onto silver microspheres for surface enhanc24 June 2013ed Raman scattering applications. Biosens. Bioelectron. 50, 106–110 (2013)

    Article  CAS  Google Scholar 

  168. Sarfo, D.K., Izake, E.L., O’Mullane, A.P., Ayoko, G.A.: Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application. Crit. Rev. Environ. Sci. Technol. 1–36 (2019)

    Google Scholar 

  169. Li, D., Qu, L., Zhai, W., Xue, J., Fossey, J.S., Long, Y.: Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ. Sci. Technol. 45(9), 4046–4052 (2011)

    Article  CAS  Google Scholar 

  170. Fikiet, M.A., Khandasammy, S.R., Mistek, E., Ahmed, Y., Halámková, L., Bueno, J., Lednev, I.K.: Surface enhanced Raman spectroscopy: a review of recent applications in forensic science. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 197, 255-260 (2018)

    Article  CAS  Google Scholar 

  171. Kamińska, A., Kowalska, A., Albrycht, P., Witkowska, E., Waluk, J.: ABO blood groups’ antigen–antibody interactions studied using SERS spectroscopy: towards blood ty**. Anal. Methods 8(7), 1463–1472 (2016)

    Article  CAS  Google Scholar 

  172. Halouzka, V., Halouzkova, B., Jirovsky, D., Hemzal, D., Ondra, P., Siranidi, E., Kontos, A.G., Falaras, P., Hrbac, J.: Copper nanowire coated carbon fibers as efficient substrates for detecting designer drugs using SERS. Talanta 165, 384–390 (2017)

    Article  CAS  Google Scholar 

  173. Kline, N.D., Tripathi, A., Mirsafavi, R., Pardoe, I., Moskovits, M., Meinhart, C., Guicheteau, J.A., Christesen, S.D., Fountain III, A.W.: Optimization of surface-enhanced Raman spectroscopy conditions for implementation into a microfluidic device for drug detection. Anal. Chem. 88(21), 10513–10522 (2016)

    Article  CAS  Google Scholar 

  174. Xu, Z., Jiang, J., Wang, X., Han, K., Ameen, A., Khan, I., Chang, T.-W., Liu, G.L.: Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale 8(11), 6162–6172 (2016)

    Article  CAS  Google Scholar 

  175. Dong, R., Weng, S., Yang, L., Liu, J.: Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal. Chem. 87(5), 2937–2944 (2015)

    Article  CAS  Google Scholar 

  176. Chen, N., Ding, P., Shi, Y., **, T., Su, Y., Wang, H., He, Y.: Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal. Chem. 89(9), 5072–5078 (2017)

    Article  CAS  Google Scholar 

  177. López-López, M., Merk, V., García-Ruiz, C., Kneipp, J.: Surface-enhanced Raman spectroscopy for the analysis of smokeless gunpowders and macroscopic gunshot residues. Anal. Bioanal. Chem. 408(18), 4965–4973 (2016)

    Article  CAS  Google Scholar 

  178. Pozzi, F., Leona, M.: Surface-enhanced Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 47(1), 67–77 (2016)

    Article  CAS  Google Scholar 

  179. Shadi, I.T., Chowdhry, B.Z., Snowden, M.J., Withnall, R.: Semi-quantitative analysis of alizarin and purpurin by surface-enhanced resonance Raman spectroscopy (SERRS) using silver colloids. J. Raman Spectrosc. 35(8–9), 800–807 (2004)

    Article  CAS  Google Scholar 

  180. Canamares, M., Garcia-Ramos, J., Domingo, C., Sanchez-Cortes, S.: Surface-enhanced Raman scattering study of the adsorption of the anthraquinone pigment alizarin on Ag nanoparticles. J. Raman Spectrosc. 35(11), 921–927 (2004)

    Article  CAS  Google Scholar 

  181. Chen, K., Leona, M., Vo‐Dinh, K.C., Yan, F., Wabuyele, M.B., Vo‐Dinh, T.: Application of surface‐enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art. J. Raman Spectrosc. Int. J. Orig. Work Aspects Raman Spectrosc. Includ. Higher Order Process. Brill. Rayleigh Scatt. 37(4), 520–527 (2006)

    Google Scholar 

  182. Pozzi, F., Cesaratto, A., Leona, F.: Recent advances on the analysis of polychrome works of art: SERS of synthetic colorants and their mixtures with natural dyes. Front. Chem. 7, 105 (2019)

    Google Scholar 

Download references

Acknowledgements

The author acknowledge the Manipal Academy of Higher Education for the support through Dr. TMA Pai Endowment Chair in Applied Nanosciences. He is also grateful to Mr. Aravind M and Ms. Alina Peethan for their support in creating the illustrations shown in the chapter. Support from Prof. Santhosh Chidangil of Department of Atomic and Molecular Physics, Manipal Academy of Higher Education is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajan D. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

George, S.D. (2020). Surface-Enhanced Raman Scattering Substrates: Fabrication, Properties, and Applications. In: Inamuddin, Boddula, R., Asiri, A. (eds) Self-standing Substrates. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29522-6_3

Download citation

Publish with us

Policies and ethics

Navigation