Role of Euler Deconvolution in Near Surface Gravity and Magnetic Applications

  • Chapter
  • First Online:
Advances in Modeling and Interpretation in Near Surface Geophysics

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

  • 819 Accesses

Abstract

Euler deconvolution method builds a part of depth estimation methods in semi-automated interpretation of potential fields in applied geophysics. It is suitable for the interpretation of well developed and separated anomalies from isolated sources, which often occur in near surface applications (detection of iron bodies in magnetometry, cavities in gravimetry, etc.). This contribution describes theoretical background and algorithm of the method. Important part is also the stabilization of the method by means of regularized derivatives introduction and selection of correct solution by means of several statistical criteria. Results on synthetic data from simple and complex models show possibilities and limits of this method. Finally, several real world examples from near surface potential fields applications are given (microgravity detection of sub-surface cavities, geomagnetic search for UneXploded Ordnance).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 85.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 117.69
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barbosa VCF, Silva JBC, Medeiros WE (1999) Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics 64:48–60

    Article  Google Scholar 

  • Cooper GRJ (2004) Euler deconvolution applied to potential field gradients. Explor Geophys 35:165–170

    Article  Google Scholar 

  • Davis K, Yaoguo L, Nabighian M (2010) Automatic detection of UXO magnetic anomalies using extended Euler deconvolution. Geophys 75(3):G13–G20

    Article  Google Scholar 

  • Euler L (1936) Introduction to the analysis of infinitesimal. ONTI (Russian translation)

    Google Scholar 

  • Fedi M (2007) DEXP: a fast method to determine the depth and the structural index of potential fields sources. Geophysics 72(1):I1–I11

    Article  Google Scholar 

  • Fedi M (2016) An unambiguous definition of the structural index. Expanded abstracts from 86th annual SEG international exposition and meeting, pp 1537–1541

    Google Scholar 

  • Fedi M, Florio G (2001) Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys Prospect 49:40–58

    Article  Google Scholar 

  • Fedi M, Florio G, Quarta T (2009) Multiridge analysis of potential fields: geometrical method and reduced Euler deconvolution. Geophys 74(4):L53–L65

    Article  Google Scholar 

  • Fedi M, Florio G, Paoletti V (2015) MHODE: a local-homogeneity theory for improved source parameter estimation of potential fields: Geophys J Int 202:887–900

    Article  Google Scholar 

  • FitzGerald D, Reid AB, McInerney P (2004) New discrimination techniques for Euler deconvolution. Comput Geosci 30:461–469

    Article  Google Scholar 

  • Florio G, Fedi M (2006) Euler deconvolution of vertical profiles of potential field data. SEG 76th Annual International Meeting. Expand Abstr 958–962

    Google Scholar 

  • Florio G, Fedi M (2014) Multiridge Euler deconvolution. Geophys Prospect 62:333–351

    Article  Google Scholar 

  • Florio G, Fedi M, Pašteka R (2006) On the application of Euler deconvolution to the analytic signal. Geophysics 71(6):L87–L93

    Article  Google Scholar 

  • Florio G, Fedi M, Rapolla A (2009) Interpretation of regional aeromagnetic data by multiscale methods: the case of Southern Apennines (Italy). Geophys Prospect 57:479–489

    Article  Google Scholar 

  • Florio G, Fedi M, Pašteka R (2014) On the estimation of the structural index from low-pass filtered magnetic data. Geophysics 79(6):J67–J80

    Article  Google Scholar 

  • Gerovska D, Araúzo-Bravo MJ (2003) Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index. Comput Geosci 29(8):949–960

    Article  Google Scholar 

  • Hood P (1965) Gradient measurement in aeromagnetic surveying. Geophysics 30:891–902

    Article  Google Scholar 

  • Hsu SK (2002) Imaging magnetic sources using Euler’s equation. Geophys Prospect 50:15–25

    Article  Google Scholar 

  • http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Euler.html (cit 2018-04-20)

  • Keating P, Pilkington M (2004) Euler deconvolution of the analytical signal and its application to magnetic interpretation. Geophys Prospect 52:165–182

    Article  Google Scholar 

  • Kuttikul P, Barritt S, Hanssen R (1995) Maximization of geological information in 3D Euler deconvolution. In: 57th annual international EAEG meeting, Glasgow, D031

    Google Scholar 

  • Marson I, Klinglele EE (1993) Advantages of using the vertical gradient of gravity for 3-D interpretation: Geophysics 58:1588–1595

    Article  Google Scholar 

  • Melo FF, Barbosa VCF (2017) Base level estimates to define the correct structural index in Euler deconvolution. In: Expanded abstracts from 87th annual SEG international exposition and meeting, pp 1770–1775

    Google Scholar 

  • Melo FF, Barbosa VCF, Uieda L, Oliveira VC Jr, Silva JBC (2013) Estimating the nature and the horizontal and vertical positions of 3D magnetic sources using Euler deconvolution. Geophysics 78(6):J87–J98

    Article  Google Scholar 

  • Mikhailov V, Galdeano A, Diament M, Gvishiani A, Agayan S, Bogoutdinov S, Graeva E, Sailhac P (2003) Application of artificial intelligence for Euler solutions clustering. Geophys 68(1):168–180

    Article  Google Scholar 

  • Mushayandebvu MF, van Driel P, Reid AB, Fairhead JD (2001) Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics 66:814–823

    Article  Google Scholar 

  • Nabighian MN (1984) Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics 49(6):780–786

    Article  Google Scholar 

  • Nabighian MN, Hansen RO (2001) Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform. Geophysics 66:1805–1810

    Article  Google Scholar 

  • Paoletti V, Buggi A, Pašteka R (2019) UXO detection by multiscale potential field methods. Pure Appl Geophys

    Google Scholar 

  • Pašteka R (1998) The role of inverse problem classes in studying the properties of semi-automated interpretation methods in gravimetry and magnetometry. Contrib. Geophys Geodesy 28(1):35–44

    Google Scholar 

  • Pašteka R (2001) Comment on the structural index used in Euler deconvolution for the step structure in gravimetry. Extended abstracts from the 63rd EAGE Conference, P-211, 4 pp

    Google Scholar 

  • Pašteka R (2006) The role of the interference polynomial in the Euler deconvolution algorithm. Bolletino di Geofisica Teorica ed Applicata 47(1–2):171–180

    Google Scholar 

  • Pašteka R, Terray M, Hajach M, Pašiaková M (2007) Microgravity measurements and GPR technique in the search for medieval crypts: a case study from the St. Nicholas church in Trnava, SW Slovakia.In: Proceedings of the archaeological prospection 7th conference in Nitra, Štúdijné zvesti, vol 41. pp 222–224

    Google Scholar 

  • Pašteka R, Richter FP, Karcol R, Brazda K, Hajach M (2009) Regularized derivatives of potential fields and their role in semi-automated interpretation methods. Geophys Prospect 57:507–516

    Article  Google Scholar 

  • Pašteka R, Karcol R, Pašiaková M, Pánisová J, Kušnirák D, Béreš J (2011) Depth estimation of microgravity anomalies sources by means of regularized downward continuation and euler deconvolution. In: 73rd EAGE conference & exhibition incorporating SPE EUROPEC 2011 Vienna, Austria, 23–26 May 2011, extended abstract, 5 p

    Google Scholar 

  • Pawlowski RS, Hansen RO (1990) Gravity anomaly separation by Wiener filtering. Geophysics 55:539–548

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press

    Google Scholar 

  • Ravat D (1996) Analysis of the Euler method and its applicability in environmental investigations. J Environ Eng Geophys 1:229–238

    Article  Google Scholar 

  • Reid AB (2003) Euler magnetic structural index of a thin belt fault. Geophysics 68:1255–1256

    Article  Google Scholar 

  • Reid AB, Thurston JB (2014) The structural index in gravity and magnetic interpretation: errors, uses, and abuses. Geophysics 79(4):J61–J66

    Article  Google Scholar 

  • Reid AB, Allsop JM, Granser H, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55:80–91

    Article  Google Scholar 

  • Reynisson RF, Ebbing J, Skilbrei JR (2009) The use of potential field data in revealing the basement structure in sub-basaltic settings: an example from the Møre margin, offshore Norway. Geophys Prospect 57(4):753–771

    Article  Google Scholar 

  • Ruddock KA, Slack HA, Breiner S (1966) Method for determining depth and falloff rate of subterranean magnetic disturbances utilising a plurality of magnetometers: US Patent 3,263,161

    Google Scholar 

  • Slack HA, Lynch VM, Langan L (1967) The geomagnetic gradiometer. Geophysics 32:877–892

    Article  Google Scholar 

  • Smelie DW (1956) Elementary approximations in aeromagnetic interpretation. Geophysics 21:1021–1040

    Article  Google Scholar 

  • Stavrev P (1997) Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies. Geophys Prospect 45:207–246

    Article  Google Scholar 

  • Stavrev P, Reid A (2007) Degrees of homogeneity of potential fields and structural indices of Euler deconvolution. Geophysics 72:L1–L12

    Article  Google Scholar 

  • Stavrev P, Reid A (2010) Euler deconvolution of gravity anomalies from thick contact/fault structures with extended negative structural index. Geophysics 75:I51–I58

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Textbook, 2nd edn. Cambridge University Press

    Google Scholar 

  • Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37

    Article  Google Scholar 

  • Tikhonov AN, Arsenin BJ (1977) Solutions of Ill-posed problems. Wiley, New York

    Google Scholar 

  • Tikhonov AN, Glasko VB (1965) Application of the regularization method to nonlinear problems. Zh. vychislit. matem. i matem. fiz. 5(3):463–473 (in Russian)

    Google Scholar 

  • Werner S (1953) Interpretation of magnetic anomalies at sheet-like bodies. Sveriges Geologiska undersekning, ser. C. Arsbok 43, N. 06

    Google Scholar 

  • Yaghoobian A, Boustead GA, Dobush TM (1992) Object delineation using Euler’s Homogeneity Equation. Location and depth determination of buried Ferro-Metallic bodies: Manuscript, Proceedings of SAGEEP 92, San Diego, California

    Google Scholar 

Download references

Acknowledgements

We would like to thank to our colleagues and friends, who helped us in better understanding of the Euler deconvolution method (P. Richter for help with the derivation in Appendix 1, R. Karcol for the help with several derivations of SI values); we are also thankful to G. Florio, M. Fedi, A. Reid, R. O. Hansen, D. FitzGerald and B. Meurers for many interesting discussions, concerning the method. Authors would also like to express thanks to companies GKB Bergbau GmbH, AGS—Angewandte Geo-Systemtechnik GmbH and G-trend Ltd. for the permission to publish the microgravity dataset from the site Wolfsberg—St. Marein and UXO-geomagnetic data from site Studienka. Great thanks belong also to Miroslav Terray, who offered to us his results from video-inspection and GPR-method from the site Trnava. Authors have realized this study in the frame of the national project VEGA 1/0462/16 and it was also based upon work from COST Action SAGA: The Soil Science & Archaeo-Geophysics Alliance—CA17131 (https://www.saga-cost.eu), supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Pašteka .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Derivation of the Euler’s Equation

This is a very simple derivation of the Euler equation from the homogeneity theorem. As it cannot be found in common text-books of mathematical analysis, it is given here. We work with homogeneous function f(x), where x has components (x1, x2, x3) (in Cartesian coordinates can be written x1 = x, x2 = y, x3 = z).

Euler homogeneity theorem can be written:

$${\text{t}}^{\text{n}} {\text{f}}\left( {\mathbf{x}} \right) = {\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right),$$
(9.20)

where t and n are real numbers (n is the homogeneity degree).

Both sides of Eq. (9.20) are differentiated with respect to the component xi, and we get:

$$\begin{aligned} & \frac{{\partial \left[ {{\text{t}}^{\text{n}} {\text{f}}\left( {\mathbf{x}} \right)} \right]}}{{\partial {\text{x}}_{\text{i}} }} = \frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial {\text{x}}_{\text{i}} }}, \\ & \frac{{\partial \left[ {{\text{t}}^{\text{n}} {\text{f}}\left( {\mathbf{x}} \right)} \right]}}{{\partial {\text{f}}\left( {\mathbf{x}} \right)}}\frac{{\partial {\text{f}}\left( {\mathbf{x}} \right)}}{{\partial {\text{x}}_{\text{i}} }} = \frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial \left( {{\text{tx}}_{\text{i}} } \right)}}\frac{{\partial \left( {{\text{tx}}_{\text{i}} } \right)}}{{\partial {\text{x}}_{\text{i}} }}, \\ & {\text{t}}^{\text{n}} \frac{{\partial {\text{f}}\left( {\mathbf{x}} \right)}}{{\partial {\text{x}}_{\text{i}} }} = \frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial \left( {{\text{tx}}_{\text{i}} } \right)}}{\text{t}}, \\ & {\text{t}}^{{{\text{n}} - 1}} \frac{{\partial {\text{f}}\left( {\mathbf{x}} \right)}}{{\partial {\text{x}}_{\text{i}} }} = \frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial \left( {{\text{tx}}_{\text{i}} } \right)}}. \\ \end{aligned}$$
(9.21)

Now both sides of Eq. (9.20) will be differentiated with respect to the real number t:

$$\begin{aligned} & \frac{{\partial \left[ {{\text{t}}^{\text{n}} {\text{f}}\left( {\mathbf{x}} \right)} \right]}}{{\partial {\text{t}}}} = \frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial {\text{t}}}}, \\ & {\text{nt}}^{{{\text{n}} - 1}} {\text{f}}\left( {\mathbf{x}} \right) = \frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial \left( {{\text{tx}}_{1} } \right)}}\frac{{\partial \left( {{\text{tx}}_{1} } \right)}}{{\partial {\text{t}}}} + \frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial \left( {{\text{tx}}_{2} } \right)}}\frac{{\partial \left( {{\text{tx}}_{2} } \right)}}{{\partial {\text{t}}}} + \cdots + \frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial \left( {{\text{tx}}_{\text{M}} } \right)}}\frac{{\partial \left( {{\text{tx}}_{\text{M}} } \right)}}{{\partial {\text{t}}}}, \\ & {\text{nt}}^{{{\text{n}} - 1}} {\text{f}}\left( {\mathbf{x}} \right) = \sum\limits_{{{\text{i}} = 1}}^{\text{M}} {\frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial \left( {{\text{tx}}_{\text{i}} } \right)}}\frac{{\partial \left( {{\text{tx}}_{i} } \right)}}{{\partial {\text{t}}}}} ,{\text{where we usually take M}} = 3, \\ & {\text{nt}}^{{{\text{n}} - 1}} {\text{f}}\left( {\mathbf{x}} \right) = \sum\limits_{{{\text{i}} = 1}}^{\text{M}} {\frac{{\partial \left[ {{\text{f}}\left( {{\text{t}}{\mathbf{x}}} \right)} \right]}}{{\partial \left( {{\text{tx}}_{\text{i}} } \right)}}{\text{x}}_{\text{i}} } . \\ \end{aligned}$$
(9.22)

Now in the right-hand side of Eq. (9.22) (in the sum) the expression from the left-hand side of Eq. (9.21) will be entered:

$$\begin{aligned} & {\text{nt}}^{{{\text{n}} - 1}} {\text{f}}\left( {\mathbf{x}} \right) = \sum\limits_{{{\text{i}} = 1}}^{\text{M}} {{\text{t}}^{{{\text{n}} - 1}} \frac{{\partial \left[ {{\text{f}}\left( {\mathbf{x}} \right)} \right]}}{{\partial {\text{x}}_{\text{i}} }}{\text{x}}_{\text{i}} } , \\ & {\text{nf}}\left( {\mathbf{x}} \right) = \sum\limits_{{{\text{i}} = 1}}^{\text{M}} {\frac{{\partial \left[ {{\text{f}}\left( {\mathbf{x}} \right)} \right]}}{{\partial {\text{x}}_{\text{i}} }}{\text{x}}_{\text{i}} } . \\ \end{aligned}$$
(9.23)

And this is the Euler’s equation, which is solved in the Euler deconvolution method. For M = 3 and x1 = x, x2 = y, x3 = z, Eq. (9.23) can be written in the more common form:

$${\text{nf}}\left( {{\text{x}},{\text{y}},{\text{z}}} \right) = {\text{x}}\frac{{\partial {\text{f}}}}{{\partial {\text{x}}}} + {\text{y}}\frac{{\partial {\text{f}}}}{{\partial {\text{y}}}} + {\text{z}}\frac{{\partial {\text{f}}}}{{\partial {\text{z}}}}.$$
(9.24)

Appendix 2: Derivation of Structural Index Values for Selected Bodies

For bodies with elementary shape (Table 9.1 in the main text), values of structural index (SI) can be derived analytically. This was done by several authors (Reid et al. 1990; Pašteka 2001; Reid 2003; Stavrev and Reid 2010, etc.). There is no space to give all of these derivations here for each of the source type. We give here few typical examples, so reader can have an idea how it works and can derive other types of bodies by themselves. Simplest derivations are of course for simple bodies, like poles/dipoles and line of poles/dipoles. For tabular bodies (dike, sill), derivations are little bit more complicated, but can be done with tools of simple mathematical analysis. The most complicated source is the step (contact) in gravimetry, which has a value of −1. Such a negative value doesn’t work well with the algorithm of classical Euler deconvolution and method has to use either modified equations (Stavrev and Reid 2010) or a non-constant background term in Euler equation (Pašteka 2006). This negative value was also hardly accepted by the community, because negative indices contradict the idea of SI as a fall of rate of interpreted function (as it is mentioned in the main text). It seems that the anomalous field of this structure is not homogeneous in Euler’s sense (at least that from vertically limited step) and several authors (e.g. Marson and Klinglele 1993) recommend to apply firstly a vertical derivative evaluation and then the application of the Euler deconvolution itself (with SI value around 0, which is valid for this type of structure in magnetometry—see Table 9.1 in main text).

In the analytical derivation of SI values we can follow two concepts—based on Eqs. 9.1 and 9.2 from the main text. From Eq. 9.1 (homogeneity equation) it follows after few simple adjustments (Stavrev and Reid 2007, p. L2) that for SI value we get a simple formula:

$${\text{N}} = - \frac{{\ln \left[ {{{{\text{f}}\left( {{\text{tx}},{\text{ty}},{\text{tz}}} \right)} \mathord{\left/ {\vphantom {{{\text{f}}\left( {{\text{tx}},{\text{ty}},{\text{tz}}} \right)} {{\text{f}}\left( {{\text{x}},{\text{y}},{\text{z}}} \right)}}} \right. \kern-0pt} {{\text{f}}\left( {{\text{x}},{\text{y}},{\text{z}}} \right)}}} \right]}}{{\ln \left( {\text{t}} \right)}},$$
(9.25)

which is valid for t > 0 and t ≠ 1.

From Eq. 9.2 (Euler equation) we get after simple adjustments:

$${\text{N}} = - \frac{{{\text{x}}\frac{{\partial {\text{f}}}}{{\partial {\text{x}}}} + {\text{y}}\frac{{\partial {\text{f}}}}{{\partial {\text{y}}}} + {\text{z}}\frac{{\partial {\text{f}}}}{{\partial {\text{z}}}}}}{\text{f}},$$
(9.26)

which is valid for f(x, y, z) ≠ 0.

Entering with specific functions and their derivatives into these two equations, they should give identical results for identical source structures. Further we show few examples of their application.

9.2.1 2D-Horizontal Cylinder, Gravimetry

We take a 2D-horizontal cylinder (rod) with the length density λ, (e.g. Telford et al., 1990, p. 37), which central axis is identical with the y-axis (crossing the xz-plane in point [0, 0]). For the vertical component of gravitational acceleration Vz and derivatives with respect to x- and z-direction (derivative with respect to y-direction is equal to zero) we can write:

$${\text{V}}_{{\text{z}}} \left( {{\text{x}},{\text{z}}} \right) = 2{\text{G}}\uplambda\frac{z}{{{\text{x}}^{2} + {\text{z}}^{2} }}{ ,}\frac{{\partial {\text{V}}_{{\text{z}}} \left( {{\text{x}},{\text{z}}} \right)}}{{\partial {\text{x}}}} = - 4{\text{G}}\uplambda\frac{{\text{xz}}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }} ,\frac{{\partial {\text{V}}_{{\text{z}}} \left( {{\text{x}},{\text{z}}} \right)}}{{\partial {\text{z}}}} = - 2{\text{G}}\uplambda\frac{{{\text{z}}^{2} - {\text{x}}^{2} }}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }}.$$
(9.27)

Using Eq. 9.25 we get:

$$\begin{aligned} {\text{N}} & = - \frac{{{ \ln }\left[ {{{{\text{V}}_{\text{z}} \left( {{\text{tx}},{\text{ty}}} \right)} \mathord{\left/ {\vphantom {{{\text{V}}_{\text{z}} \left( {{\text{tx}},{\text{ty}}} \right)} {{\text{V}}_{\text{z}} \left( {{\text{x}},{\text{y}}} \right)}}} \right. \kern-0pt} {{\text{V}}_{\text{z}} \left( {{\text{x}},{\text{y}}} \right)}}} \right]}}{{\ln \left( {\text{t}} \right)}} = - \frac{{\ln \left[ {\frac{{2{\text{G}}\uplambda\frac{\text{tz}}{{{\text{t}}^{2} {\text{x}}^{2} + {\text{t}}^{2} {\text{z}}^{2} }}}}{{2{\text{G}}\uplambda\frac{\text{z}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}}} \right]}}{{\ln \left( {\text{t}} \right)}} = - \frac{{\ln \left[ {\frac{{2{\text{G}}\uplambda\frac{\text{z}}{{{\text{t}}\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)}}}}{{2{\text{G}}\uplambda\frac{\text{z}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}}} \right]}}{{\ln \left( {\text{t}} \right)}} = \\ & = - \frac{{\ln \left[ {{\text{t}}^{ - 1} \frac{{2{\text{G}}\uplambda\frac{\text{z}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)}}}}{{2{\text{G}}\uplambda\frac{\text{z}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}}} \right]}}{{\ln \left( {\text{t}} \right)}} = - \frac{{\ln \left( {{\text{t}}^{ - 1} } \right)}}{{\ln \left( {\text{t}} \right)}} = - \frac{{\left( { - 1} \right)\ln \left( {\text{t}} \right)}}{{\ln \left( {\text{t}} \right)}} = 1. \\ \end{aligned}$$
(9.28)

Entering expressions 9.27 into Eq. 9.26 we get:

$${\text{N}} = - \frac{{ - 4{\text{G}}\uplambda\frac{{{\text{x}}^{2} {\text{z}}}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }} - 2{\text{G}}\uplambda\frac{{{\text{z}}^{3} - {\text{x}}^{2} {\text{z}}}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }}}}{{2{\text{G}}\uplambda\frac{\text{z}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}} = - \frac{{ - 2{\text{G}}\uplambda\frac{{2{\text{x}}^{2} {\text{z}} + {\text{z}}^{3} - {\text{x}}^{2} {\text{z}}}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }}}}{{2{\text{G}}\uplambda\frac{\text{z}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}} = - \frac{{ - 2{\text{G}}\uplambda\frac{\text{z}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}}{{2{\text{G}}\uplambda\frac{\text{z}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}} = 1.$$
(9.29)

Both ways came to an identical result (SI=N=1) for the 2D-horizontal cylinder (rod) in gravimetry. In magnetometry it would be N = 2.

9.2.2 2D-Inclined Sheet, Magnetometry

In the case of magnetized inclined sheet (dike), positioned with its edge along the y-axis) we can write for the ΔT field following formula (Werner 1953):

$$\Delta {\text{T}}\left( {{\text{x}},{\text{z}}} \right) = \frac{{{\text{Ax}} + {\text{Bz}}}}{{{\text{x}}^{2} + {\text{z}}^{2} }} ,$$
(9.30)

where: A = −2b (Mx sin I + Mz cos I sin α) and B = 2b (−Mx cos I sin α + Mz sin I). Mx and Mz are components of the magnetization vector, 2b is the thickness of the sheet, I is inclination of the magnetization vector and α is the azimuth of the profile. For the derivatives with respect to x and z (derivative with respect to y-direction is equal to zero) we can write:

$$\frac{{\partial \Delta {\text{T}}\left( {{\text{x}},{\text{z}}} \right)}}{{\partial {\text{x}}}} = \frac{{ - {\text{Ax}}^{2} + {\text{Az}}^{2} - 2{\text{Bzx}}}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }} ,\frac{{\partial \Delta {\text{T}}\left( {{\text{x}},{\text{z}}} \right)}}{{\partial {\text{z}}}} = \frac{{{\text{Bx}}^{2} - {\text{Bz}}^{2} - 2{\text{Axz}}}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }} \, .$$
(9.31)

Using the Eq. 9.25 we get:

$${\text{N}} = - \frac{{\ln \left[ {{{\Delta {\text{T}}\left( {{\text{tx}},{\text{ty}}} \right)} \mathord{\left/ {\vphantom {{\Delta {\text{T}}\left( {{\text{tx}},{\text{ty}}} \right)} {\Delta {\text{T}}\left( {{\text{x}},{\text{y}}} \right)}}} \right. \kern-0pt} {\Delta {\text{T}}\left( {{\text{x}},{\text{y}}} \right)}}} \right]}}{{\ln \left( {\text{t}} \right)}} = - \frac{{\ln \left[ {\frac{{\frac{{{\text{Atx}} + {\text{Btz}}}}{{{\text{t}}^{2} {\text{x}}^{2} + {\text{t}}^{2} {\text{z}}^{2} }}}}{{\frac{{{\text{Ax}} + {\text{Bz}}}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}}} \right]}}{{\ln \left( {\text{t}} \right)}} = - \frac{{\ln \left[ {{\text{t}}^{ - 1} \frac{{\frac{{{\text{Ax}} + {\text{Bz}}}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}}{{\frac{{{\text{Ax}} + {\text{Bz}}}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}}} \right]}}{{\ln \left( {\text{t}} \right)}} = - \frac{{\left( { - 1} \right)\ln \left( {\text{t}} \right)}}{{\ln \left( {\text{t}} \right)}} = 1$$
(9.32)

Entering expressions 9.31 into Eq. 9.26 we get:

$${\text{N}} = - \frac{{\frac{{{\text{x}}\left( { - {\text{Ax}}^{2} + {\text{Az}}^{2} - 2{\text{Bzx}}} \right)}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }} + \frac{{{\text{z}}\left( {{\text{Bx}}^{2} - {\text{Bz}}^{2} - 2{\text{Axz}}} \right)}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }}}}{{\frac{{{\text{Ax}} + {\text{Bz}}}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}} = - \frac{{\frac{{ - \left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)\left( {{\text{Ax}} + {\text{Bz}}} \right)}}{{\left( {{\text{x}}^{2} + {\text{z}}^{2} } \right)^{2} }}}}{{\frac{{{\text{Ax}} + {\text{Bz}}}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}} = 1.$$
(9.33)

Both ways came to an identical result (SI=N=1) for the 2D-inclined sheet (dike) in magnetometry. In gravimetry it would be N = 0.

9.2.3 2D-Semiinfinite Horizontal Sheet, Gravimetry

We take a 2D-semiinfinite horizontal sheet (sill) with the surface m (e.g. Telford et al. 1990, p. 40), which starts in the begin of the coordinate system [0, 0] and runs along the positive part of x-axis-axis for the vertical component of gravitational acceleration Vz and derivatives with respect to x- and z-direction (derivative with respect to y-direction is equal to zero) we can write:

$${\text{V}}_{\text{z}} \left( {{\text{x}},{\text{z}}} \right) = 2{\text{G}}\upmu\left( {\frac{\uppi}{2} + {\text{arctg}}\frac{{\text{x}}}{{\text{z}}}} \right) ,\quad \frac{{\partial {\text{V}}_{{\text{z}}} \left( {{\text{x}},{\text{z}}} \right)}}{{\partial {\text{x}}}} = 2{\text{G}}\upmu\frac{{\text{z}}}{{{\text{x}}^{2} + {\text{z}}^{2} }} ,\;\;\frac{{\partial {\text{V}}_{{\text{z}}} \left( {{\text{x}},{\text{z}}} \right)}}{{\partial {\text{z}}}} = - 2{\text{G}}\upmu\frac{{\text{x}}}{{{\text{x}}^{2} + {\text{z}}^{2} }} .$$
(9.34)

In this case, we can use only Eq. 9.26:

$${\text{N}} = - \frac{{2{\text{G}}\upmu\frac{{\text{xz}}}{{{\text{x}}^{2} + {\text{z}}^{2} }} \, - 2{\text{G}}\upmu\frac{{\text{zx}}}{{{\text{x}}^{2} + {\text{z}}^{2} }}}}{{2{\text{G}}\upmu\left( {\frac{\uppi}{2} + {\text{arctg}}\frac{{\text{x}}}{{\text{z}}}} \right)}} = - \frac{0}{{2{\text{G}}\upmu\left( {\frac{\uppi}{2} + {\text{arctg}}\frac{{\text{x}}}{{\text{z}}}} \right)}} = 0.$$
(9.35)

From it follow that SI = N = 0 for the 2D-semiinfinite horizontal sheet (sill) in gravimetry. In magnetometry it would be N = 1.

There are of course many different approaches and ways for the derivation and expression of SI value for various sources types (e.g. Stavrev 1997; Stavrev and Reid 2007; Fedi 2016).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pašteka, R., Kušnirák, D. (2020). Role of Euler Deconvolution in Near Surface Gravity and Magnetic Applications. In: Biswas, A., Sharma, S. (eds) Advances in Modeling and Interpretation in Near Surface Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-28909-6_9

Download citation

Publish with us

Policies and ethics

Navigation