Pluripotent Stem Cells to Model Degenerative Retinal Diseases: The RPE Perspective

  • Chapter
  • First Online:
Pluripotent Stem Cells in Eye Disease Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1186))

Abstract

Pluripotent stem cell technology, including human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), has provided a suitable platform to investigate molecular and pathological alterations in an individual cell type using patient’s own cells. Importantly, hiPSCs/hESCs are amenable to genome editing providing unique access to isogenic controls. Specifically, the ability to introduce disease-causing mutations in control (unaffected) and conversely correct disease-causing mutations in patient-derived hiPSCs has provided a powerful approach to clearly link the disease phenotype with a specific gene mutation. In fact, utilizing hiPSC/hESC and CRISPR technology has provided significant insight into the pathomechanism of several diseases. With regard to the eye, the use of hiPSCs/hESCs to study human retinal diseases is especially relevant to retinal pigment epithelium (RPE)-based disorders. This is because several studies have now consistently shown that hiPSC-RPE in culture displays key physical, gene expression and functional attributes of human RPE in vivo. In this book chapter, we will discuss the current utility, limitations, and plausible future approaches of pluripotent stem cell technology for the study of retinal degenerative diseases. Of note, although we will broadly summarize the significant advances made in modeling and studying several retinal diseases utilizing hiPSCs/hESCs, our specific focus will be on the utility of patient-derived hiPSCs for (1) establishment of human cell models and (2) molecular and pharmacological studies on patient-derived cell models of retinal degenerative diseases where RPE cellular defects play a major pathogenic role in disease development and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen Y, Bedell M, Zhang K (2010) Age-related macular degeneration: genetic and environmental factors of disease. Mol Interv 10:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang W, Gawlik K, Lopez J et al (2016) Genetic and environmental factors strongly influence risk, severity and progression of age-related macular degeneration. Signal Transduct Target Ther 1:16016

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F (2011) Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 12:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tanna P, Strauss RW, Fu**ami K, Michaelides M (2017) Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol 101:25–30

    Article  PubMed  Google Scholar 

  5. Cremers FPM, van den Hurk JAJM, den Hollander AI (2002) Molecular genetics of Leber congenital amaurosis. Hum Mol Genet 11:1169–1176

    Article  CAS  PubMed  Google Scholar 

  6. Boon CJ, Klevering BJ, Leroy BP, Hoyng CB, Keunen JE, den Hollander AI (2009) The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 28:187–205

    Article  CAS  PubMed  Google Scholar 

  7. Hartzell HC, Qu Z, Yu K, **ao Q, Chien LT (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88:639–672

    Article  CAS  PubMed  Google Scholar 

  8. Davis MD, Gangnon RE, Lee LY et al (2005) The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol 123:1484–1498

    Article  PubMed  Google Scholar 

  9. Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Asp Med 33:295–317

    Article  CAS  Google Scholar 

  10. Fariss RN, Apte SS, Luthert PJ, Bird AC, Milam AH (1998) Accumulation of tissue inhibitor of metalloproteinases-3 in human eyes with Sorsby’s fundus dystrophy or retinitis pigmentosa. Br J Ophthalmol 82:1329–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weingeist TA, Kobrin JL, Watzke RC (1982) Histopathology of Best’s macular dystrophy. Arch Ophthalmol 100:1108–1114

    Article  CAS  PubMed  Google Scholar 

  12. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  13. Sparrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10:802–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. RĂ³Å¼anowski B, Burke JM, Boulton ME, Sarna T, RĂ³Å¼anowska M (2008) Human RPE melanosomes protect from photosensitized and iron-mediated oxidation but become pro-oxidant in the presence of iron upon photodegradation. Invest Ophthalmol Vis Sci 49:2838–2847

    Article  PubMed  Google Scholar 

  15. Bouck N (2002) PEDF: anti-angiogenic guardian of ocular function. Trends Mol Med 8:330–334

    Article  CAS  PubMed  Google Scholar 

  16. Langton KP, McKie N, Smith BM, Brown NJ, Barker MD (2005) Sorsby’s fundus dystrophy mutations impair turnover of TIMP-3 by retinal pigment epithelial cells. Hum Mol Genet 14:3579–3586

    Article  CAS  PubMed  Google Scholar 

  17. Klenotic PA, Munier FL, Marmorstein LY, Anand-Apte B (2004) Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) - implications for macular degenerations. J Biol Chem 279:30469–30473

    Article  CAS  PubMed  Google Scholar 

  18. D’Cruz PM, Yasumura D, Weir J et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651

    Article  PubMed  Google Scholar 

  19. Duncan JL, LaVail MM, Yasumura D et al (2003) An RCS-like retinal dystrophy phenotype in mer knockout mice. Invest Ophthalmol Vis Sci 44:826–838

    Article  PubMed  Google Scholar 

  20. Lukovic D, Artero Castro A, Delgado ABG et al (2015) Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci Rep 5:12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ramsden CM, Nommiste B, R Lane A et al (2017) Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs. Sci Rep 7:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Galloway CA, Dalvi S, Hung SSC et al (2017) Drusen in patient-derived hiPSC-RPE models of macular dystrophies. Proc Natl Acad Sci U S A 114:E8214–E8223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandez-Godino R, Bujakowska KM, Pierce EA (2018) Changes in extracellular matrix cause RPE cells to make basal deposits and activate the alternative complement pathway. Hum Mol Genet 27:147–159

    Article  CAS  PubMed  Google Scholar 

  24. Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116

    Article  PubMed  Google Scholar 

  25. Klein R, Chou CF, Klein BE, Zhang X, Meuer SM, Saaddine JB (2011) Prevalence of age-related macular degeneration in the US population. Arch Ophthalmol 129:75–80

    Article  PubMed  Google Scholar 

  26. Miller JW (2013) Age-related macular degeneration revisited—piecing the puzzle: the LXIX Edward Jackson Memorial Lecture. Am J Ophthalmol 155:1–35.e13

    Article  PubMed  Google Scholar 

  27. Curcio C, Johnson M (2012) Structure, function, and pathology of Bruch’s membrane. In: Retina, vol 1, 5th edn. Elsevier, Amsterdam, pp 465–481

    Google Scholar 

  28. Spaide RF, Curcio CA (2010) Drusen characterization with multimodal imaging. Retina 30:1441–1454

    Article  PubMed  PubMed Central  Google Scholar 

  29. Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE (2007) Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 114:253–262

    Article  PubMed  Google Scholar 

  30. Nozaki M, Raisler BJ, Sakurai E et al (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103:2328–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Imamura Y, Noda S, Hashizume K et al (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A 103:11282–11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Black JR, Clark SJ (2016) Age-related macular degeneration: genome-wide association studies to translation. Genet Med 18:283–289

    Article  CAS  PubMed  Google Scholar 

  33. Sobrin L, Reynolds R, Yu Y et al (2011) ARMS2/HTRA1 locus can confer differential susceptibility to the advanced subtypes of age-related macular degeneration. Am J Ophthalmol 151:345–352.e343

    Article  CAS  PubMed  Google Scholar 

  34. Weber BH, Vogt G, Pruett RC, Stohr H, Felbor U (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby’s fundus dystrophy. Nat Genet 8:352–356

    Article  CAS  PubMed  Google Scholar 

  35. Stone EM, Lotery AJ, Munier FL et al (1999) A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22:199–202

    Article  CAS  PubMed  Google Scholar 

  36. Hayward C, Shu X, Cideciyan AV et al (2003) Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration: a genetic model for age-related macular degeneration. Hum Mol Genet 12:2657–2667

    Article  CAS  PubMed  Google Scholar 

  37. Ayyagari R, Mandal MNA, Karoukis AJ et al (2005) Late-onset macular degeneration and long anterior lens zonules result from a CTRP5 gene mutation. Invest Ophthalmol Vis Sci 46:3363–3371

    Article  PubMed  Google Scholar 

  38. Sorsby A, Mason ME (1949) A fundus dystrophy with unusual features. Br J Ophthalmol 33:67–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoskin A, Sehmi K, Bird AC (1981) Sorsby’s pseudoinflammatory macular dystrophy. Br J Ophthalmol 65:859–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christensen DRG, Brown FE, Cree AJ, Ratnayaka JA, Lotery AJ (2017) Sorsby fundus dystrophy—a review of pathology and disease mechanisms. Exp Eye Res 165:35–46

    Article  CAS  PubMed  Google Scholar 

  41. Langton KP, Barker MD, McKie N (1998) Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby’s fundus dystrophy mutation. J Biol Chem 273:16778–16781

    Article  CAS  PubMed  Google Scholar 

  42. Crabb JW, Miyagi M, Gu X et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fritsche LG, Igl W, Bailey JN et al (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48:134–143

    Article  CAS  PubMed  Google Scholar 

  44. Marmorstein LY, McLaughlin PJ, Peachey NS, Sasaki T, Marmorstein AD (2007) Formation and progression of sub-retinal pigment epithelium deposits in Efemp1 mutation knock-in mice: a model for the early pathogenic course of macular degeneration. Hum Mol Genet 16:2423–2432

    Article  CAS  PubMed  Google Scholar 

  45. Marmorstein LY, Munier FL, Arsenijevic Y et al (2002) Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci U S A 99:13067–13072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Roybal CN, Marmorstein LY, Vander Jagt DL, Abcouwer SF (2005) Aberrant accumulation of fibulin-3 in the endoplasmic reticulum leads to activation of the unfolded protein response and VEGF expression. Invest Ophthalmol Vis Sci 46:3973–3979

    Article  PubMed  Google Scholar 

  47. Fu L, Garland D, Yang Z et al (2007) The R345W mutation in EFEMP1 is pathogenic and causes AMD-like deposits in mice. Hum Mol Genet 16:2411–2422

    Article  CAS  PubMed  Google Scholar 

  48. McLaughlin PJ, Bakall B, Choi J et al (2007) Lack of fibulin-3 causes early aging and herniation, but not macular degeneration in mice. Hum Mol Genet 16:3059–3070

    Article  CAS  PubMed  Google Scholar 

  49. Fernandez-Godino R, Garland DL, Pierce EA (2015) A local complement response by RPE causes early-stage macular degeneration. Hum Mol Genet 24:5555–5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shu X, Luhmann UFO, Aleman TS et al (2011) Characterisation of a C1qtnf5 Ser163Arg knock-in mouse model of late-onset retinal macular degeneration. PLoS One 6:e27433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shu X, Tulloch B, Lennon A et al (2006) Disease mechanisms in late-onset retinal macular degeneration associated with mutation in C1QTNF5. Hum Mol Genet 15:1680–1689

    Article  CAS  PubMed  Google Scholar 

  52. Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Wright AF (2014) Late-onset retinal degeneration caused by C1QTNF5 mutation: sub-retinal pigment epithelium deposits and visual consequences. JAMA Ophthalmol 132:1252–1255

    Article  PubMed  PubMed Central  Google Scholar 

  53. Borooah S, Collins C, Wright A, Dhillon B (2009) Late-onset retinal macular degeneration: clinical insights into an inherited retinal degeneration. Br J Ophthalmol 93:284

    CAS  PubMed  Google Scholar 

  54. Ayyagari R, Griesinger IB, Bingham E, Lark KK, Moroi SE, Sieving PA (2000) Autosomal dominant hemorrhagic macular dystrophy not associated with the TIMP3 gene. Arch Ophthalmol 118:85–92

    Article  CAS  PubMed  Google Scholar 

  55. Subrayan V, Morris B, Armbrecht AM, Wright AF, Dhillon B (2005) Long anterior lens zonules in late-onset retinal degeneration (L-ORD). Am J Ophthalmol 140:1127–1129

    Article  PubMed  Google Scholar 

  56. Kuntz CA, Jacobson SG, Cideciyan AV et al (1996) Sub-retinal pigment epithelial deposits in a dominant late-onset retinal degeneration. Invest Ophthalmol Vis Sci 37:1772–1782

    CAS  PubMed  Google Scholar 

  57. Edwards AO, Klein ML, Berselli CB et al (1998) Malattia leventinese: refinement of the genetic locus and phenotypic variability in autosomal dominant macular drusen. Am J Ophthalmol 126:417–424

    Article  CAS  PubMed  Google Scholar 

  58. Evans K, Gregory CY, Wijesuriya SD et al (1997) Assessment of the phenotypic range seen in Doyne honeycomb retinal dystrophy. Arch Ophthalmol 115:904–910

    Article  CAS  PubMed  Google Scholar 

  59. **ao Q, Hartzell HC, Yu K (2010) Bestrophins and retinopathies. Pflugers Archiv 460:559–569

    Article  CAS  PubMed  Google Scholar 

  60. Marquardt A, Stohr H, Passmore LA, Kramer F, Rivera A, Weber BH (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7:1517–1525

    Article  CAS  PubMed  Google Scholar 

  61. Kramer F, White K, Pauleikhoff D et al (2000) Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet 8:286–292

    Article  CAS  PubMed  Google Scholar 

  62. Burgess R, Millar ID, Leroy BP et al (2008) Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet 82:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yardley J, Leroy BP, Hart-Holden N et al (2004) Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci 45:3683–3689

    Article  PubMed  Google Scholar 

  64. Davidson AE, Millar ID, Urquhart JE et al (2009) Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet 85:581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Y, Zhang Y, Xu Y et al (2017) Patient-specific mutations impair BESTROPHIN1’s essential role in mediating Ca(2+)-dependent Cl(−) currents in human RPE. elife 6:e29914

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moshfegh Y, Velez G, Li Y, Bassuk AG, Mahajan VB, Tsang SH (2016) BESTROPHIN1 mutations cause defective chloride conductance in patient stem cell-derived RPE. Hum Mol Genet 25:2672–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Stanton JB, Wu J et al (2010) Suppression of Ca2+ signaling in a mouse model of Best disease. Hum Mol Genet 19:1108–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marmorstein AD, Johnson AA, Bachman LA et al (2018) Mutant Best1 expression and impaired phagocytosis in an iPSC model of autosomal recessive Bestrophinopathy. Sci Rep 8:4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh R, Shen W, Kuai D et al (2013) iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet 22:593–607

    Article  CAS  PubMed  Google Scholar 

  70. Bakall B, Radu RA, Stanton JB et al (2007) Enhanced accumulation of A2E in individuals homozygous or heterozygous for mutations in BEST1 (VMD2). Exp Eye Res 85:34–43

    Article  CAS  PubMed  Google Scholar 

  71. Nordstrom S, Barkman Y (1977) Hereditary maculardegeneration (HMD) in 246 cases traced to one gene-source in Central Sweden. Hereditas 84:163–176

    Article  CAS  PubMed  Google Scholar 

  72. Sparrow JR, Duncker T, Woods R, Delori FC (2016) Quantitative fundus autofluorescence in Best vitelliform macular dystrophy: RPE lipofuscin is not increased in non-lesion areas of retina. Adv Exp Med Biol 854:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rivolta C, Sharon D, DeAngelis MM, Dryja TP (2002) Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet 11:1219–1227

    Article  CAS  PubMed  Google Scholar 

  74. Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40

    Article  PubMed  PubMed Central  Google Scholar 

  75. Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84:132–141

    Article  CAS  PubMed  Google Scholar 

  76. Ran X, Cai W-J, Huang X-F et al (2014) ‘RetinoGenetics’: a comprehensive mutation database for genes related to inherited retinal degeneration. Database 2014:bau047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ayala-Ramirez R, Graue-Wiechers F, Robredo V, Amato-Almanza M, Horta-Diez I, Zenteno JC (2006) A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. Mol Vis 12:1483–1489

    CAS  PubMed  Google Scholar 

  78. Mukhopadhyay R, Sergouniotis PI, Mackay DS et al (2010) A detailed phenotypic assessment of individuals affected by MFRP-related oculopathy. Mol Vis 16:540–548

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ostergaard E, Duno M, Batbayli M, Vilhelmsen K, Rosenberg T (2011) A novel MERTK deletion is a common founder mutation in the Faroe Islands and is responsible for a high proportion of retinitis pigmentosa cases. Mol Vis 17:1485–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Maw MA, Kennedy B, Knight A et al (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17:198–200

    Article  CAS  PubMed  Google Scholar 

  81. Li Y, Wu WH, Hsu CW et al (2014) Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 22:1688–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stecher H, Gelb MH, Saari JC, Palczewski K (1999) Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein. J Biol Chem 274:8577–8585

    Article  CAS  PubMed  Google Scholar 

  83. Saari JC, Nawrot M, Kennedy BN et al (2001) Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29:739–748

    Article  CAS  PubMed  Google Scholar 

  84. Sweeney MO, McGee TL, Berson EL, Dryja TP (2007) Low prevalence of LRAT mutations in patients with Leber congenital amaurosis and autosomal recessive retinitis pigmentosa. Mol Vis 13:588–593

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Thompson DA, GyĂ¼rĂ¼s P, Fleischer LL et al (2000) Genetics and phenotypes of RPE65 mutations in inherited retinal degeneration. Invest Ophthalmol Vis Sci 41:4293–4299

    CAS  PubMed  Google Scholar 

  86. Dithmar S, Sharara NA, Curcio CA et al (2001) Murine high-fat diet and laser photochemical model of basal deposits in Bruch membrane. Arch Ophthalmol 119:1643–1649

    Article  CAS  PubMed  Google Scholar 

  87. Miceli MV, Newsome DA, Tate DJ Jr, Sarphie TG (2000) Pathologic changes in the retinal pigment epithelium and Bruch’s membrane of fat-fed atherogenic mice. Curr Eye Res 20:8–16

    Article  CAS  PubMed  Google Scholar 

  88. Rudolf M, Winkler B, Aherrahou Z, Doehring LC, Kaczmarek P, Schmidt-Erfurth U (2005) Increased expression of vascular endothelial growth factor associated with accumulation of lipids in Bruch’s membrane of LDL receptor knockout mice. Br J Ophthalmol 89:1627–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heckenlively JR, Hawes NL, Friedlander M et al (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518–522

    Article  PubMed  Google Scholar 

  90. Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4:e4160

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT (2008) Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS One 3:e3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Luo C, Chen M, Xu H (2011) Complement gene expression and regulation in mouse retina and retinal pigment epithelium/choroid. Mol Vis 17:1588–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Luo C, Zhao J, Madden A, Chen M, Xu H (2013) Complement expression in retinal pigment epithelial cells is modulated by activated macrophages. Exp Eye Res 112:93–101

    Article  CAS  PubMed  Google Scholar 

  94. Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Coffey PJ, Gias C, McDermott CJ et al (2007) Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci U S A 104:16651–16656

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ufret-Vincenty RL, Aredo B, Liu X et al (2010) Transgenic mice expressing variants of complement factor H develop AMD-like retinal findings. Invest Ophthalmol Vis Sci 51:5878–5887

    Article  PubMed  Google Scholar 

  97. Ambati J, Anand A, Fernandez S et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    Article  CAS  PubMed  Google Scholar 

  98. Alexander P, Gibson J, Cree AJ, Ennis S, Lotery AJ (2014) Complement factor I and age-related macular degeneration. Mol Vis 20:1253–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gold B, Merriam JE, Zernant J et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weber BH, Lin B, White K et al (2002) A mouse model for Sorsby fundus dystrophy. Invest Ophthalmol Vis Sci 43:2732–2740

    PubMed  Google Scholar 

  101. Chavali VRM, Khan NW, Cukras CA, Bartsch D-U, Jablonski MM, Ayyagari R (2011) A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration. Hum Mol Genet 20:2000–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sahu B, Chavali VR, Alapati A et al (2015) Presence of rd8 mutation does not alter the ocular phenotype of late-onset retinal degeneration mouse model. Mol Vis 21:273–284

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Dinculescu A, Min S-H, Dyka FM et al (2015) Pathological effects of mutant C1QTNF5 (S163R) expression in murine retinal pigment epithelium. Invest Ophthalmol Vis Sci 56:6971–6980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Milam AH, Curcio CA, Cideciyan AV et al (2000) Dominant late-onset retinal degeneration with regional variation of sub-retinal pigment epithelium deposits, retinal function, and photoreceptor degeneration. Ophthalmology 107:2256–2266

    Article  CAS  PubMed  Google Scholar 

  105. Milenkovic A, Brandl C, Milenkovic VM et al (2015) Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A 112:E2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Marmorstein LY, Wu J, McLaughlin P et al (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by Bestrophin (Best-1). J Gen Physiol 127:577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gal A, Li Y, Thompson DA et al (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet 26:270–271

    Article  CAS  PubMed  Google Scholar 

  108. Bok D, Hall MO (1971) The role of the pigment epithelium in the etiology of inherited retinal dystrophy in the rat. J Cell Biol 49:664–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dowling JE, Sidman RL (1962) Inherited retinal dystrophy in the rat. J Cell Biol 14:73–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. LaVail MM, Battelle BA (1975) Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp Eye Res 21:167–192

    Article  CAS  PubMed  Google Scholar 

  111. Hawes NL, Chang B, Hageman GS et al (2000) Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. Invest Ophthalmol Vis Sci 41:3149–3157

    CAS  PubMed  Google Scholar 

  112. Kameya S, Hawes NL, Chang B, Heckenlively JR, Naggert JK, Nishina PM (2002) Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum Mol Genet 11:1879–1886

    Article  CAS  PubMed  Google Scholar 

  113. Velez G, Tsang SH, Tsai YT et al (2017) Gene therapy restores Mfrp and corrects axial eye length. Sci Rep 7:16151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fogerty J, Besharse JC (2011) 174delG mutation in mouse MFRP causes photoreceptor degeneration and RPE atrophy. Invest Ophthalmol Vis Sci 52:7256–7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Won J, Smith RS, Peachey NS et al (2008) Membrane frizzled-related protein is necessary for the normal development and maintenance of photoreceptor outer segments. Vis Neurosci 25:563–574

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pennesi ME, Neuringer M, Courtney RJ (2012) Animal models of age related macular degeneration. Mol Asp Med 33:487–509

    Article  CAS  Google Scholar 

  117. Glotin AL, Debacq-Chainiaux F, Brossas JY et al (2008) Prematurely senescent ARPE-19 cells display features of age-related macular degeneration. Free Radic Biol Med 44:1348–1361

    Article  CAS  PubMed  Google Scholar 

  118. Johnson LV, Forest DL, Banna CD et al (2011) Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc Natl Acad Sci U S A 108:18277–18282

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pilgrim MG, Lengyel I, Lanzirotti A et al (2017) Subretinal pigment epithelial deposition of Drusen components including hydroxyapatite in a primary cell culture model. Invest Ophthalmol Vis Sci 58:708–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Radu RA, Hu J, Jiang Z, Bok D (2014) Bisretinoid-mediated complement activation on retinal pigment epithelial cells is dependent on complement factor H haplotype. J Biol Chem 289:9113–9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  122. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  123. Tucker BA, Mullins RF, Streb LM et al (2013) Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife 2:e00824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wiley LA, Burnight ER, Songstad AE et al (2015) Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 44:15–35

    Article  PubMed  Google Scholar 

  125. Chen FK, McLenachan S, Edel M, Da Cruz L, Coffey PJ, Mackey DA (2014) iPS cells for modelling and treatment of retinal diseases. J Clin Med 3:1511–1541

    Article  PubMed  PubMed Central  Google Scholar 

  126. Phillips MJ, Wallace KA, Dickerson SJ et al (2012) Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 53:2007–2019

    Article  PubMed  PubMed Central  Google Scholar 

  127. Meyer JS, Howden SE, Wallace KA et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chang Y-C, Chang W-C, Hung K-H et al (2014) The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging Neurosci 6:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tucker BA, Anfinson KR, Mullins RF, Stone EM, Young MJ (2013) Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl Med 2:16–24

    Article  CAS  PubMed  Google Scholar 

  130. Meyer JS, Shearer RL, Capowski EE et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703

    Article  PubMed  PubMed Central  Google Scholar 

  131. Phillips MJ, Perez ET, Martin JM et al (2014) Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 32:1480–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tucker BA, Mullins RF, Stone EM (2014) Stem cells for investigation and treatment of inherited retinal disease. Hum Mol Genet 23(R1):R9–R16

    Article  PubMed  PubMed Central  Google Scholar 

  133. Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516

    Article  PubMed  Google Scholar 

  134. Ramsden CM, Powner MB, Carr AJ, Smart MJ, da Cruz L, Coffey PJ (2013) Stem cells in retinal regeneration: past, present and future. Development 140:2576–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Singh R, Kuai D, Guziewicz KE et al (2015) Pharmacological modulation of photoreceptor outer segment degradation in a human iPS cell model of inherited macular degeneration. Mol Ther 23:1700–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hallam D, Collin J, Bojic S et al (2017) An induced pluripotent stem cell patient specific model of complement factor H (Y402H) polymorphism displays characteristic features of age-related macular degeneration and indicates a beneficial role for UV light exposure. Stem Cells 35:2305–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Saini JS, Corneo B, Miller JD et al (2017) Nicotinamide ameliorates disease phenotypes in a human iPSC model of age-related macular degeneration. Cell Stem Cell 20:635–647.e637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. ** ZB, Okamoto S, **ang P, Takahashi M (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 1:503–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249

    CAS  PubMed  Google Scholar 

  140. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ (1989) Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30:1691–1699

    CAS  PubMed  Google Scholar 

  141. Holz FG, Haimovici R, Wagner DG, Bird AC (1994) Recurrent choroidal neovascularization after laser photocoagulation in Sorsby’s fundus dystrophy. Retina 14:329–334

    Article  CAS  PubMed  Google Scholar 

  142. Michaelides M, Jenkins SA, Brantley JMA et al (2006) Maculopathy due to the R345W substitution in fibulin-3: distinct clinical features, disease variability, and extent of retinal dysfunction. Invest Ophthalmol Vis Sci 47:3085–3097

    Article  PubMed  Google Scholar 

  143. Prager F, Michels S, Geitzenauer W, Schmidt-Erfurth U (2007) Choroidal neovascularization secondary to Sorsby fundus dystrophy treated with systemic bevacizumab (Avastin). Acta Ophthalmol Scand 85:904–906

    Article  CAS  PubMed  Google Scholar 

  144. Gamal W, Borooah S, Smith S et al (2015) Real-time quantitative monitoring of hiPSC-based model of macular degeneration on electric cell-substrate impedance sensing microelectrodes. Biosens Bioelectron 71:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue-culture with an applied electric-field. Proc Natl Acad Sci U S A 81:3761–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Giaever I, Keese CR (1991) Micromotion of mammalian-cells measured electrically. Proc Natl Acad Sci U S A 88:7896–7900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gupton SL, Waterman-Storer CM (2006) Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125:1361–1374

    Article  CAS  PubMed  Google Scholar 

  148. Yang J, Li Y, Chan L et al (2014) Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. Hum Mol Genet 23:3445–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E, Berinstein DM (2016) Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med. 14(1):344. Published 2016 Dec 20. https://doi.org/10.1186/s12967-016-1101-8

  150. Lores-Motta L, Paun CC, Corominas J et al (2018) Genome-wide association study reveals variants in CFH and CFHR4 associated with systemic complement activation: implications in age-related macular degeneration. Ophthalmology 125:1064

    Article  PubMed  Google Scholar 

  151. Garcia TY, Gutierrez M, Reynolds J, Lamba DA (2015) Modeling the dynamic AMD-associated chronic oxidative stress changes in human ESC and iPSC-derived RPE cells. Invest Ophthalmol Vis Sci 56:7480–7488

    Article  CAS  PubMed  Google Scholar 

  152. Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  153. Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Artero Castro A, Lukovic D, Jendelova P, Erceg S (2018) Concise review: human induced pluripotent stem cell models of retinitis pigmentosa. Stem Cells 36:474–481

    Article  PubMed  Google Scholar 

  155. Brunner S, Skosyrski S, Kirschner-Schwabe R et al (2010) Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds. Invest Ophthalmol Vis Sci 51:1106–1115

    Article  PubMed  Google Scholar 

  156. Kostic C, Arsenijevic Y (2016) Animal modelling for inherited central vision loss. J Pathol 238:300–310

    Article  PubMed  Google Scholar 

  157. Sorrentino FS, Gallenga CE, Bonifazzi C, Perri P (2016) A challenge to the striking genotypic heterogeneity of retinitis pigmentosa: a better understanding of the pathophysiology using the newest genetic strategies. Eye 30:1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. ** Z-B, Okamoto S, Osakada F et al (2011) Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One 6:e17084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yoshida T, Ozawa Y, Suzuki K et al (2014) The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol Brain 7:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tucker BA, Scheetz TE, Mullins RF et al (2011) Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci U S A 108:E569–E576

    Article  PubMed  PubMed Central  Google Scholar 

  161. Schwarz N, Carr AJ, Lane A et al (2015) Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet 24:972–986

    Article  CAS  PubMed  Google Scholar 

  162. Tucker BA, Cranston CM, Anfinson KA et al (2015) Using patient-specific induced pluripotent stem cells to interrogate the pathogenicity of a novel retinal pigment epithelium-specific 65 kDa cryptic splice site mutation and confirm eligibility for enrollment into a clinical gene augmentation trial. Transl Res 166:740–749.e741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K (2000) Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A 97:12758–12763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Pasquay C, Wang LF, Lorenz B, Preising MN (2015) Bestrophin 1—phenotypes and functional aspects in Bestrophinopathies. Ophthalmic Genet 36:193–212

    Article  CAS  PubMed  Google Scholar 

  165. Chacon-Camacho OF, Zenteno JC (2015) Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 3:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  166. Chichagova V, Hallam D, Collin J et al (2017) Human iPSC disease modelling reveals functional and structural defects in retinal pigment epithelial cells harbouring the m.3243A > G mitochondrial DNA mutation. Sci Rep 7:12320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Phillips PH, Newman NJ (1997) Mitochondrial diseases in pediatric ophthalmology. J AAPOS 1:115–122

    Article  CAS  PubMed  Google Scholar 

  168. Michaelides M, Jenkins SA, Bamiou DE et al (2008) Macular dystrophy associated with the A3243G mitochondrial DNA mutation. Distinct retinal and associated features, disease variability, and characterization of asymptomatic family members. Arch Ophthalmol 126:320–328

    Article  CAS  PubMed  Google Scholar 

  169. Gorman GS, Taylor RW (2011) Mitochondrial DNA abnormalities in ophthalmological disease. Saudi J Ophthalmol 25:395–404

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rummelt V, Folberg R, Ionasescu V, Yi H, Moore KC (1993) Ocular pathology of MELAS syndrome with mitochondrial DNA nucleotide 3243 point mutation. Ophthalmology 100:1757–1766

    Article  CAS  PubMed  Google Scholar 

  171. Chang TS, Johns DR, Walker D, de la Cruz Z, Maumence IH, Green WR (1993) Ocular clinicopathologic study of the mitochondrial encephalomyopathy overlap syndromes. Arch Ophthalmol 111:1254–1262

    Article  CAS  PubMed  Google Scholar 

  172. Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E, Berinstein DM (2016) Repressed SIRT1/PGC-1alpha pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med 14:344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Singh R, Phillips MJ, Kuai D et al (2013) Functional analysis of serially expanded human iPS cell-derived RPE cultures. Invest Ophthalmol Vis Sci 54:6767–6778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Deng WL, Gao ML, Lei XL et al (2018) Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep 10:2005

    Article  CAS  Google Scholar 

  175. Barnea-Cramer AO, Wang W, Lu SJ et al (2016) Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep 6:29784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wahlin KJ, Maruotti JA, Sripathi SR et al (2017) Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep 7:766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Parmar VM, Parmar T, Arai E, Perusek L, Maeda A (2018) A2E-associated cell death and inflammation in retinal pigmented epithelial cells from human induced pluripotent stem cells. Stem Cell Res 27:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Edwards MM, Maddox DM, Won J, Naggert JK, Nishina PM (2007) Genetic modifiers that affect phenotypic expression of retinal diseases. In: Tombran-Tink J, Barnstable CJ (eds) Retinal degenerations: biology, diagnostics, and therapeutics. Humana, Totowa, NJ, pp 237–255

    Chapter  Google Scholar 

  180. Vitale AM, Matigian NA, Ravishankar S et al (2012) Variability in the generation of induced pluripotent stem cells: importance for disease modeling. Stem Cells Transl Med 1:641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Steinemann D, Gohring G, Schlegelberger B (2013) Genetic instability of modified stem cells - a first step towards malignant transformation? Am J Stem Cells 2:39–51

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Saha K, Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Nguyen HV, Li Y, Tsang SH (2015) Patient-specific iPSC-derived RPE for modeling of retinal diseases. J Clin Med 4:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Windrem MS, Osipovitch M, Liu Z et al (2017) Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell 21:195–208.e196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lund RD, Wang S, Klimanskaya I et al (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199

    Article  CAS  PubMed  Google Scholar 

  186. Goldman SA, Nedergaard M, Windrem MS (2015) Modeling cognition and disease using human glial chimeric mice. Glia 63:1483–1493

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchira Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalvi, S., Galloway, C.A., Singh, R. (2019). Pluripotent Stem Cells to Model Degenerative Retinal Diseases: The RPE Perspective. In: Bharti, K. (eds) Pluripotent Stem Cells in Eye Disease Therapy. Advances in Experimental Medicine and Biology, vol 1186. Springer, Cham. https://doi.org/10.1007/978-3-030-28471-8_1

Download citation

Publish with us

Policies and ethics

Navigation