Biomedical Applications of Aerogels

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1608 Accesses

Abstract

This section highlights the biocompatibility of aerogels and some of the biomedical applications associated with aerogels. Research has shown that certain aerogel formulations are compatible with the cardiovascular system, so these formulations and possibly others can be potentially used for cardiovascular implantable devices. Aerogels can also be used as bone grafts and dental implants. Multiple studies have provided proof that drugs/proteins can be loaded or embedded within aerogels and that they can maintain their functionality and be released in a controllable manner; therefore aerogels can be used in drug delivery systems. Many have also suggested that aerogels can be used in tissue engineering as scaffolding materials, as aerogels can be made biocompatible, biodegradable, and have high porosity, large surface area, and proper surface chemistry to support cell attachment and proliferation. Furthermore, as a strong and highly porous material, aerogels can have proper acoustic and ultrasonic properties to be used for ultrasound imaging. With the improvements in aerogel processing along with a better understanding of biomaterials, the biomedical applications of aerogels are expanding. Aerogels will play a significant role in the biomaterials field in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 353.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lysaght, M.J., O’Loughlin, J.A.: Demographic scope and economic magnitude of contemporary organ replacement therapies. ASAIO J. 46, 515–521 (2000)

    Article  CAS  Google Scholar 

  2. Implantable Medical Devices Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016–2024. (2016). http://www.prnewswire.com/news-releases/implantable-medical-devices-market-global-industry-analysis-size-share-growth-trends-and-forecast-2016%2D%2D-2024-300348850.html. Accessed 31 May 2017

  3. Pierre, A.C., Pajonk, G.M.: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4265 (2002)

    Article  CAS  Google Scholar 

  4. Maleki, H., Durães, L., García-González, C.A., del Gaudio, P., Portugal, A., Mahmoudi, M.: Synthesis and biomedical applications of aerogels: possibilities and challenges. Adv. Colloid Interf. Sci. 236, 1–27 (2016). https://doi.org/10.1016/j.cis.2016.05.011

    Article  CAS  Google Scholar 

  5. Arboleda, J.C., Hughes, M., Lucia, L.A., Laine, J., Ekman, K., Rojas, O.J.: Soy protein-nanocellulose composite aerogels. Cellulose. 20, 2417–2426 (2013)

    Article  CAS  Google Scholar 

  6. Betz, M., Garcia-Gonzalez, C.A., Subrahmanyam, R.P., Smirnova, I., Kulozik, U.: Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluid. 72, 111–119 (2012)

    Article  CAS  Google Scholar 

  7. Mallepally, R.R., Marin, M.A., Surampudi, V., Subia, B., Rao, R.R., Kundu, S.C., McHugh, M.A.: Silk fibroin aerogels: potential scaffolds for tissue engineering applications. Biomed. Mater. 10, 035002 (2015). https://doi.org/10.1088/1748-6041/10/3/035002

    Article  CAS  Google Scholar 

  8. Andrade, J.D., Hlady, V.: Protein adsorption and materials biocompatibility – a tutorial review and suggested hypotheses. Adv. Polym. Sci. 79, 1–63 (1986)

    Article  CAS  Google Scholar 

  9. Jones, M.I., McColl, I.R., Grant, D.M., Parker, K.G., Parker, T.L.: Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J. Biomed. Mater. Res. 52, 413–421 (2000). https://doi.org/10.1002/1097-4636(200011)52:2<413::AID-JBM23>3.0.CO;2-U

    Article  CAS  Google Scholar 

  10. Wu, Y., Meyerhoff, M.E.: Nitric oxide-releasing/generating polymers for the development of implantable chemical sensors with enhanced biocompatibility. Talanta. 75, 642–650 (2008). https://doi.org/10.1016/j.talanta.2007.06.022

    Article  CAS  Google Scholar 

  11. Burd, J., Noetzel, V., Tamerius, J.: Rapid testing of biomaterials for complement activation using in vitro complement immunoassays. In: Paper Presented at the 19th Annual Meeting of the Society of Biomaterials, Birmingham, Alabama (1993)

    Google Scholar 

  12. Friedewald, V.E., Bonow, R.O., Borer, J.S., Carabello, B.A., Kleine, P.P., Akins, C.W., Roberts, W.C.: The editor’s roundtable: cardiac valve surgery. Am. J. Cardiol. 99, 1269–1278 (2007). https://doi.org/10.1016/j.amjcard.2007.02.040

    Article  Google Scholar 

  13. Yacoub, M.H., Takkenberg, J.J.: Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2, 60–61 (2005). https://doi.org/10.1038/ncpcardio0112

    Article  CAS  Google Scholar 

  14. Bezuidenhout, D., Williams, D.F., Zilla, P.: Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices. Biomaterials. 36, 6–25 (2015). https://doi.org/10.1016/j.biomaterials.2014.09.013

    Article  CAS  Google Scholar 

  15. Maines, B.H., Brennen, C.E.: Lumped parameter model for computing the minimum pressure during mechanical heart valve closure. J. Biomech. Eng. 127, 648–655 (2005)

    Article  Google Scholar 

  16. Bang, A., Sadekar, A.G., Buback, C., Curtin, B., Acar, S., Kolasinac, D., Yin, W., Rubenstein, D.A., Lu, H.B., Leventis, N., Sotiriou-Leventis, C.: Evaluation of Dysprosia aerogels as drug delivery systems: a comparative study with random and ordered mesoporous silicas. ACS Appl. Mater. Interfaces. 6, 4891–4902 (2014)

    Article  CAS  Google Scholar 

  17. Rubenstein, D.A., Lu, H.B., Mahadik, S.S., Leventis, N., Yin, W.: Characterization of the physical properties and biocompatibility of polybenzoxazine-based aerogels for use as a novel hard-tissue scaffold. J. Biomater. Sci. Polym. Ed. 23, 1171–1184 (2012)

    CAS  Google Scholar 

  18. Yin, W., Lu, H.B., Leventis, N., Rubenstein, D.A.: Characterization of the biocompatibility and mechanical properties of polyurea organic aerogels with the vascular system: potential as a blood implantable material. Int. J. Polym. Mater. 62, 109–118 (2013)

    Article  CAS  Google Scholar 

  19. Yin, W., Venkitachalam, S.M., Jarrett, E., Staggs, S., Leventis, N., Lu, H.B., Rubenstein, D.A.: Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells. J. Biomed. Mater. Res. A. 92a, 1431–1439 (2010)

    Article  CAS  Google Scholar 

  20. Leventis, N., Mulik, S., Wang, X.J., Dass, A., Patil, V.U., Sotiriou-Leventis, C., Lu, H.B., Chum, G., Capecelatro, A.: Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. J. Non-Cryst. Solids. 354, 632–644 (2008)

    Article  CAS  Google Scholar 

  21. Ayers, M.R., Hunt, A.J.: Synthesis and properties of chitosan–silica hybrid aerogels. J. Non-Cryst. Solids. 285, 123–127 (2001). https://doi.org/10.1016/S0022-3093(01)00442-2

    Article  CAS  Google Scholar 

  22. Taghvaee, T., Donthula, S., Rewatkar, P.M., Majedi Far, H., Sotiriou-Leventis, C., Leventis, N.: K-index: a descriptor, predictor, and correlator of complex nanomorphology to other material properties. ACS Nano. 13, 3677–3690 (2019). https://doi.org/10.1021/acsnano.9b00396

    Article  CAS  Google Scholar 

  23. Mellado, C., Figueroa, T., Báez, R., Castillo, R., Melendrez, M., Schulz, B., Fernández, K.: Development of graphene oxide composite aerogel with proanthocyanidins with hemostatic properties as a delivery system. ACS Appl. Mater. Interfaces. 10, 7717–7729 (2018). https://doi.org/10.1021/acsami.7b16084

    Article  CAS  Google Scholar 

  24. Gavillon, R., Budtova, T.: Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules. 9, 269–277 (2008)

    Article  CAS  Google Scholar 

  25. Govindarajan, D., Duraipandy, N., Srivatsan, K.V., Lakra, R., Korapatti, P.S., Jayavel, R., Kiran, M.S.: Fabrication of hybrid collagen aerogels reinforced with wheat grass bioactives as instructive scaffolds for collagen turnover and angiogenesis for wound healing applications. ACS Appl. Mater. Interfaces. 9, 16939–16950 (2017). https://doi.org/10.1021/acsami.7b05842

    Article  CAS  Google Scholar 

  26. Quraishi, S., Martins, M., Barros, A.A., Gurikov, P., Raman, S.P., Smirnova, I., Duarte, A.R.C., Reis, R.L.: Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J. Supercrit. Fluids. 105, 1–8 (2015). https://doi.org/10.1016/j.supflu.2014.12.026

    Article  CAS  Google Scholar 

  27. Ge, J.H., Li, M.S., Zhang, Q.G., Yang, C.Z., Wooley, P.H., Chen, X.F., Yang, S.Y.: Silica aerogel improves the biocompatibility in a poly-epsilon-caprolactone composite used as a tissue engineering scaffold. Int. J. Polym. Sci. 2013, Artn 402859 (2013). https://doi.org/10.1155/2013/402859

    Article  CAS  Google Scholar 

  28. Pircher, N., Fischhuber, D., Carbajal, L., Strauß, C., Nedelec, J.-M., Kasper, C., Rosenau, T., Liebner, F.: Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromol. Mater. Eng. 300, 911–924 (2015). https://doi.org/10.1002/mame.201500048

    Article  CAS  Google Scholar 

  29. Toledo-Fernandez, J.A., Mendoza-Serna, R., Morales, V., de la Rosa-Fox, N., Pinero, M., Santos, A., Esquivias, L.: Bioactivity of wollastonite/aerogels composites obtained from a TEOS-MTES matrix. J. Mater. Sci. Mater. Med. 19, 2207–2213 (2008)

    Article  CAS  Google Scholar 

  30. Horvat, G., Xhanari, K., Finšgar, M., Gradišnik, L., Maver, U., Knez, Ž., Novak, Z.: Novel ethanol-induced pectin–xanthan aerogel coatings for orthopedic applications. Carbohydr. Polym. 166, 365–376 (2017). https://doi.org/10.1016/j.carbpol.2017.03.008

    Article  CAS  Google Scholar 

  31. Weng, L., Boda, S.K., Wang, H., Teusink, M.J., Shuler, F.D., **e, J.: Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration. Adv. Healthc. Mater. (2018). https://doi.org/10.1002/adhm.201701415

  32. Parandoush, P., Fan, H.X., Song, X.L., Lin, D.: Laser surface engineering of hierarchy hydroxyapatite aerogel for bone tissue engineering. J. Micro Nano-Manuf. 6, Artn 011007 (2018). https://doi.org/10.1115/1.4038669

    Article  Google Scholar 

  33. Goimil, L., Braga, M.E.M., Dias, A.M.A., Gomez-Amoza, J.L., Concheiro, A., Alvarez-Lorenzo, C., de Sousa, H.C., Garcia-Gonzalez, C.A.: Supercritical processing of starch aerogels and aerogel-loaded poly (epsilon-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. J. Co2 Util. 18, 237–249 (2017). https://doi.org/10.1016/j.jcou.2017.01.028

    Article  CAS  Google Scholar 

  34. Kuttor, A., Szaloki, M., Rente, T., Kerenyi, F., Bako, J., Fabian, I., Lazar, I., Jenei, A., Hegedus, C.: Preparation and application of highly porous aerogel-based bioactive materials in dentistry. Front. Mater. Sci. 8, 46–52 (2014). https://doi.org/10.1007/s11706-014-0231-2

    Article  Google Scholar 

  35. Veronovski, A., Novak, Z., Knez, Z.: Synthesis and use of organic biodegradable aerogels as drug carriers. J. Biomater. Sci. Polym. Ed. 23, 873–886 (2012). https://doi.org/10.1163/092050611x566126

    Article  CAS  Google Scholar 

  36. Gaudio, P.D., Auriemma, G., Mencherini, T., Porta, G.D., Reverchon, E., Aquino, R.P.: Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. J. Pharm. Sci. 102, 185–194 (2013). https://doi.org/10.1002/jps.23361

    Article  CAS  Google Scholar 

  37. Giray, S., Bal, T., Kartal, A.M., Kizilel, S., Erkey, C.: Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J. Biomed. Mater. Res. A. 100, 1307–1315 (2012). https://doi.org/10.1002/jbm.a.34056

    Article  CAS  Google Scholar 

  38. Smirnova, I., Suttiruengwong, S., Seiler, M., Arlt, W.: Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm. Dev. Technol. 9, 443–452 (2004)

    Article  CAS  Google Scholar 

  39. Garcia-Gonzalez, C.A., **, M., Gerth, J., Alvarez-Lorenzo, C., Smirnova, I.: Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr. Polym. 117, 797–806 (2015). https://doi.org/10.1016/j.carbpol.2014.10.045

    Article  CAS  Google Scholar 

  40. Veres, P., Lopez-Periago, A.M., Lazar, I., Saurina, J., Domingo, C.: Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Int. J. Pharm. 496, 360–370 (2015). https://doi.org/10.1016/j.ijpharm.2015.10.045

    Article  CAS  Google Scholar 

  41. Li, C.C., Chen, Y.T., Lin, Y.T., Sie, S.F., Chen-Yang, Y.W.: Mesoporous silica aerogel as a drug carrier for the enhancement of the sunscreen ability of benzophenone-3. Colloids Surf. B Biointerfaces. 115, 191–196 (2014). https://doi.org/10.1016/j.colsurfb.2013.11.011

    Article  CAS  Google Scholar 

  42. Li, Y.K., Chou, M.J., Wu, T.Y., **n, T.R., Chen-Yang, Y.W.: A novel method for preparing a protein-encapsulated bioaerogel: using a red fluorescent protein as a model. Acta Biomater. 4, 725–732 (2008)

    Article  CAS  Google Scholar 

  43. Gao, S.L., Wang, Y.J., Wang, T., Luo, G.S., Dai, Y.Y.: Immobilization of lipase on methyl-modified silica aerogels by physical adsorption. Bioresour. Technol. 100, 996–999 (2009)

    Article  CAS  Google Scholar 

  44. Rossi, B., Campia, P., Merlini, L., Brasca, M., Pastori, N., Farris, S., Melone, L., Punta, C., Galante, Y.M.: An aerogel obtained from chemo-enzymatically oxidized fenugreek galactomannans as a versatile delivery system. Carbohydr. Polym. 144, 353–361 (2016). https://doi.org/10.1016/j.carbpol.2016.02.007

    Article  CAS  Google Scholar 

  45. Arruebo, M.: Drug delivery from structured porous inorganic materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4, 16–30 (2012)

    Article  CAS  Google Scholar 

  46. Sher, P., Ingavle, G., Ponrathnam, S., Pawar, A.P.: Low density porous carrier – drug adsorption and release study by response surface methodology using different solvents. Int. J. Pharm. 331, 72–83 (2007)

    Article  CAS  Google Scholar 

  47. Ulker, Z., Erkey, C.: An emerging platform for drug delivery: aerogel based systems. J. Control. Release. 177, 51–63 (2014). https://doi.org/10.1016/j.jconrel.2013.12.033

    Article  CAS  Google Scholar 

  48. Veres, P., Sebok, D., Dekany, I., Gurikov, P., Smirnova, I., Fabian, I., Kalmar, J.: A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery. Carbohydr. Polym. 188, 159–167 (2018). https://doi.org/10.1016/j.carbpol.2018.01.098

    Article  CAS  Google Scholar 

  49. Gonçalves, V.S.S., Matias, A.A., Poejo, J., Serra, A.T., Duarte, C.M.M.: Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int. J. Pharm. 515, 1–10 (2016). https://doi.org/10.1016/j.ijpharm.2016.09.086

    Article  CAS  Google Scholar 

  50. Obaidat, R.M., Tashtoush, B.M., Bayan, M.F., Al Bustami, R.T., Alnaief, M.: Drying using supercritical fluid technology as a potential method for preparation of chitosan aerogel microparticles. AAPS PharmSciTech. 16, 1235–1244 (2015). https://doi.org/10.1208/s12249-015-0312-2

    Article  CAS  Google Scholar 

  51. Alnaief, M., Obaidat, R., Mashaqbeh, H.: Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydr. Polym. 180, 264–275 (2018). https://doi.org/10.1016/j.carbpol.2017.10.038

    Article  CAS  Google Scholar 

  52. Salmaso, S., Caliceti, P.: Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug Deliv. 2013, 19 (2013). https://doi.org/10.1155/2013/374252

    Article  CAS  Google Scholar 

  53. Chen, R., Pearce, D.J.G., Fortuna, S., Cheung, D.L., Bon, S.A.F.: Polymer vesicles with a colloidal armor of nanoparticles. J. Am. Chem. Soc. 133, 2151–2153 (2011)

    Article  CAS  Google Scholar 

  54. Sundararaj, S.C., Thomas, M.V., Peyyala, R., Dziubla, T.D., Puleo, D.A.: Design of a multiple drug delivery system directed at periodontitis. Biomaterials. 34, 8835–8842 (2013)

    Article  CAS  Google Scholar 

  55. T. A. Technologies Bilipidex. http://www.bilipidex-aerogel.com/bilipidex/. Accessed 8 May 2018

  56. Attia, Y.A.: Polymeric aerogel fibers and fiber webs. US Patent (2015)

    Google Scholar 

  57. Sabri, F., Sebelik, M.E., Meacham, R., Boughter Jr., J.D., Challis, M.J., Leventis, N.: In vivo ultrasonic detection of polyurea crosslinked silica aerogel implants. PLoS One. 8, e66348 (2013). https://doi.org/10.1371/journal.pone.0066348

    Article  CAS  Google Scholar 

  58. Li, V.C.F., Dunn, C.K., Zhang, Z., Deng, Y., Qi, H.J.: Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep. 7 (2017). https://doi.org/10.1038/s41598-017-07771-y

  59. Li, V.C.F., Mulyadi, A., Dunn, C.K., Deng, Y., Qi, H.J.: Direct ink write 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties. ACS Sustain. Chem. Eng. 6, 2011–2022 (2018). https://doi.org/10.1021/acssuschemeng.7b03439

    Article  CAS  Google Scholar 

  60. Foraida, Z.I., Kamaldinov, T., Nelson, D.A., Larsen, M., Castracane, J.: Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization. Acta Biomater. 62, 116–127 (2017). https://doi.org/10.1016/j.actbio.2017.08.009

    Article  CAS  Google Scholar 

  61. Rubenstein, D.A., Venkitachalam, S.M., Zamfir, D., Wang, F., Lu, H., Frame, M.D., Yin, W.: In vitro biocompatibility of sheath-core cellulose-acetate-based electrospun scaffolds towards endothelial cells and platelets. J. Biomater. Sci. Polym. Ed. 21, 1713–1736 (2010). https://doi.org/10.1163/092050609x12559317149363

    Article  CAS  Google Scholar 

  62. Markert, C.D., Guo, X., Skardal, A., Wang, Z., Bharadwaj, S., Zhang, Y., Bonin, K., Guthold, M.: Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. J. Mech. Behav. Biomed. Mater. 27, 115–127 (2013). https://doi.org/10.1016/j.jmbbm.2013.07.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yin or David A. Rubenstein .

Editor information

Editors and Affiliations

Glossary

Anaphylatoxins

A toxic substance formed in the blood that is associated with bacterial polysaccharides

Bolus Release

Administration of a drug over a relatively quick amount of time (less than 5 min) in comparison to a sustained delivery which can last over hours

Cytotoxicity

A quantification of the products that may have a toxic effect on cells

Hemolysis

The breakdown of red blood cells with the release of hemoglobin

Live/Dead Cell Cytotoxicity Assay

A measurement technique to quantify cell viability through the number of live and dead cells within the culture. Only live cells uptake calcein which is hydrolyzed by intracellular esterases to fluoresce green. Only cells with a compromised cell membrane (dead or dying cells) can uptake ethidium which binds to DNA to fluoresce red

Scaffold

A three-dimensional structure that can be used to direct cell growth or serve as a location for cell growth

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, W., Rubenstein, D.A. (2023). Biomedical Applications of Aerogels. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_57

Download citation

Publish with us

Policies and ethics

Navigation