Aerogels for High-Energy-Density Physics Targets

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1665 Accesses

Abstract

Aerogels have been exploited in targets for inertial confinement fusion (ICF) and other high-energy-density physics (HEDP) experiments for decades, dating back to the earliest experiments in those fields. Aerogels are ubiquitous in this realm of research and serve many roles in the experiments that utilize them. The combination of diverse properties and compositional flexibility achieved with aerogels is the reason for this: tunable density; mesoporosity (which ensures homogeneity at length scales of microns and greater); availability of a wide range of compositions; amenability to do**, machining, and casting; and being otherwise chemically and structurally versatile. In this chapter, we discuss the various organic and inorganic aerogel materials that have been used and the roles in which they have served ICF and HEDP experiments. In addition to aerogels, we will describe some other related low-density materials that, while perhaps not strictly considered aerogels, are still quite useful and commonly used in ICF/HEDP targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 353.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. National Research Council: Frontiers in High Energy Density Physics: The X-Games of Contemporary Science. The National Academies Press, Washington, DC (2003)

    Google Scholar 

  2. Gittingss, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E., Hueckstaedt, R., New, K., Oakes, W.R., Rantaand, D., Stefan, R.: The RAGE radiation-hydrodynamic code. Comput. Sci. Discovery. 1, 015005 (2008)

    Google Scholar 

  3. Drake, R.P., Norreys, P.: Focus on high energy density physics. New J. Phys. 16, 065007 (2014)

    CAS  Google Scholar 

  4. Drake, R.P.: Introduction to high energy density physics. In: High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics Graduate Texts in Physics. Springer, Cham (2018)

    Google Scholar 

  5. Fortov, V.E.: Introduction. In: Extreme States of Matter: High Energy Density Physics Springer Series in Materials Science, vol. 216. Springer, Cham (2006)

    Google Scholar 

  6. Moses, E.I.: Overview of the national ignition facility. Fusion Sci. Technol. 54, 361 (2008)

    CAS  Google Scholar 

  7. Boehly, T.R., Brown, D.L., Craxton, R.S., Keck, R.L., Knauer, J.P., Kelly, J.H., Kessler, T.J., Kumpan, S.A., Loucks, S.J., Letzring, S.A., Marshall, F.J., McCrory, R.L., Morse, S.F.B., Seka, W., Soures, J.M., Verdon, C.P.: Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495 (1997)

    CAS  Google Scholar 

  8. Hopps, N., Oades, K., Andrew, J., Brown, C., Cooper, G., Danson, C., Daykin, S., Duffield, S., Edwards, R., Egan, D., Elsmere, S., Gales, S., Girling, M., Gumbrell, E., Harvey, E., Hillier, D., Hoarty, D., Horseld, C., James, S., Leatherland, A., Masoero, S., Meadowcroft, A., Norman, M., Parker, S., Rothman, S., Rubery, M., Treadwell, P., Winter, D., Bett, T.: Comprehensive description of the Orion laser facility. Plasma Phys. Control. Fusion. 57, 064002 (2015)

    Google Scholar 

  9. Azechi, H., Mima, K., Fujimoto, Y., Fujioka, S., Homma, H., Isobe, M., Iwamoto, A., Jitsuno, T., Johzaki, T., Kodama, R., Koga, M., Kondo, K., Kawanaka, J., Mito, T., Miyanaga, N., Motojima, O., Murakami, M., Nagatomo, H., Nagai, K., Nakai, M., Nakamura, H., Nakamura, T., Nakazato, T., Nakao, Y., Nishihara, K., Nishimura, H., Norimatsu, T., Ozaki, T., Sakagami, H., Sakawa, Y., Sarukura, N., Shigemori, K., Shimizu, T., Shiraga, H., Sunahara, A., Taguchi, T., Tanaka, K.A., Tsubakimoto, K.: Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) Project. Nucl. Fusion. 49, 104024 (2009)

    Google Scholar 

  10. Miquel, J.-L., Lion, C.: Vivini: the laser mega-joule: LMJ & PETAL status and program overview. J. Phys. Conf. Ser. 688, 012067 (2016)

    Google Scholar 

  11. Savage, M.E., LeChien, K.R., Lopez, M.R., Stoltzfus, B.S., Stygar, W.A., Artery, D.S., Lott, J.A., Corcoran, P.A.: Status of the Z pulsed power driver. In: IEEE Pulsed Power Conference, Proc 2011, p. 983 (2011)

    Google Scholar 

  12. Nuckolls, J., Wood, L., Thiessen, A., Zimmerman, G.: Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature. 239, 139 (1972)

    CAS  Google Scholar 

  13. Lindl, J.: Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas. 2, 3933 (1995)

    CAS  Google Scholar 

  14. McCrory, R.L., Meyerhofer, D.D., Betti, R., Craxton, R.S., Delettrez, J.A., Edgell, D.H., Glebov, V.Y., Goncharov, V.N., Harding, D.R., Jacobs-Perkins, D.W., Knauer, J.P., Marshall, F.J., McKenty, P.W., Radha, P.B., Regan, S.P., Sangster, T.C., Seka, W., Short, R.W., Skupsky, S., Smalyuk, V.A., Soures, J.M., Stoeckl, C., Yaakobi, B., Shvarts, D., Frenje, J.A., Li, C.K., Petrasso, R.D., Séguin, F.H.: Progress in direct-drive inertial confinement fusion. Phys. Plasmas. 15, 055503 (2008)

    Google Scholar 

  15. Chen, S.N., Iwawaki, T., Morita, K., Antici, P., Baton, S.D., Filippi, F., Habara, H., Nakatsutsumi, M., Nicolae, P., Nazarov, W., Rousseaux, C., Starodubstev, M., Tanaka, K.A., Fuchs, J.: Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam. Sci. Rep. 6, 21495 (2016)

    CAS  Google Scholar 

  16. Kodama, R., Mochizuki, T., Tanaka, K.A., Yamanaka, C., Sasaki, W.: Enhancement of keV x-ray emission in laser-produced plasmas by a weak prepulse laser. Appl. Phys. Lett. 50, 720 (1987)

    CAS  Google Scholar 

  17. Nagai, K., Musgrave, C.S.A., Nazarov, W.A.: A review of low-density porous materials used in laser plasma experiments. Phys. Plasmas. 25, 030501 (2018)

    Google Scholar 

  18. Morris, C.A., Anderson, M.L., Stroud, R.M., Merzbacher, C.I., Rolison, D.R.: Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science. 284, 622 (1999)

    CAS  Google Scholar 

  19. Kim, N.K., Kim, K., Payne, D.A., Upadhye, R.S.: Fabrication of hollow silica aerogel spheres by a droplet generation method and sol–gel processing. J. Vac. Sci. Technol. A. 7, 1181 (1989)

    CAS  Google Scholar 

  20. Jang, K.Y., Kim, K., Upadhye, R.S.: Study of sol–gel processing for fabrication of hollow silica–aerogel spheres. J. Vac. Sci. Technol. A. 8, 1732 (1990)

    CAS  Google Scholar 

  21. Kim, K.K., Jang, K.Y.: Hollow silica spheres of controlled size and porosity by sol-gel processing. J. Am. Ceram. Soc. 74, 1987 (1991)

    CAS  Google Scholar 

  22. Teyssier, R., Ryutov, D., Remington, B.: Accelerating shock waves in a laser-produced density gradient. Astrophys. J. Suppl. Ser. 127, 503 (2000)

    Google Scholar 

  23. Remington, B.A., Kane, J., Drake, R.P., Glendinning, S.G., Estabrook, K., London, R., Castor, J., Wallace, R.J., Arnett, D., Liang, E., McCray, R., Rubenchik, A., Fryxel, B.: Supernova hydrodynamics experiments on the Nova laser. Phys. Plasmas. 4, 1994 (1997)

    CAS  Google Scholar 

  24. Koenig, M., Benuzzi-Mounaix, A., Philippe, F., Faral, B., Batani, D., Hall, T.A., Grandjouan, N., Nazarov, W., Chieze, J.P., Teyssier, R.: Laser driven shock wave acceleration experiments using plastic foams. Appl. Phys. Lett. 75, 3026 (1999)

    CAS  Google Scholar 

  25. Koenig, M., Michaut, C., Loupias, B., Falize, E., Gregory, C., Kuramitsu, Y., Dono, S., Vinci, T., Waugh, J., Woolsey, N., Ozaki, N., Benuzzi-Mounaix, A., Ravasio, A., Bouquet, S., Le Goahec, M.R., Nazarov, W., Pikuz, S., Sakawa, Y., Takabe, H., Kodama, R.: Recent laboratory astrophysics experiments at LULI. Plasma Fus. Res. Rev. Art. 4, 44 (2009)

    Google Scholar 

  26. Gui, J., Zhou, B., Zhong, Y., Du, A., Shen, J.: Fabrication of gradient density SiO2 aerogel. J. Sol-Gel Sci. Technol. 58, 470 (2011)

    CAS  Google Scholar 

  27. Jones, S.M.: A method for producing gradient density aerogel. J. Sol-Gel Sci. Technol. 44, 255 (2007)

    CAS  Google Scholar 

  28. Borisenko, N.G., Akunets, A.A., Artyukov, I.A., Gorodnichev, K.E., Merkuliev, Y.A.: X-ray tomography of growing silica gel with a density gradient. Fusion Sci. Technol. 55, 477 (2009)

    CAS  Google Scholar 

  29. Barnyakov, A.Y., Barnyakov, M.Y., Bobrovnikov, V.S., BuzyKaev, A.R., Danilyuk, A.F., Kirillov, V.L., Kononov, S.A., Kravchenko, E.A., Onuchin, A.P.: Focusing aerogel RICH (FARICH). Nucl. Instrum. Methods A. 553, 70 (2005)

    CAS  Google Scholar 

  30. Adachi, I., Fratina, S., Fukushima, T., Gorisek, A., Iijima, T., Kawai, H., Konishi, M., Korpar, S., Kozakai, Y., Krizan, P., Matsumoto, T., Mazuka, Y., Nishida, S., Ogawa, S., Ohtake, S., Pestotnik, R., Saitoh, S., Seki, T., Sumiyoshi, T., Tabata, M., Uchida, Y., Unno, Y., Yamamoto, S.: Study of highly transparent silica aerogel as a RICH radiator. Nucl. Instrum. Methods A. 553, 146 (2005)

    CAS  Google Scholar 

  31. Amendt, P., Colvin, J.D., Ramshaw, J.D., Robey, H.F., Landen, O.L.: Modified Bell–Plesset effect with compressibility: application to double-shell ignition target designs. Phys. Plasmas. 10, 820 (2003)

    CAS  Google Scholar 

  32. Kyrala, G.A., Delamater, N., Wilson, D., Guzik, J., Haynes, D., Gunderson, M., Klare, K., Watt, R.W., Wood, W.M., Varnum, W.: Direct drive double shell target implosion hydrodynamics on OMEGA. Laser Part. Beams. 23, 187 (2005)

    CAS  Google Scholar 

  33. Bono, M., Bennett, D., Castro, C., Satcher, J., Poco, J., Brown, B., Martz, H., Teslich, N., Hibbard, R., Hamza, A., Amendt, P., Robey, H., Milovich, J., Wallace, R.: Fabrication of double shell targets with a glass inner capsule supported by SiO2 aerogel for shots on the omega laser in 2006. Fusion Sci. Technol. 51, 611 (2007)

    CAS  Google Scholar 

  34. Tobin, M., Andrew, J., Haupt, D., Mann, K., Poco, J., Satcher, J., Curran, D., Tokheim, R., Eder, D.: Using silica aerogel to characterize hypervelocity shrapnel produced in high power laser experiments. Int. J. Impact Eng. 29, 713 (2003)

    Google Scholar 

  35. Lescoute, E.E., De Rességuier, T., Chevalier, J.-M.: Gel versus aerogel to collect high velocity ejectas from laser shock-loaded metallic targets for post recovery analyses. AIP Conf. Proc. 1426, 120 (2012)

    CAS  Google Scholar 

  36. Girard, F.: Review of laser produced multi-keV X-ray sources from metallic foils, cylinders with liner, and low-density aerogels. Phys. Plasmas. 23, 040501 (2016)

    Google Scholar 

  37. Fournier, K.B., Constantin, C., Poco, J., Miller, M.C., Back, C.A., Suter, L.J., Satcher, J., Davis, J., Grun, J.: Efficient multi-keV X-ray sources from Ti-doped aerogel targets. Phys. Rev. Lett. 92, 165005 (2004)

    CAS  Google Scholar 

  38. Pérez, F., Patterson, J.R., May, M., Colvin, J.D., Biener, M.M., Wittstock, A., Kucheyev, S.O., Charnvanichborikarn, S., Satcher, J.H., Gammon, S.A., Poco, J.F., Fujioka, S., Zhang, Z., Ishihara, K., Tanaka, N., Ikenouchi, T., Nishimura, H., Fournier, K.B.: Bright x-ray sources from laser irradiation of foams with high concentration of Ti. Phys. Plasmas. 21, 023102 (2014)

    Google Scholar 

  39. Clapsaddle, B.J., Sprehn, D.W., Gash, A.E., Satcher Jr., J.H., Simpson, R.L.: A versatile sol–gel synthesis route to metal–silicon mixed oxide nanocomposites that contain metal oxides as the major phase. J. Non-Cryst. Solids. 350, 173 (2004)

    CAS  Google Scholar 

  40. Fournier, K.B., Satcher, J.H., May, M.J., Poco, J.F., Sorce, C.M., Colvin, J.D., Hansen, S.B., Maclaren, S.A., Moon, S.J., Davis, J.F., Girard, F.: Absolute X-ray yields from laser-irradiated germanium-doped low-density aerogels. Phys. Plasmas. 16, 052703 (2009)

    Google Scholar 

  41. Xu, W., Du, A., Tang, J., Yan, P., Li, X., Zhang, Z., Shen, J., Zhou, B.: Template confined synthesis of Cu- or Cu2O-doped SiO2 aerogels from cu(II)-containing composites by in situ alcohothermal reduction. RSC Adv. 4, 49541–49546 (2014)

    CAS  Google Scholar 

  42. Hamilton, C.E., Honnell, D., Patterson, B.M., Schmidt, D.W., DeFriend Obrey, K.A.: Incorporation of tracer elements within aerogels and CH foams. Fusion Sci. Technol. 59, 194 (2011)

    CAS  Google Scholar 

  43. Hund, J.F., Bertino, M.F., Zhang, G., Sotiriou-Leventis, C., Leventis, N.: Synthesis of homogeneous alloy metal clusters in silica aerogels. J. Non-Cryst. Solids. 350, 9 (2004)

    CAS  Google Scholar 

  44. Hund, J.F., McElfresh, J., Frederick, C.A., Nikroo, A., Greenwood, A.L., Luo, W.: Fabrication and characterization of aluminum oxide aerogel backlighter targets. Fusion Sci. Technol. 51, 701 (2007)

    CAS  Google Scholar 

  45. Pérez, F., Kay, J.J., Patterson, J.R., Kane, J., Villette, B., Girard, F., Reverdin, C., May, M., Emig, J., Sorce, C., Colvin, J., Gammon, S., Jaquez, J., Satcher Jr., J.H., Fournier, K.B.: Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets. Phys. Plasmas. 19, 083101 (2012)

    Google Scholar 

  46. Hund, J.F., Paguio, R.R., Frederick, C.A., Nikroo, A., Thi, M.: Silica, metal oxide, and doped aerogel development for target applications. Fusion Sci. Technol. 49, 669 (2006)

    CAS  Google Scholar 

  47. Back, C.A., Bauer, J.D., Hammer, J.H., Lasinski, B.F., Turner, R.E., Rambo, P.W., Landen, O.L., Suter, L.J., Rosen, M.D., Hsing, W.W.: Diffusive, supersonic x-ray transport in radiatively heated foam cylinders. Phys. Plasmas. 7, 2126 (2000)

    CAS  Google Scholar 

  48. Frederick, C.A., Forsman, A.C., Hund, J.F., Eddinger, S.A.: Fabrication of Ta2O5 aerogel targets for radiation transport experiments using thin film fabrication and laser processing. Fusion Sci. Technol. 55, 499 (2009)

    CAS  Google Scholar 

  49. Capelli, D., Charsley-Groffman, C.A., Randolph, R.B., Schmidt, D.W., Cardenas, T., Fierro, F., Rivera, G., Hamilton, C.E., Hager, J.D., Johns, H.M., Lanier, N.E., Kline, J.L.: Develo** targets for radiation transport experiments at the Omega laser facility. High-Power Laser Sci. Eng. 5, e15 (2017)

    Google Scholar 

  50. Rosen, M.D., Hammer, J.H.: Analytic expressions for optimal inertial-confinement-fusion Hohlraum wall density and wall loss. Phys. Rev. E. 72, 056403 (2005)

    Google Scholar 

  51. Young, P.E., Rosen, M.D., Hammer, J.H., Hsing, W.S., Glendinning, S.G., Turner, R.E., Kirkwood, R., Schein, J., Sorce, C., Satcher Jr., J.H., Hamza, A., Reibold, R.A., Hibbard, R., Landen, O., Reighard, A., McAlpin, S., Stevenson, M., Thomas, B.: Demonstration of the density dependence of x-ray flux in a laser-driven Hohlraum. Phys. Rev. Lett. 101, 035001 (2008)

    CAS  Google Scholar 

  52. Bhandarkar, S., Baumann, T., Alfonso, N., Thomas, C., Baker, K., Moore, A., Larson, C., Bennett, D., Sain, J., Nikroo, A.: Fabrication of low-density foam liners in Hohlraums for NIF targets. Fusion Sci. Technol. 73, 194 (2018)

    Google Scholar 

  53. Fitzsimmons, P., Elsner, F., Paguio, R., Nikroo, A., Thomas, C., Baker, K., Huang, H., Schoff, M., Kaczala, D., Reynolds, H., Felker, S., Farrell, M., Watson, B.J.: Zinc oxide–coated poly(HIPE) annular liners to advance laser indirect drive inertial confinement fusion. Fusion Sci. Technol. 73, 210 (2018)

    Google Scholar 

  54. Hauer, A.A., Suter, L., Delamater, N., Ress, D., Powers, L., Magelssen, G., Harris, D., Landen, O., Lindmann, E., Hsing, W., Wilson, D., Amendt, P., Thiessen, R., Kopp, R., Phillion, D., Hammel, B., Baker, D., Wallace, J., Turner, R., Cray, M., Watt, R., Kilkenny, J., Mack, J.: The role of symmetry in indirect-drive laser fusion. Phys. Plasmas. 2, 2488 (1995)

    CAS  Google Scholar 

  55. Amendt, P., Glendinning, S.G., Hammel, B.A., Hay, R.G., Suter, L.J.: Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry. Rev. Sci. Instrum. 66, 785 (1995)

    CAS  Google Scholar 

  56. Hanson, D.L., Vesey, R.A., Cuneo, M.E., Porter, J.L., Chandler, G.A., Ruggles, L.E., Simpson, W.W., Torres, J., McGurn, J., Hebron, D., Dropinski, S.C., Hammer, J.H., Bennett, G.R., Seaman, H., Gilliland, T.L., Schroen, D.G.: Measurement of radiation symmetry in Z-pinch-driven hohlraums. Phys. Plasmas. 9, 2173 (2002)

    CAS  Google Scholar 

  57. Hair, L.M., Pekala, R.W., Stone, R.E., Chen, C., Buckley, S.R.: Low-density resorcinol–formaldehyde aerogels for direct-drive laser inertial confinement fusion targets. J. Vac. Sci. Technol. A. 6, 2559 (1988)

    CAS  Google Scholar 

  58. Paguio, R.R., Frederick, C.A., Hund, J.F.: Fabrication of modified resorcinol formaldehyde density and tin doped foam shells and beads for direct drive experiments. Polym. Mater. Sci. Eng. 95, 872 (2006)

    CAS  Google Scholar 

  59. Overturf, G.E., Cook, R., Letts, S.A., Buckley, S.R., McClellan, M.R., Schroen-Carey, D.: Resorcinol/formaldehyde foam shell targets for ICF. Fusion Technol. 28, 1803 (1995)

    CAS  Google Scholar 

  60. Frederick, C.A., Paguio, R.R., Nikroo, A., Hund, J.F., Acennas, O., Thi, M.: Controlling the pore size and gelation time of resorcinol formaldehyde foam for fabrication of direct drive targets for ICF experiments. Fusion Sci. Technol. 49, 657 (2006)

    CAS  Google Scholar 

  61. Paguio, R., Saito, K., Hund, J., Jimenez, R.: Synthesis of resorcinol formaldehyde aerogel using UV photo-initiators for inertial confinement fusion experiments. Mater. Res. Soc. Symp. Proc. 1306, Mrsf10-1306-bb12-05 (2011)

    Google Scholar 

  62. Streit, J., Shroen, D.: Development of divinylbenzene foam shells for use as inertial fusion energy reactor targets. Fusion Sci. Technol. 43, 321 (2003)

    CAS  Google Scholar 

  63. Paguio, R.R., Nikroo, A., Takagi, M., Acenas, O.: Fabrication and overcoating of divinylbenzene foam shells using dual initiators. J. Appl. Polym. Sci. 101, 2523 (2006)

    CAS  Google Scholar 

  64. Schroen, D., Overturf III, G.E., Reibold, R., Buckley, S.R., Letts, S.A., Cook, R.: Hollow foam microshells for liquid-layered cryogenic inertial confinement fusion targets. J. Vac. Sci. Technol. A. 13, 5 (1995)

    Google Scholar 

  65. Viza, N.D., Harding, D.R.: Performance of different “lab-on-Chip” geometries for making double emulsions to form polystyrene shells. Fusion Sci. Technol. 73, 248 (2018)

    Google Scholar 

  66. Wang, W., Jones, T.B., Harding, D.R.: On-Chip double emulsion droplet assembly using electrowetting-on-dielectric and dielectrophoresis. Fusion Sci. Technol. 59, 240 (2011)

    CAS  Google Scholar 

  67. Lee, J., Gould, G.: Polydicyclopentadiene based aerogel: a new insulation material. J. Sol-Gel Sci. Technol. 44, 29 (2007)

    CAS  Google Scholar 

  68. Biener, J., Dawedeit, C., Kim, S.H., Braun, T., Worsley, M.A., Chernov, A.A., Walton, C.C., Willey, T.M., Kucheyev, S.O., Shin, S.J., Wang, Y.M., Biener, M.M., Lee, J.R.I., Kozioziemski, B.J., van Buuren, T., Wu, K.J.J., Satcher Jr., J.H., Hamza, A.V.: A new approach to foam-lined indirect-drive NIF ignition targets. Nucl. Fusion. 52, 062001 (2012)

    Google Scholar 

  69. Braun, T., Kim, S.H., Biener, M.M., Hamza, A.V., Biener, J.: Supercritical drying of wet gel layers generated inside ICF ablator shells. Fusion Sci. Technol. 73, 229 (2017)

    Google Scholar 

  70. Olson, R.E., Leeper, R.J., Kline, J.L., Zylstra, A.B., Yi, S.A., Biener, J., Braun, T., Kozioziemski, B.J., Sater, J.D., Bradley, P.A., Peterson, R.R., Haines, B.M., Yin, L., Berzak Hopkins, L.F., Meezan, N.B., Walters, C., Biener, M.M., Kong, C., Crippen, J.W., Kyrala, G.A., Shah, R.C., Herrmann, H.W., Wilson, D.C., Hamza, A.V., Nikroo, A., Batha, S.H.: First liquid layer inertial confinement fusion implosions at the National Ignition Facility. Phys. Rev. Lett. 117, 245001 (2016)

    CAS  Google Scholar 

  71. Nemoto, N., Nagai, K., Ono, Y., Tanji, K., Tanji, T., Nakai, M., Norimatsu, T.: Polystyrene based foam materials for cryogenic targets of fast ignition realization experiment (FIREX). Fusion Sci. Technol. 49, 695 (2006)

    CAS  Google Scholar 

  72. Watari, T., Nakai, M., Azechi, H., Sakaiya, T., Shiraga, H., Shigemori, K., Fujioka, S., Otani, K., Nagai, K., Sunahara, A., Nagatomo, H., Mima, K.: Rayleigh–Taylor instability growth on low-density foam targets. Phys. Plasmas. 15, 092109 (2008)

    Google Scholar 

  73. Baumann, T.F., Fox, G.A., Satcher Jr., J.H., Yoshizawa, N., Fu, R., Dresselhaus, M.S.: Synthesis and characterization of copper-doped carbon aerogels. Langmuir. 18, 7073 (2002)

    CAS  Google Scholar 

  74. Steiner III, S.A., Baumann, T.F., Kong, J., Satcher Jr., J.H., Dresselhaus, M.S.: Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir. 23, 5161 (2007)

    CAS  Google Scholar 

  75. Fu, R., Baumann, T.F., Cronin, S., Dresselhaus, G., Dresselhaus, M.S., Satcher Jr., J.H.: Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. Langmuir. 21, 264 (2005)

    Google Scholar 

  76. Falconer, J.W., Nazarov, W., Horsfield, C.J.: In situ production of very low density microporous polymeric foams. J. Vac. Sci. Technol. A. 13, 1941 (1995)

    CAS  Google Scholar 

  77. Falconer, J.W., Golnazarians, W., Baker, M.J., Sutton, D.W.: Fabrication of cylindrical, microcellular foam-filled targets for laser-driven experiments. J. Vac. Sci. Technol. A. 8, 968 (1990)

    CAS  Google Scholar 

  78. Watt, R.G., Wilson, D.C., Chrien, R.E., Hollis, R.V., Gobby, P.L., Mason, R.J., Kopp, R.A., Lerche, R.A., Kalantar, D.H., MacGowan, B., Nelson, M.B., Phillips, T., McKenty, P.W., Willi, O.: Foam-buffered spherical implosions at 527 nm. Phys. Plasmas. 4, 1379 (1997)

    CAS  Google Scholar 

  79. Borisenko, N.G., Gromov, A.I., Merkulev, Y.A., Mitrofanov, A.V., Nazarov, W.: Regular foams, loaded foams and capsule suspension in the foam for Hohlraums in ICF. Fusion Technol. 38, 115 (2000)

    CAS  Google Scholar 

  80. Faith, D., Nazarov, W., Horsfield, C.: Characterisation of gold particles of various size distributions in low density foams for radiation transport experiments. Fusion Sci. Technol. 45, 90 (2004)

    CAS  Google Scholar 

  81. Olson, R.E., Leeper, R.J.: Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules. Phys. Plasmas. 20, 092705 (2013)

    Google Scholar 

  82. Murphy, T.J., Douglas, M.R., Fincke, J.R., Olson, R.E., Cobble, J.A., Haines, B.M., Hamilton, C.E., Lee, M.N., Oertel, J.A., Parra-Vasquez, N.A.G., Randolph, R.B., Schmidt, D.W., Shah, R.C., Smidt, J.M., Tregillis, I.L.: Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National Ignition Facility. J. Phys. Conf. Ser. 717, 012072 (2016)

    Google Scholar 

  83. Borisenko, N.G., Akimova, I.V., Gromov, A.I., Khalenkov, A.M., Merkuliev, Y.A., Kondrashov, V.N., Limpouch, J., Kuba, J., Krousky, E., Masek, K., Nazarov, W., Pimenov, V.G.: Regular 3-D networks with clusters for controlled energy transport studies in laser plasma near critical density. Fusion Sci. Technol. 49, 676 (2006)

    CAS  Google Scholar 

  84. Borisenko, N.G., Khalenkov, A.M., Kmetik, V., Limpouch, J., Merkuliev, Y.A., Pimenov, V.G.: Plastic aerogel targets and optical transparency of undercritical microheterogeneous plasma. Fusion Sci. Technol. 51, 655 (2007)

    CAS  Google Scholar 

  85. Zhong, Y., Zhou, B., Gui, J., Du, A., Zhang, Z., Shen, J.: Fabrication of multilayer graded density peeled-carbon-aerogel target. Fusion Eng. Des. 86, 238 (2011)

    CAS  Google Scholar 

  86. Borisenko, N.G., Nazarov, W., Musgrave, C.S.A., Merkuliev, Y.A., Orekhov, A.S., Borisenko, L.A.: Characterization of divinyl benzene aerogels with density gradient using X-ray tomography technique. J. Radioanal. Nucl. Chem. 299, 961 (2014)

    CAS  Google Scholar 

  87. Antolak, A.J., Morse, D.H., Hebron, D.E., Leeper, R.J., Schroen-Carey, D.: Characterizing the uniformity of polystyrene and TPX z-pinch fusion targets by nuclear microscopy. Fusion Eng. Des. 46, 37 (1999)

    CAS  Google Scholar 

  88. Grosse, M., Guillot, L., Reneaume, B., Fleury, E., Hermerel, C., Choux, A., Jeannot, L., Geoffray, I., Faivre, A., Breton, O., Andre, J., Collier, R., Legaie, O.: TPX foams for inertial fusion laser experiments: foam preparation, machining, characterization, and discussion of density issues. Fusion Sci. Technol. 59, 205 (2017)

    Google Scholar 

  89. Nagai, K., Norimatsu, T., Izawa, Y.: Control of micro-and nano-structure in ultralow-density hydrocarbon foam. Fusion Sci. Technol. 45, 79 (2004)

    CAS  Google Scholar 

  90. Varnum, W.S., Delamater, N.D., Evans, S.C., Gobby, P.L., Moore, J.E., Wallace, J.M., Watt, R.G., Colvin, J.D., Turner, R., Glebov, V., Soures, J., Stoeckl, C.: Progress toward ignition with noncryogenic double-shell capsules. Phys. Rev. Lett. 84, 5153 (2000)

    CAS  Google Scholar 

  91. Cardenas, T., Schmidt, D.W., Loomis, E.N., Randolph, R.B., Hamilton, C.E., Oertel, J., Patterson, B.M., Henderson, K., Wilson, D.C., Merritt, E., Montgomery, D., Daughton, W., Dodd, E., Palaniyappan, S., Kline, J., Batha, S., Huang, H., Hoppe, M.L., Schoff, M., Rice, N., Nikroo, A., Wang, M., Seugling, R., Bennett, D., Johnson, S., Castro, C.: Progress toward fabrication of machined metal shells for the first double-shell implosions at the National Ignition Facility. Fusion Sci. Technol. 73, 344 (2018)

    Google Scholar 

  92. Randolph, R.B., Oertel, J.A., Cardenas, T., Hamilton, C.E., Schmidt, D.W., Patterson, B.M., Fierro, F., Capelli, D.: Dry-machining of aerogel foams, CH foams, and specially engineered foams using turn-milling techniques. Fusion Sci. Technol. 73, 187 (2018)

    Google Scholar 

  93. Paguio, R.R., Hund, J.F., Blue, B.E., Schroen, D.G., Saito, K.M., Frederick, C.A., Strauser, R.J., Quan, K.: Embedding sapphire spheres in resorcinol formaldehyde aerogel for astrophysical jet experiments. Fusion Sci. Technol. 55, 484 (2009)

    CAS  Google Scholar 

  94. Chrien, R.E., Hoffman, N.M., Colvin, J.D., Keane, C.J., Landen, O.L., Hammel, B.A.: Fusion neutrons from the gas–pusher interface in deuterated-shell inertial confinement fusion implosions. Phys. Plasmas. 5, 768 (1998)

    CAS  Google Scholar 

  95. Regan, S.P., Epstein, R., Hammel, B.A., Suter, L.J., Scott, H.A., Barrios, M.A., Bradley, D.K., Callahan, D.A., Cerjan, C., Collins, G.W., Dixit, S.N., Doppner, T., Edwards, M.J., Farley, D.R., Fournier, K.B., Glenn, S., Glenzer, S.H., Golovkin, I.E., Haan, S.W., Hamza, A., Hicks, D.G., Izumi, N., Jones, O.S., Kilkenny, J.D., Kline, J.L., Kyrala, G.A., Landen, O.L., Ma, T., MacFarlane, J.J., MacKinnon, A.J., Mancini, R.C., McCrory, R.L., Meezan, N.B., Meyerhofer, D.D., Nikroo, A., Park, H.-S., Ralph, J., Remington, B.A., Sangster, T.C., Smalyuk, V.A., Springer, P.T., Town, R.P.J.: Hot-spot mix in ignition-scale inertial confinement fusion targets. Phys. Rev. Lett. 111, 045001 (2013)

    CAS  Google Scholar 

  96. Hamilton, C.E., Lee, M.N., Parra-Vasquez, A.N.G.: Development of hierarchical, tunable pore size polymer foams for ICF targets. Fusion Sci. Technol. 70, 226 (2016)

    Google Scholar 

  97. Hayes, J.R., Nyce, G.W., Kuntz, J.D., Satcher, J.H., Hamza, A.V.: Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity. Nanotechnology. 18, 275602 (2007)

    Google Scholar 

  98. Bono, M.J., Langstaff, G.Q., Cervantes, O., Akaba, C.M., Strodtbeck, S.R., Hamza, A.V., Teslich, N.E., Foreman, R.J., Lotscher, J.P., Nyce, G., Page, R.H., Dittrich, T.R., Glendinning, G.: Nanoporous metal components bonded with sputtered solder for equation-of-state laser targets. Fusion Sci. Technol. 55, 318 (2009)

    CAS  Google Scholar 

  99. Kim, S.H., Bazin, N., Shaw, J.I., Yoo, J.-H., Worsley, M.A., Satcher Jr., J.H., Sain, J.D., Kuntz, J.D., Kucheyev, S.O., Baumann, T.F., Hamza, A.V.: Synthesis of nanostructured/macroscopic low-density copper foams based on metal-coated polymer core–shell particles. ACS Appl. Mater. Interfaces. 8, 34706 (2016)

    CAS  Google Scholar 

  100. Gu, Q., Nagai, K., Norimatsu, T., Fujioka, S., Nishimura, H., Nishihara, K., Miyanaga, N., Izawa, Y.: Preparation of low-density macrocellular tin dioxide foam with variable window size. Chem. Mater. 17, 1115 (2005)

    CAS  Google Scholar 

  101. Lee, M.N., Santiago-Cordoba, M.A., Hamilton, C.E., Subbaiyan, N.K., Duque, J.G., Obrey, K.A.D.: Develo** monolithic nanoporous gold with hierarchical bicontinuity using colloidal bijels. J. Phys. Chem. Lett. 5, 809 (2014)

    CAS  Google Scholar 

  102. Charnvanichborikarn, S., Shin, S.J., Worsley, M.A., Tran, I.C., Willey, T.M., van Buuren, T., Felter, T.E., Colvin, J.D., Kucheyev, S.O.: Nanoporous Cu–C composites based on carbon-nanotube aerogels. J. Mater. Chem. A. 2, 962 (2014)

    CAS  Google Scholar 

  103. Charnvanichborikarn, S., Worsley, M.A., Bagge-Hansen, M., Colvin, J.D., Felter, T.E., Kucheyev, S.O.: Ice templating synthesis of low-density porous Cu–C nanocomposites. J. Mater. Chem. A. 2, 18600 (2014)

    CAS  Google Scholar 

  104. Pérez, F., Colvin, J.D., May, M.J., Charnvanichborikarn, S., Kucheyev, S.O., Felter, T.E., Fournier, K.B.: High-power laser interaction with low-density C–Cu foams. Phys. Plasmas. 22, 113112 (2015)

    Google Scholar 

  105. Fears, T.M., Hammons, J.A., Sain, J.D., Nielsen, M.H., Braun, T., Kucheyev, S.O.: Ultra-low-density silver aerogels via freeze substitution. APL Mater. 6, 091103 (2018)

    Google Scholar 

  106. Qian, F., Lan, P.C., Freyman, M.C., Chen, W., Kou, T., Olson, T.Y., Zhu, C., Worsley, M.A., Duoss, E.B., Spadaccini, C.M., Baumann, T., Han, T.Y.-J.: Ultralight conductive silver nanowire aerogels. Nano Lett. 17, 7171 (2017)

    CAS  Google Scholar 

  107. Rocher, S., Botrel, R., Durut, F., Chicanne, C., Theobald, M., Vignal, V.: Ultra-low density metallic foams synthesized by contact glow discharge electrolysis (CGDE) for laser experiments. Eur. Phys. J. Appl. Phys. 81, 10803 (2018)

    Google Scholar 

  108. Botrel, R.: Ultra-low density metallic foams synthesized by cathodic plasma electrolysis. Electrochem. Soc. Meeting Abstracts, May 2018, MA2018-01 2616

    Google Scholar 

  109. Nagai, K., Miyamoto, K., Iyoda, T., Pan, C., Gu, Z.: Monolithic and low-density (<50 mg/cm3) metal oxides fabricated using electrospinning: vanadium oxide and copper oxide examples. Fusion Sci. Technol. 59, 216 (2011)

    CAS  Google Scholar 

  110. Pan, C., Gu, Z.-Z., Nagai, K., Shimada, Y., Hashimoto, K., Birou, T., Norimatsu, T.: Target with controllable microstructure and thickness for generating extreme ultraviolet light. J. Appl. Phys. 100, 016104 (2006)

    Google Scholar 

  111. Purvis, M.A., Shlyaptsev, V.N., Hollinger, R., Bargsten, C., Pukhov, A., Prieto, A., Wang, Y., Luther, B.M., Yin, L., Wang, S., Rocca, J.J.: Relativistic plasma nanophotonics for ultrahigh energy density physics. Nat. Photonics. 7, 796 (2013)

    CAS  Google Scholar 

  112. Cardenas, T., Schmidt, D.W., Peterson, D.S.: Additive manufacturing capabilities applied to inertial confinement fusion at Los Alamos National Laboratory. Fusion Sci. Technol. 70, 288 (2016)

    Google Scholar 

  113. Bernat, T.P., Campbell, J.H., Petta, N., Sakellari, I., Koo, S., Yoo, J.-H., Grigoropoulos, C.: Fabrication of micron-scale cylindrical tubes by two-photon polymerization. Fusion Sci. Technol. 70, 310 (2016)

    Google Scholar 

  114. Zhou, X., Hou, Y., Lin, J.: A review on the processing accuracy of two-​photon polymerization. AIP Adv. 5, 030701 (2015)

    Google Scholar 

  115. Jiang, L.J., Campbell, J.H., Lu, Y.F., Bernat, T., Petta, N.: Direct writing target structures by two-photon polymerization. Fusion Sci. Technol. 70, 295 (2016)

    Google Scholar 

  116. Stein, O., Liu, Y., Streit, J., Campbell, J.H., Lu, Y.F., Aglitskiy, Y., Petta, N.: Fabrication of low-density shock-propagation targets using two-photon polymerization. Fusion Sci. Technol. 73, 153 (2018)

    Google Scholar 

  117. Oakdale, J.S., Smith, R.F., Forien, J.-B., Smith, W.L., Ali, S.J., Bayu Aji, L.B., Willey, T.M., Ye, J., van Buuren, A.W., Worthington, M.A., Prisbrey, S.T., Park, H.-S., Amendt, P.A., Baumann, T.F., Biener, J.: Direct laser writing of low-density interdigitated foams for plasma drive sha**. Adv. Funct. Mater. 27, 1702425 (2017)

    Google Scholar 

  118. Herman, M.J., Peterson, D., Henderson, K., Cardenas, T., Hamilton, C.E., Oertel, J., Patterson, B.M.: Lithographic printing via two-photon polymerization of engineered foams. Fusion Sci. Technol. 73, 166 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Hamilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamilton, C.E., Murphy, T. (2023). Aerogels for High-Energy-Density Physics Targets. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_52

Download citation

Publish with us

Policies and ethics

Navigation