Aerogels Containing Metal, Alloy, and Oxide Nanoparticles Embedded into Dielectric Matrices

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1564 Accesses

Abstract

Aerogels are regarded as ideal candidates for the design of functional nanocomposites containing supported metal or metal oxide nanoparticles. The large specific surface area together with the open pore structure enables aerogels to effectively host finely dispersed nanoparticles up to the desired loading and to provide nanoparticle accessibility as required to supply their specific functionalities.

The incorporation of nanoparticles as a way to increase the possibility of the use of aerogels as innovative functional materials and the challenges in the controlled preparation of nanocomposite aerogels are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ko, I.: Aerogels. In: Kirk-Othmer (ed.) Encyclopedia of Chemical Technology, pp. 1–3. Wiley (1998)

    Google Scholar 

  2. Husing, N., Schubert, U.: Aerogels-airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998)

    CAS  Google Scholar 

  3. Piccaluga, G., Corrias, A., Ennas, G., Musinu, A.: Sol-gel preparation and characterization of metal-silica and metal oxide-silica nanocomposites. Mater. Res. Found. 13, 1–56 (2000)

    Google Scholar 

  4. Baumann, T.F., Satcher Jr., J.H.: Homogeneous incorporation of metal nanoparticles into ordered macroporous carbons. Chem. Mater. 15, 3745–3747 (2003)

    CAS  Google Scholar 

  5. Baumann, T.F., Fox, G.A., Satcher Jr., J.H., Yoshizawa, N., Fu, R., Dresselhaus, M.S.: Synthesis and characterization of copper-doped carbon aerogels. Langmuir. 18, 7073–7076 (2002)

    CAS  Google Scholar 

  6. Casas, L.I., Roig, A., Rodriguez, E., Molins, E., Tejada, J., Sort, J.: Silica aerogel-iron oxide nanocomposites: structural and magnetic properties. J. Non-Cryst. Solids. 285, 37–43 (2001)

    CAS  Google Scholar 

  7. Mendoza Zélis, P., Fernández van Raap, M.B., Socolovsky, L.M., Leyva, A.G., Sánchez, F.H.: Magnetic hydrophobic nanocomposites: silica aerogel/maghemite. Physica B. 407, 3113–3116 (2012)

    Google Scholar 

  8. Casula, M.F., Corrias, A., Paschina, G.: Iron oxide-silica aerogel and aerogel nanocomposite materials. J. Non-Cryst. Solids. 293–295, 25–31 (2001)

    Google Scholar 

  9. Cannas, C., Casula, M.F., Concas, G., Corrias, A., Gatteschi, D., Falqui, A., Musinu, A., Sangregorio, C., Spano, G.: Magnetic properties of γ-Fe2O3-SiO2 aerogel and xerogel nanocomposite materials. J. Mater. Chem. 11, 3180–3187 (2001)

    CAS  Google Scholar 

  10. Del Monte, F., Morales, M.P., Levy, D., Fernandez, A., Ocana, M., Roig, A., Molins, E., O’Grady, K., Serna, C.J.: Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir. 13, 3627–3634 (1997)

    Google Scholar 

  11. Casas, L.I., Roig, A., Molins, E., Greneche, J.M., Asenjo, J., Tejada, J.: Iron oxide nanoparticles hosted in silica aerogels. Appl. Phys. A Mater. Sci. Process. 74, 591–597 (2002)

    CAS  Google Scholar 

  12. van Raap, M.B.F., Sanchez, F.H., Torres, C.E.R., Casas, L., Roig, A., Molins, E.: Detailed magnetic dynamic behaviour of nanocomposite iron oxide aerogels. J. Phys. Condens. Matter. 17, 6519–6531 (2005)

    Google Scholar 

  13. Popovici, M., Gich, M., Roig, A., Casas, L., Molins, E., Savii, C., Becherescu, D., Sort, J., Surinach, S., Munoz, J.S., Baro, M.D., Nogues, J.: Ultraporous single phase iron oxide-silica nanostructured aerogels from ferrous precursors. Langmuir. 20, 1425–1429 (2004)

    CAS  Google Scholar 

  14. Lancok, A., Zaveta, K., Popovici, M., Savii, C., Gich, M., Roig, A., Molins, E., Barcova, K.: Mössbauer studies on ultraporous Fe-Oxide/SiO2 aerogel. Hyperfine Interact. 165, 203–208 (2005)

    Google Scholar 

  15. van Raap, M.B.F., Sanchez, F.H., Leyva, A.G., Japas, M.L., Cabanillas, E., Troiani, H.: Synthesis and magnetic properties of iron oxide-silica aerogel nanocomposites. Physica B. 398, 229–234 (2007)

    Google Scholar 

  16. Fabrizioli, P., Burgi, T., Burgener, M., van Doorslaer, S., Baiker, A.: Synthesis, structural and chemical properties of iron oxide-silica aerogels. J. Mater. Chem. 12, 619–630 (2002)

    CAS  Google Scholar 

  17. Maleki, H., Durães, L., Costa, B.F.O., Santos, R.F., Portugal, A.: Design of multifunctional magnetic hybrid silica aerogels with improved properties. Microporous Mesoporous Mater. 232, 227–237 (2016)

    CAS  Google Scholar 

  18. Maleki, H., Durães, L., Portugal, A.: Development of mechanically strong ambient pressure dried silica aerogels with optimized properties. J. Phys. Chem. C. 119, 7689–7703 (2015)

    CAS  Google Scholar 

  19. Clapsaddle, B.J., Gash, A.E., Satcher, J.H., Simpson, R.L.: Silicon oxide in an iron(III) oxide matrix: the sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as the major phase. J. Non-Cryst. Solids. 331, 190–201 (2003)

    CAS  Google Scholar 

  20. Gash, A.E., Tillotson, T.M., Satcher Jr., J.H., Poco, J.F., Hrubesh, L.W., Simpson, R.L.: Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 13, 999–1007 (2001)

    CAS  Google Scholar 

  21. Wang, C.-T., Ro, S.-H.: Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation. Appl. Catal. A: General. 285, 196–204 (2005)

    CAS  Google Scholar 

  22. Casula, M.F., Corrias, A., Paschina, G.: Nickel oxide-silica and nickel-silica aerogel and aerogel nanocomposite materials. J. Mater. Res. 15, 2187–2194 (2000)

    CAS  Google Scholar 

  23. Cutrufello, M.G., Rombi, E., Ferino, I., Loche, D., Corrias, A., Casula, M.F.: Ni-based Xero- and aerogels as catalysts for nitroxidation processes. J. Sol-Gel Sci. Technol. 60, 324–332 (2011)

    CAS  Google Scholar 

  24. Amiri, T.Y., Moghaddas, J.: Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming. Int. J. Hydrog. Energy. 40, 1472–1480 (2015)

    Google Scholar 

  25. Marras, C., Loche, D., Carta, D., Casula, M.F., Schirru, M., Cutrufello, M.G., Corrias, A.: Copper-based catalysts supported on highly porous silica for the water gas shift reaction. ChemPlusChem. 81, 421–432 (2016)

    CAS  Google Scholar 

  26. Mo, C.M., Li, Y.H., Liu, Y.S., Zhang, Y., Zhang, L.D.: Enhancement effect of photoluminescence in assembles of nano-ZnO particles/silica aerogels. J. Appl. Phys. 83, 4389–4391 (1998)

    CAS  Google Scholar 

  27. Amlouk, A., El Mir, L., Kraiem, S., Alaya, S.: Elaboration and characterization of TiO2 nanoparticles incorporated in SiO2 host matrix. J. Phys. Chem. Solids. 67, 1464–1468 (2006)

    CAS  Google Scholar 

  28. El Mir, L., Amlouk, A., Barthou, C.: Visible luminescence of Al2O3 nanoparticles embedded in silica glass host matrix. J. Phys. Chem. Solids. 67, 2395–2399 (2006)

    Google Scholar 

  29. El Mir, L., Amlouk, A., Barthou, C., Alaya, S.: Luminescence of composites based on oxide aerogels incorporated in silica glass host matrix. Mater. Sci. Eng. C. 28, 771–776 (2008)

    Google Scholar 

  30. Wei, T.Y., Kuo, C.Y., Hsu, Y.J., Lu, S.Y., Chang, Y.C.: Tin oxide nanocrystals embedded in silica aerogel: photoluminescence and photocatalysis. Microporous Mesoporous Mater. 112, 580–588 (2008)

    CAS  Google Scholar 

  31. Kucheyev, S.O., Biener, J., Wang, Y.M., Baumann, T.F., Wu, K.J., van Buuren, T., Hamza, A.V., Satcher, J.H., Elam, J.W., Pellin, M.J.: Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl. Phys. Lett. 86, 083108 (2005)

    Google Scholar 

  32. Yao, N., Cao, S.L., Yeung, K.L.: Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures. Microporous Mesoporous Mater. 117, 570–579 (2009)

    CAS  Google Scholar 

  33. Brinker, C.J., Lu, Y., Sellinger, A., Fan, H.: Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater. 11, 579–585 (1999)

    CAS  Google Scholar 

  34. Casula, M.F., Loche, D., Marras, S., Paschina, G., Corrias, A.: Role of urea in the preparation of highly porous nanocomposite aerogels. Langmuir. 23, 3509–3512 (2007)

    CAS  Google Scholar 

  35. Loche, D., Casula, M.F., Falqui, A., Marras, S., Corrias, A.: Preparation of Mn, Ni, Co ferrite nanocomposite aerogels by an urea-assisted sol-gel procedure. J. Nanosci. Nanotechnol. 10, 1008–1016 (2010)

    CAS  Google Scholar 

  36. Casu, A., Casula, M.F., Corrias, A., Falqui, A., Loche, D., Marras, S.: Magnetic and structural investigation of highly porous CoFe2O4-SiO2 nanocomposite aerogels. J. Phys. Chem. C. 111, 916–922 (2007)

    CAS  Google Scholar 

  37. Carta, D., Corrias, A., Mountjoy, G., Navarra, G.: Structural study of highly porous nanocomposite aerogels. J. Non-Cryst. Solids. 353, 1785–1788 (2007)

    CAS  Google Scholar 

  38. Carta, D., Mountjoy, G., Navarra, G., Casula, M.F., Loche, D., Marras, S., Corrias, A.: X-ray absorption investigation of the formation of cobalt ferrite nanoparticles in an aerogel silica matrix. J. Phys. Chem. C. 111, 6308–6317 (2007)

    CAS  Google Scholar 

  39. Carta, D., Casula, M.F., Corrias, A., Falqui, A., Loche, D., Mountjoy, G., Wang, P.: Structural and magnetic characterization of co and Ni silicate hydroxides in bulk and in nanostructures within silica aerogels. Chem. Mater. 21, 945–953 (2009)

    CAS  Google Scholar 

  40. Dutta, P., Dunn, B.C., Eyring, E.M., Shah, N., Huffman, G.P., Manivannan, A., Seehra, S.: Characteristics of cobalt nanoneedles in 10% Co/Aerogel Fischer-Tropsch catalyst. Chem. Mater. 17, 5183–5186 (2005)

    CAS  Google Scholar 

  41. Falqui, A., Corrias, A., Wang, P., Snoeck, E., Mountjoy, G.: A transmission electron microscopy study of CoFe2O4 ferrite nanoparticles in silica aerogel matrix using HREM and STEM imaging and EDX spectroscopy and EELS. Microsc. Microanal. 16, 200–209 (2010)

    CAS  Google Scholar 

  42. Mountjoy, G., Loche, D., Wang, P., Sader, K., Corrias, A.: Scanning transmission electron microscopy study of the evolution of needle-like nanostructures in CoFe2O4 and NiFe2O4 silica nanocomposite aerogels. J. Phys. Chem. C. 115, 5358–5365 (2011)

    CAS  Google Scholar 

  43. Carta, D., Loche, D., Mountjoy, G., Navarra, G., Corrias, A.: NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: an X-ray absorption study. J. Phys. Chem. C. 112, 15623–15630 (2008)

    CAS  Google Scholar 

  44. Carta, D., Casula, M.F., Mountjoy, G., Corrias, A.: Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Phys. Chem. Chem. Phys. 10, 3108–3117 (2008)

    CAS  Google Scholar 

  45. Bullita, S., Casu, A., Casula, M.F., Concas, G., Congiu, F., Corrias, A., Falqui, A., Loche, D., Marras, C.: ZnFe2O4 nanoparticles dispersed in a highly porous silica aerogel matrix: a magnetic study. Phys. Chem. Chem. Phys. 16, 4843–4852 (2014)

    CAS  Google Scholar 

  46. Caddeo, F., Loche, D., Casula, M.F., Corrias, A.: Evidence of a cubic iron sub-lattice in t-CuFe2O4 demonstrated by X-ray absorption fine structure. Sci. Rep. 8, 797 (2018)

    Google Scholar 

  47. UaCearnaigh, D.C., Baghi, R., Hope-Weeks, L.J.: Sol-gel synthesis of a series of first row d-block ferrites via the epoxide addition method. RSC Adv. 6, 48212–48221 (2016)

    CAS  Google Scholar 

  48. Loche, D., Marras, C., Carta, D., Casula, M.F., Mountjoy, G., Corrias, A.: Cation distribution and vacancies in nickel cobaltite. Phys. Chem. Chem. Phys. 19, 16775–16784 (2017)

    CAS  Google Scholar 

  49. Carta, D., Casula, M.F., Falqui, A., Loche, D., Mountjoy, G., Sangregorio, C., Corrias, A.: A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni). J. Phys. Chem. C. 113, 8606–8615 (2009)

    CAS  Google Scholar 

  50. Carta, D., Marras, C., Loche, D., Mountjoy, G., Ahmed, S., Corrias, A.: An X-ray absorption spectroscopy study of the inversion degree in zinc ferrite nanocrystals dispersed on a highly porous silica aerogel matrix. J. Chem. Phys. 138, 054702 (2013)

    CAS  Google Scholar 

  51. Carta, D., Corrias, A., Navarra, G.: A total X-ray scattering study of MnFe2O4 nanoparticles dispersed in a silica aerogel matrix. J. Non-Cryst. Solids. 357, 2600–2603 (2011)

    CAS  Google Scholar 

  52. Casula, M.F., Concas, G., Congiu, F., Corrias, A., Loche, D., Marras, C., Spano, G.: Characterization of stoichiometric nanocrystalline spinel ferrites dispersed on porous silica aerogel. J. Nanosci. Nanotechnol. 11, 1–6 (2011)

    Google Scholar 

  53. Loche, D., Casula, M.F., Corrias, A., Marras, C., Gozzi, D., Latini, A.: Catalytic chemical vapour deposition on MFe2O4-SiO2 (M=Co, Mn, Ni) nanocomposite aerogel catalysts for the production of multi walled carbon nanotubes. J. Nanosci. Nanotechnol. 16, 7750 (2016)

    CAS  Google Scholar 

  54. Leventis, N., Chandrasekaran, N., Sadekar, A.G., Sotiriou-Leventis, C., Lu, H.B.: One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J. Am. Chem. Soc. 131, 4576–4577 (2009)

    CAS  Google Scholar 

  55. Al-Mutaseb, S.A., Ritter, J.A.: Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15, 101–114 (2003)

    Google Scholar 

  56. Leventis, N., Chandrasekaran, N., Sotirou-Leventis, C., Mumtaz, A.: Smelting in the age of nano: iron aerogels. J. Mater. Chem. 19, 63–65 (2009)

    CAS  Google Scholar 

  57. Balkis Ameen, K., Rajasekar, K., Rajasekharan, T.: Silver nanoparticles in mesoporous aerogel exhibiting selective catalytic oxidation of benzene in CO2 free air. Catal. Lett. 119, 289–295 (2007)

    CAS  Google Scholar 

  58. Tai, Y., Murakami, J., Tajiri, K., Ohashi, F., Date, M., Tsubota, S.: Oxidation of carbon monoxide on au nanoparticles in titania and titania-coated silica aerogels. Appl. Catal. A. 268, 183–187 (2004)

    CAS  Google Scholar 

  59. Anderson, K., Fernandez, S.C., Hardacre, C., Marr, P.C.: Preparation of nanoparticulate metal catalysts in porous supports using an ionic liquid route; hydrogenation and C-C coupling. Inorg. Chem. Commun. 7, 73–76 (2004)

    CAS  Google Scholar 

  60. Martinez, S., Moreno-Manas, M., Vallribera, A., Schubert, U., Roig, A., Molins, E.: Highly dispersed nickel and palladium nanoparticle silica aerogels: sol-gel processing of tethered metal complexes and application as catalysts in the Mizoroki-Heck reaction. New J. Chem. 30, 1093–1097 (2006)

    CAS  Google Scholar 

  61. Rotter, H., Landau, M.V., Carrera, M., Goldfarb, D., Herskowitz, M.: High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Appl Catal. B. 47, 111–126 (2004)

    CAS  Google Scholar 

  62. Cai, J., Kimura, S., Wada, M., Kuga, S.: Nanoporous cellulose as metal nanoparticles support. Biomacromolecules. 10, 87–94 (2009)

    CAS  Google Scholar 

  63. Ameen, K.B., Rajasekharan, T., Rajasekharan, M.V.: Grain size dependence of physico-optical properties of nanometallic silver in silica aerogel matrix. J. Non-Cryst. Solids. 352, 737–746 (2006)

    Google Scholar 

  64. Ayers, M.R., Song, X.Y., Hunt, A.J.: Preparation of nanocomposite materials containing WS2, δ-WN, Fe3O4, or Fe9S10 in a silica aerogel host. J. Mater. Sci. 31, 6251–6257 (1996)

    CAS  Google Scholar 

  65. Biener, J., Baumann, T.F., Wang, Y.M., Nelson, E.J., Kucheyev, S.O., Hamza, A.V., Kemell, M., Ritala, M., Leskela, M.: Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology. 18, 055303 (2007)

    Google Scholar 

  66. Kuthirummal, N., Dean, A., Yao, C., Risen, W.: Photo-formation of gold nanoparticles: photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels. Spectrochim. Acta Part A. 70, 700–703 (2008)

    Google Scholar 

  67. Morley, K.S., Marr, P.C., Webb, P.B., Berry, A.R., Allison, F.J., Moldovan, G., Brown, P.D., Howdle, S.M.: Clean preparation of nanoparticulate metals in porous supports: a supercritical route. J. Mater. Chem. 12, 1898–1905 (2002)

    CAS  Google Scholar 

  68. Morley, K.S., Licence, P., Marr, P.C., Hyde, J.R., Brown, P.D., Mokaya, R., **a, Y.D., Howdle, S.M.: Supercritical fluids: a route to palladium-aerogel nanocomposites. J. Mater. Chem. 14, 1212–1217 (2004)

    CAS  Google Scholar 

  69. Zhang, Y., Kang, D.F., Saquing, C., Aindow, M., Erkey, C.: Supported platinum nanoparticles by supercritical deposition. Ind. Eng. Chem. Res. 44, 4161–4164 (2005)

    CAS  Google Scholar 

  70. Martinez, S., Vallribera, A., Cotet, C.L., Popovici, M., Martin, L., Roig, A., Moreno-Manas, M., Molins, E.: Nanosized metallic particles embedded in silica and carbon aerogels as catalysts in the Mizoroki-Heck coupling reaction. New J. Chem. 29, 1342–1345 (2005)

    CAS  Google Scholar 

  71. Moerke, W., Lamber, R., Schubert, U., Breitscheidel, B.: Metal complexes in inorganic matrixes. 11. Composition of highly dispersed bimetallic Ni, Pd alloy particles prepared by sol-gel processing: electron microscopy and FMR study. Chem. Mater. 6, 1659–1666 (1994)

    CAS  Google Scholar 

  72. Dai, S., Ju, Y.U., Gao, H.J., Lin, J.S., Pennycook, S.J., Barnes, C.E.: Preparation of silica aerogel using ionic liquids as solvents. Chem. Commun. 0, 243–244 (2000)

    Google Scholar 

  73. Smith, D.D., Sibille, L., Cronise, R.J., Noever, D.A.: Surface plasmon resonance evaluation of colloidal silver aerogel filters. J. Non-Cryst. Solids. 225, 330–334 (1998)

    CAS  Google Scholar 

  74. Tai, Y., Watanabe, M., Murakami, J., Tajiri, K.: Composite formation of thiol-capped Au nanoparticles and mesoporous silica prepared by a sol-gel method. J. Mater. Sci. 42, 1285–1292 (2007)

    CAS  Google Scholar 

  75. Creighton, J.A., Blatchford, C.G., Albrecht, M.G.: Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2, 790–798 (1979)

    Google Scholar 

  76. Brust, M., Walker, M., Bethell, D., Sciffrin, D.J., Whyman, R.: Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system. J. Chem. Soc. Chem. Commun. 0, 801–802 (1994)

    CAS  Google Scholar 

  77. Tai, Y., Tajiri, K.: Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts. Appl. Catal. A. 342, 113–118 (2008)

    CAS  Google Scholar 

  78. Anderson, M.L., Morris, C.A., Stroud, R.M., Merzbacher, C.I., Rolison, D.R.: Colloidal gold aerogels: preparation, properties, and characterization. Langmuir. 15, 674–681 (1999)

    CAS  Google Scholar 

  79. Morris, C.A., Anderson, M.L., Stroud, R.M., Merzbacher, C.I., Rolison, D.R.: Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science. 284, 622–624 (1999)

    CAS  Google Scholar 

  80. Wallace, J.M., Stroud, R.M., Pietron, J.J., Long, J.W., Rolison, D.R.: The effect of particle size and protein content on nanoparticle-gold-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. J. Non-Cryst. Solids. 350, 31–38 (2004)

    CAS  Google Scholar 

  81. Wallace, J.M., Rice, J.K., Pietron, J.J., Stroud, R.M., Long, J.W., Rolison, D.R.: Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity. Nano Lett. 3, 1463–1467 (2003)

    CAS  Google Scholar 

  82. Leventis, N., Elder, I.A., Long, G.J., Rolison, D.R.: Using nanoscopic hosts, magnetic guests, and field alignment to create anisotropic composite gels and aerogels. Nano Lett. 2, 63–67 (2002)

    CAS  Google Scholar 

  83. Racka, K., Gich, M., Slawska-Waniewska, A., Roig, A., Molins, E.: Magnetic properties of Fe nanoparticle systems. J. Magn. Magn. Mater. 290, 127–130 (2005)

    Google Scholar 

  84. Dunn, B.C., Cole, P., Covington, D., Webster, M.C., Pugmire, R.J., Ernst, R.D., Eyring, E.M., Shah, N., Huffman, G.P.: Silica aerogel supported catalysts for Fischer-Tropsch synthesis. Appl. Catal. A. 278, 233–238 (2005)

    CAS  Google Scholar 

  85. Yu, P.-J., Lee, M.-H., Hsu, H.-M., Tsai, H.-M., Chen-Yang, Y.W.: Silica aerogel-supported cobalt nanocomposites as efficient catalysts toward hydrogen generation from aqueous ammonia borane. RSC Adv. 5, 13985 (2015)

    CAS  Google Scholar 

  86. Han, X., Williamson, F., Bhaduri, G.A., Harvey, A., Šiller, L.: Synthesis and characterisation of ambient pressure dried composites of silica aerogel matrix and embedded nickel nanoparticles. J. Supercrit. Fluids. 106, 140–144 (2015)

    CAS  Google Scholar 

  87. Casula, M.F., Corrias, A., Paschina, G.: Iron-cobalt-silica aerogel nanocomposite materials. J. Sol-Gel Sci. Technol. 26, 667–670 (2003)

    CAS  Google Scholar 

  88. Casula, M.F., Corrias, A., Paschina, G.: FeCo-SiO2 nanocomposite aerogels by high temperature supercritical drying. J. Mater. Chem. 12, 1505–1510 (2002)

    CAS  Google Scholar 

  89. Corrias, A., Casula, M.F., Ennas, G., Marras, S., Navarra, G., Mountjoy, G.: X-ray absorption spectroscopy study of FeCo-SiO2 nanocomposites prepared by the sol-gel method. J. Phys. Chem. B. 107, 3030–3039 (2003)

    CAS  Google Scholar 

  90. Casula, M.F., Corrias, A., Navarra, G.: An EXAFS study on iron-cobalt-silica nanocomposite materials prepared by the sol-gel method. J. Sol-Gel Sci. Technol. 26, 453–456 (2003)

    CAS  Google Scholar 

  91. Casu, A., Casula, M.F., Corrias, A., Falqui, A., Loche, D., Marras, S., Sangregorio, C.: The influence of composition and porosity on the magnetic properties of FeCo-SiO2 nanocomposite aerogels. Phys. Chem. Chem. Phys. 10, 1043–1052 (2008)

    CAS  Google Scholar 

  92. Carta, D., Mountjoy, G., Gass, M., Navarra, G., Casula, M.F., Corrias, A.: Structural characterization study of FeCo alloy nanoparticles in a highly porous aerogel silica matrix. J. Chem. Phys. 127, 204705 (2007)

    CAS  Google Scholar 

  93. Falqui, A., Corrias, A., Gass, M., Mountjoy, G.: A transmission electron microscopy study of Fe-co alloy nanoparticles in silica aerogel matrix using HREM, EDX, and EELS. Microsc. Microanal. 15, 114–124 (2009)

    CAS  Google Scholar 

  94. Falqui, A., Loche, D., Casula, M.F., Corrias, A., Gozzi, D., Latini, A.: Synthesis and characterization of multiwalled carbon nanotube/FeCo nanocomposites. J. Nanosci. Nanotechnol. 11, 2215–2225 (2010)

    Google Scholar 

  95. Vanyorek, L., Loche, D., Katona, H., Casula, M.F., Corrias, A., Kónya, Z., Kukovecz, Á., Kiricsi, I.: Optimization of the catalytic chemical vapor deposition synthesis of multi-wall carbon nanotubes on FeCo(Ni)/SiO2 aerogel catalysts by statistical design of experiments. J. Phys. Chem. C. 115, 5894–5902 (2011)

    CAS  Google Scholar 

  96. Loche, D., Casula, M.F., Corrias, A., Marras, S., Moggi, P.: Bimetallic FeCo nanocrystals supported on highly porous silica aerogels as Fischer–Tropsch catalysts. Catal. Lett. 142, 1061–1066 (2012)

    CAS  Google Scholar 

  97. Marras, C., Loche, D., Corrias, A., Konya, Z., Casula, M.F.: Bimetallic Fe/Mo-SiO2 aerogel catalysts for catalytic carbon vapour deposition production of carbon nanotubes. J. Sol-Gel Sci. Technol. 73, 379–388 (2015)

    CAS  Google Scholar 

  98. Hund, J.F., Bertino, M.F., Zhang, G., Sotiriou-Leventis, C., Leventis, N.: Synthesis of homogeneous alloy metal nanoparticles in silica aerogels. J. Non-Cryst. Solids. 350, 9–13 (2004)

    CAS  Google Scholar 

  99. Corrias, A., Casula, M.F., Falqui, A., Paschina, G.: Preparation and characterization of FeCo-Al2O3 and Al2O3 aerogels. J. Sol-Gel Sci. Technol. 31, 83–86 (2004)

    CAS  Google Scholar 

  100. Corrias, A., Casula, M.F., Falqui, A., Paschina, G.: Evolution of the structure and magnetic properties of FeCo nanoparticles in an alumina aerogel matrix. Chem. Mater. 16, 3130–3138 (2004)

    CAS  Google Scholar 

  101. Corrias, A., Navarra, G., Casula, M.F., Marras, S., Mountjoy, G.: An X-ray absorption spectroscopy investigation of the formation of FeCo alloy nanoparticles in Al2O3 xerogel and aerogel matrixes. J. Phys. Chem. B. 109, 13964–13970 (2005)

    CAS  Google Scholar 

  102. Casula, M.F., Concas, G., Congiu, F., Corrias, A., Falqui, A., Spano, G.: Near equiatomic FeCo nanocrystalline alloy embedded in an alumina aerogel matrix: microstructural features and related magnetic properties. J. Phys. Chem. B. 109, 23888–23895 (2005)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to F. Caddeo, A. Falqui, D. Carta, G. Navarra, and G. Mountjoy for discussion and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Corrias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corrias, A., Loche, D., Casula, M.F. (2023). Aerogels Containing Metal, Alloy, and Oxide Nanoparticles Embedded into Dielectric Matrices. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_31

Download citation

Publish with us

Policies and ethics

Navigation