Mathematical Geosciences

  • Living reference work entry
  • First Online:
Encyclopedia of Mathematical Geosciences

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 32 Accesses

Definition

Mathematical geosciences or geomathematics (MG or GM) is an interdisciplinary field involving application of mathematics, statistics, and informatics in earth sciences. The International Association for Mathematical Geosciences (IAMG) is a unique international academic society with mathematical geosciences as part of its tittle and the mission of which is to promote, worldwide, the advancement of mathematics, statistics, and informatics in the Geosciences. However, the lack of a unified definition of mathematical geosciences or geomathematics (MG or GM) as an interdisciplinary field of natural science may lead to misunderstanding of the subject or not even treating it as an independent discipline. This has, to some extent, affected the development of the field of mathematical geosciences. Since late 1990s, the author of the current chapter has served IAMG as capacities of, council member, vice president, and president. Thus, the author has witnessed and contributed to the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Agterberg F (1974) Geomathematics, mathematical background and geo-science application. Elsevier, Amsterdam

    Google Scholar 

  • Agterberg F (1989) Computer programs for mineral exploration. Science 245(4913):76–81

    Article  Google Scholar 

  • Agterberg F (1995) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int Geol Rev 37(1):1–8

    Article  Google Scholar 

  • Agterberg F (2011) A modified weights-of-evidence method for regional mineral resource estimation. Nat Resour Res 20(2):95–101

    Article  Google Scholar 

  • Agterberg F (2014) Geomathematics: theoretical foundations, applications and future developments. Springer, Cham

    Google Scholar 

  • Ahrens L (1953) A fundamental law of geochemistry. Nature 172(4390):1148–1148

    Article  Google Scholar 

  • Aubrey K (1954) Frequency distribution of the concentrations of elements in rocks. Nature 174(4420):141–142

    Article  Google Scholar 

  • Bonham-Carter G (1994) Geographic information systems for geoscientists-modeling with GIS. Comput Methods Geosci 13:398

    Google Scholar 

  • Bradley C, Cracknell A (2009) The mathematical theory of symmetry in solids: representation theory for point groups and space groups. Oxford University Press, Oxford

    Google Scholar 

  • Cannavò F, Nunnari G (2016) On a possible unified scaling law for volcanic eruption durations. Sci Rep-UK 6(1):22289

    Article  Google Scholar 

  • Cheng Q (1995) The perimeter-area fractal model and its application to geology. Math Geol 27(1):69–82

    Google Scholar 

  • Cheng Q (2007a) Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and Eigen domains. Nonlinear Proc Geophys 14(3):293–303

    Article  Google Scholar 

  • Cheng Q (2007b) Map** singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol Rev 32(1/2):314–324

    Article  Google Scholar 

  • Cheng Q (2007c) Singular mineralization processes and mineral resources quantitative prediction: new theories and methods. Earth Sci Front 14(5):42–53. (In Chinese with English Abstract)

    Google Scholar 

  • Cheng Q (2008) Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Math Geosci 40(5):503–532

    Article  Google Scholar 

  • Cheng Q (2012a) Singularity theory and methods for map** geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J Geochem Explor 122:55–70

    Article  Google Scholar 

  • Cheng Q (2012b) Application of a newly developed boost Weights of Evidence model (BoostWofE) for mineral resources quantitative assessments. J Jilin Univ 42(6):1976–1985

    Google Scholar 

  • Cheng Q (2014) Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions. Nonlinear Proc Geoph 21(2):477–487

    Article  Google Scholar 

  • Cheng Q (2015a) Multifractal interpolation method for spatial data with singularities. J S Afr Min Metall 115(3):235–240

    Article  Google Scholar 

  • Cheng Q (2015b) BoostWofE: a new sequential weights of evidence model reducing the effect of conditional dependency. Math Geosci 47(5):591–621

    Article  Google Scholar 

  • Cheng Q (2016) Fractal density and singularity analysis of heat flow over ocean ridges. Sci Rep-UK 6(1):19167

    Article  Google Scholar 

  • Cheng Q (2018a) Mathematical geosciences: local singularity analysis of nonlinear earth processes and extreme geo-events. In: Handbook of mathematical geosciences. Springer, Cham

    Google Scholar 

  • Cheng Q (2018b) Singularity analysis of magmatic flare-ups caused by India-Asia collisions. J Geochem Explor 189:25–31

    Article  Google Scholar 

  • Cheng Q (2018c) Extrapolations of secular trends in magmatic intensity and mantle cooling: implications for future evolution of plate tectonics. Gondwana Res 63:268–273

    Article  Google Scholar 

  • Cheng Q, Sun H (2018) Variation of singularity of earthquake-size distribution with respect to tectonic regime. Geosci Front 9(2):453–458

    Article  Google Scholar 

  • Cheng Q, Xu Y (1998) Geophysical data processing and interpreting and for mineral potential map** in GIS environment. In: Proceedings of the fourth annual conference of the international association for mathematical geology. De Frede Editore, Napoli, Italy, pp 394–399

    Google Scholar 

  • Cheng Q, Agterberg F, Ballantyne S (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51(2):109–130

    Article  Google Scholar 

  • Cheng Q, Xu Y, Grunsky E (2000) Integrated spatial and spectrum method for geochemical anomaly separation. Nat Resour Res 9(1):43–52

    Article  Google Scholar 

  • Cheng Q, Oberhänsli R, Zhao M (2020) A new international initiative for facilitating data – driven Earth science transformation. Geol Soc Lond, Spec Publ 499(1):225–240

    Article  Google Scholar 

  • Clarke FW (1920) The Data of Geochemistry, 4th Edition, U. S. Geological Survey, Washington, D. C. pp. 832

    Google Scholar 

  • Gautier D, Bird K, Charpentier R, Grantz A, Houseknecht D, Klett T, Moore T, Pitman J, Schenk C, Schuenemeyer J, Sørensen K, Tennyson M, Valin Z, Wandrey C (2009) Assessment of undiscovered oil and gas in the Arctic. Science 324(5931):1175–1179

    Article  Google Scholar 

  • Gutenberg B, Richter C (1944) Frequency of earthquakes in California. B Seismol Soc Am 34(4):185–188

    Article  Google Scholar 

  • Hess H (1960) The evolution of ocean basins. Department of Geology, Princeton University, Princeton

    Google Scholar 

  • Howarth R (2017) Dictionary of mathematical geosciences: with historical notes. Springer, Cham

    Book  Google Scholar 

  • Johnson HP, Embley RW (1990) Axial seamount: an active ridge axis volcano on the central Juan de Fuca Ridge. J Geophys Res-Solid Earth 95:12689–12696

    Article  Google Scholar 

  • Journel A (2002) Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses. Math Geol 34(5):573–596

    Article  Google Scholar 

  • Koppers A, Coggon R (2020) Exploring earth by scientific ocean drilling: 2050 science framework. UC San Diego Library Digital Collections, La Jolla

    Google Scholar 

  • Krumbein W (1934) Size frequency distributions of sediments. J Sediment Res 4(2):65–77

    Google Scholar 

  • Lambert I, Durrheim R, Godoy M, Kota K, Leahy P, Ludden J, Nickless E, Oberhaensli R, Wang A, Williams N (2013) Resourcing future generations: a proposed new IUGS initiative. Episodes 36(2):82–86

    Article  Google Scholar 

  • Lodge O (1894) Mathematical geology. Nature 50:289–293

    Article  Google Scholar 

  • Lorenz E (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  • Lovejoy W (1991) A survey of algorithmic methods for partially observed Markov decision processes. Ann Oper Res 28(1):47–65

    Article  Google Scholar 

  • Lovejoy S, Agterberg F, Carsteanu A, Cheng Q, Davidsen J, Gaonac’h H, Gupta V, L’Heureux I, Liu W, Morris S, Sharma S, Shcherbakov R, Tarquis A, Turcotte D, Uritsky V (2009) Nonlinear geophysics: why we need it. EOS Trans Am Geophys Union 90(48):455–456

    Article  Google Scholar 

  • Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775):636–638

    Article  Google Scholar 

  • Mandelbrot B (1977) Fractals: form, chance and dimension. W.H. Freeman, San Francisco

    Google Scholar 

  • Mandelbrot B (1989) Multifractal measures, especially for the geophysicist. Fractals in geophysics. Birkhäuser, Basel, pp 5–42

    Book  Google Scholar 

  • Mason B (1992) Victor Moritz Goldschmidt: father of modern geochemistry. Geochemical Society, Washington, DC

    Google Scholar 

  • McCammon R (1975) Concepts in geostatistics. Springer, Cham

    Book  Google Scholar 

  • Mckenzie D (1967) Some remarks on heat flow and gravity anomalies. J Geophys Res 72(24):6261–6273

    Article  Google Scholar 

  • Mckenzie D, Parker R (1967) The North Pacific: an example of tectonics on a sphere. Nature 216(5122):1276–1280

    Article  Google Scholar 

  • Merriam D (1970) Geostatistics: A Colloquium (Computer Applications in the Earth Sciences). Plenum Press, New York, pp. 177

    Google Scholar 

  • National Academies of Sciences, Engineering and Medicine (2020) A vision for NSF Earth Sciences 2020–2030: Earth in time. The National Academies Press, Washington, DC

    Google Scholar 

  • Nespolo M (2008) Does mathematical crystallography still have a role in the XXI century? Acta Cryst A64(1):96–111

    Article  Google Scholar 

  • Orosei R, Lauro S, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R (2018) Radar evidence of subglacial liquid water on Mars. Science 361(6401):490–493

    Article  Google Scholar 

  • Ouillon G, Castaing C, Sornette D (1996) Hierarchical geometry of faulting. J Geophys Res-Solid Earth 101(B3):5477–5487

    Article  Google Scholar 

  • Pelletier J (1999) Statistical self-similarity of magmatism and volcanism. J Geophys Res-Solid Earth 104(B7):15425–15438

    Article  Google Scholar 

  • Richeson D (2008) Euler’s Gem: the polyhedron formula and the birth of topology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Silver D, Huang A, Maddison C, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  Google Scholar 

  • Singer D, Menzie W (2010) Quantitative mineral resource assessments: an integrated approach. Oxford University Press, Oxford

    Book  Google Scholar 

  • Sornette D, Pisarenko V (2003) Fractal plate tectonics. Geophys Res Lett 30(3):1105

    Article  Google Scholar 

  • Takaya Y, Yasukawa K, Kawasaki T, Fu**aga K, Ohta J, Usu Y, Nakamura K, Kimura J, Chang Q, Hamada M, Dodbiba G, Nozaki T, Iijima K, Morisawa T, Kuwahara T, Ishida Y, Ichimura T, Kitazume M, Fujita T, Kato Y (2018) The tremendous potential of deep-sea mud as a source of rare-earth elements. Sci Rep-UK 8:5763. https://doi.org/10.1038/s41598-018-23,948-5

    Article  Google Scholar 

  • Turcotte D (2006) Modeling geocomplexity: “a new kind of science”. Special papers-Geological Society of America 413. p 39

    Google Scholar 

  • Udden J (1898) The mechanical composition of wind deposits. Lutheran Augustana Book Concern, Lindsborg

    Google Scholar 

  • United States Geological Survey (2021) Geological survey 21st-century science strategy 2020–2030. Geological Survey, Reston

    Google Scholar 

  • Valentine G, Zhang D, Robinson B (2002) Modeling complex, nonlinear geological processes. Annu Rev Earth Planet Sci 30(1):35–64

    Article  Google Scholar 

  • Vistelius A (1962) Problems of mathematical geology: a contribution to the history of the problem. Geol Geophys 12(7):3–9

    Google Scholar 

  • Wang S, Cheng Q, Fan J (1990) Integrated evaluation methods of information on gold resources. Jilin Science and Technology Press, Changchun. (In Chinese)

    Google Scholar 

  • Weiss C (1820) Über die theorie des epidotsystems. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin pp 242–269

    Google Scholar 

  • Wentworth C (1922) A scale of grade and class terms for clastic sediments. J Geol 30(5):377–392

    Article  Google Scholar 

  • Wiesenfeld K, Chao T, Bak P (1989) A physicist’s sandbox. J Stat Phys 54(5):1441–1458

    Article  Google Scholar 

  • Wolfram S (2002) A new kind of science: Champaign. Wolfram Media, Champaign

    Google Scholar 

  • Zhang S, Cheng Q, Zhang S, ** in Gejiu, Yunnan Province, China. Earth Sci-J China Univ Geosci 34:281–286. (in Chinese with English abstract)

    Google Scholar 

  • Zhao P (1998) Geological anomaly and mineral prediction: modern theory and methods for mineral resources evaluation. The Geological Publishing House, Bei**g

    Google Scholar 

  • Zhao P (2002) “Three-component” quantitative resource prediction and assessments: theory and practice of digital mineral prospecting. Earth Sci-J China Univ Geosci 27(5):482–489. (In Chinese with English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuming Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cheng, Q. (2022). Mathematical Geosciences. In: Daya Sagar, B.S., Cheng, Q., McKinley, J., Agterberg, F. (eds) Encyclopedia of Mathematical Geosciences. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-26050-7_194-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26050-7_194-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26050-7

  • Online ISBN: 978-3-030-26050-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Navigation